ref: 1f84c8014428ea35f2dc4fafe90a6b46826d4663
dir: /libcelt/mfrngenc.c/
#ifdef HAVE_CONFIG_H #include "config.h" #endif #include "arch.h" #include "entenc.h" #include "mfrngcod.h" /*A multiply-free range encoder. See mfrngdec.c and the references for implementation details \cite{Mar79,MNW98,SM98}. @INPROCEEDINGS{Mar79, author="Martin, G.N.N.", title="Range encoding: an algorithm for removing redundancy from a digitised message", booktitle="Video \& Data Recording Conference", year=1979, address="Southampton", month=Jul } @ARTICLE{MNW98, author="Alistair Moffat and Radford Neal and Ian H. Witten", title="Arithmetic Coding Revisited", journal="{ACM} Transactions on Information Systems", year=1998, volume=16, number=3, pages="256--294", month=Jul, URL="http://www.stanford.edu/class/ee398/handouts/papers/Moffat98ArithmCoding.pdf" } @INPROCEEDINGS{SM98, author="Lang Stuiver and Alistair Moffat", title="Piecewise Integer Mapping for Arithmetic Coding", booktitle="Proceedings of the {IEEE} Data Compression Conference", pages="1--10", address="Snowbird, UT", month="Mar./Apr.", year=1998 }*/ /*Outputs a symbol, with a carry bit. If there is a potential to propagate a carry over several symbols, they are buffered until it can be determined whether or not an actual carry will occur. If the counter for the buffered symbols overflows, then the stream becomes undecodable. This gives a theoretical limit of a few billion symbols in a single packet on 32-bit systems. The alternative is to truncate the range in order to force a carry, but requires similar carry tracking in the decoder, needlessly slowing it down.*/ static void ec_enc_carry_out(ec_enc *_this,int _c){ if(_c!=EC_SYM_MAX){ /*No further carry propagation possible, flush buffer.*/ int carry; carry=_c>>EC_SYM_BITS; /*Don't output a byte on the first write. This compare should be taken care of by branch-prediction thereafter.*/ if(_this->rem>=0)ec_byte_write1(_this->buf,_this->rem+carry); if(_this->ext>0){ unsigned sym; sym=EC_SYM_MAX+carry&EC_SYM_MAX; do ec_byte_write1(_this->buf,sym); while(--(_this->ext)>0); } _this->rem=_c&EC_SYM_MAX; } else _this->ext++; } static inline void ec_enc_normalize(ec_enc *_this){ /*If the range is too small, output some bits and rescale it.*/ while(_this->rng<=EC_CODE_BOT){ ec_enc_carry_out(_this,(int)(_this->low>>EC_CODE_SHIFT)); /*Move the next-to-high-order symbol into the high-order position.*/ _this->low=_this->low<<EC_SYM_BITS&EC_CODE_TOP-1; _this->rng<<=EC_SYM_BITS; } } void ec_enc_init(ec_enc *_this,ec_byte_buffer *_buf){ _this->buf=_buf; _this->rem=-1; _this->ext=0; _this->low=0; _this->rng=EC_CODE_TOP; } void ec_encode(ec_enc *_this,unsigned _fl,unsigned _fh,unsigned _ft){ ec_uint32 fl; ec_uint32 fh; ec_uint32 ft; ec_uint32 r; ec_uint32 s; ec_uint32 d; int e; int nrm; /*Step 1: we want ft in the range of [rng/2,rng). The high-order bits of the rng and ft are computed via a logarithm. This could also be done on some architectures with some custom assembly, which would provide even more speed.*/ nrm=EC_ILOG(_this->rng)-EC_ILOG(_ft); /*Having the same high order bit may be too much. We may need to shift one less to ensure that ft is actually in the proper range.*/ ft=(ec_uint32)_ft<<nrm; e=ft>_this->rng; ft>>=e; nrm-=e; /*We then scale everything by the computed power of 2.*/ fl=(ec_uint32)_fl<<nrm; fh=(ec_uint32)_fh<<nrm; /*Step 2: compute the two values of the partition function. d is the splitting point of the interval [0,ft).*/ d=_this->rng-ft; r=fh+EC_MINI(fh,d); s=fl+EC_MINI(fl,d); /*Step 3: Update the end-point and range of the interval.*/ _this->low+=s; _this->rng=r-s; /*Step 4: Normalize the interval.*/ ec_enc_normalize(_this); } void ec_encode_bin(ec_enc *_this,unsigned _fl,unsigned _fh,unsigned bits){ ec_encode(_this, _fl, _fh, 1U<<bits); } long ec_enc_tell(ec_enc *_this,int _b){ ec_uint32 r; int l; long nbits; nbits=(ec_byte_bytes(_this->buf)+(_this->rem>=0)+_this->ext)*EC_SYM_BITS; /*To handle the non-integral number of bits still left in the encoder state, we compute the number of bits of low that must be encoded to ensure that the value is inside the range for any possible subsequent bits. Note that this is subtly different than the actual value we would end the stream with, which tries to make as many of the trailing bits zeros as possible.*/ nbits+=EC_CODE_BITS; nbits<<=_b; l=EC_ILOG(_this->rng); r=_this->rng>>l-16; while(_b-->0){ int b; r=r*r>>15; b=(int)(r>>16); l=l<<1|b; r>>=b; } return nbits-l; } void ec_enc_done(ec_enc *_this){ /*We compute the integer in the current interval that has the largest number of trailing zeros, and write that to the stream. This is guaranteed to yield the smallest possible encoding.*/ if(_this->low){ ec_uint32 end; end=EC_CODE_TOP; /*Ensure that the end value is in the range.*/ if(end-_this->low>=_this->rng){ ec_uint32 msk; msk=EC_CODE_TOP-1; do{ msk>>=1; end=_this->low+msk&~msk|msk+1; } while(end-_this->low>=_this->rng); } /*The remaining output is the next free end.*/ while(end){ ec_enc_carry_out(_this,end>>EC_CODE_SHIFT); end=end<<EC_SYM_BITS&EC_CODE_TOP-1; } } /*If we have a buffered byte flush it into the output buffer.*/ if(_this->rem>0||_this->ext>0){ ec_enc_carry_out(_this,0); _this->rem=-1; } }