ref: 111b23f648a45d3a034050e579a531d0592dc720
dir: /src_FLP/SKP_Silk_control_codec_FLP.c/
/*********************************************************************** Copyright (c) 2006-2010, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #include "SKP_Silk_main_FLP.h" #include "SKP_Silk_setup_complexity.h" SKP_INLINE SKP_int SKP_Silk_setup_resamplers( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Pointer to Silk encoder state FLP */ SKP_int fs_kHz /* I Internal sampling rate (kHz) */ ); SKP_INLINE SKP_int SKP_Silk_setup_fs( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int fs_kHz, /* I */ SKP_int PacketSize_ms /* I */ ); SKP_INLINE SKP_int SKP_Silk_setup_rate( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Pointer to Silk encoder state FLP */ SKP_int TargetRate_bps /* I Target max bitrate */ ); SKP_INLINE SKP_int SKP_Silk_setup_LBRR( SKP_Silk_encoder_state_FLP *psEnc /* I/O Pointer to Silk encoder state FLP */ ); /* Control encoder */ SKP_int SKP_Silk_control_encoder_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Pointer to Silk encoder state FLP */ const SKP_int PacketSize_ms, /* I Packet length (ms) */ const SKP_int32 TargetRate_bps, /* I Target max bitrate (bps) */ const SKP_int PacketLoss_perc, /* I Packet loss rate (in percent) */ const SKP_int Complexity /* I Complexity (0-10) */ ) { SKP_int fs_kHz, ret = 0; if( psEnc->sCmn.controlled_since_last_payload != 0 ) { if( psEnc->sCmn.API_fs_Hz != psEnc->sCmn.prev_API_fs_Hz && psEnc->sCmn.fs_kHz > 0 ) { /* Change in API sampling rate in the middle of encoding a packet */ ret += SKP_Silk_setup_resamplers( psEnc, psEnc->sCmn.fs_kHz ); } return ret; } /* Beyond this point we know that there are no previously coded frames in the payload buffer */ /********************************************/ /* Determine internal sampling rate */ /********************************************/ fs_kHz = SKP_Silk_control_audio_bandwidth( &psEnc->sCmn, TargetRate_bps ); /********************************************/ /* Prepare resampler and buffered data */ /********************************************/ ret += SKP_Silk_setup_resamplers( psEnc, fs_kHz ); /********************************************/ /* Set internal sampling frequency */ /********************************************/ ret += SKP_Silk_setup_fs( psEnc, fs_kHz, PacketSize_ms ); /********************************************/ /* Set encoding complexity */ /********************************************/ ret += SKP_Silk_setup_complexity( &psEnc->sCmn, Complexity ); /********************************************/ /* Set bitrate/coding quality */ /********************************************/ ret += SKP_Silk_setup_rate( psEnc, TargetRate_bps ); /********************************************/ /* Set packet loss rate measured by farend */ /********************************************/ if( ( PacketLoss_perc < 0 ) || ( PacketLoss_perc > 100 ) ) { ret = SKP_SILK_ENC_INVALID_LOSS_RATE; } psEnc->sCmn.PacketLoss_perc = PacketLoss_perc; /********************************************/ /* Set LBRR usage */ /********************************************/ ret += SKP_Silk_setup_LBRR( psEnc ); psEnc->sCmn.controlled_since_last_payload = 1; return ret; } SKP_INLINE SKP_int SKP_Silk_setup_resamplers( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Pointer to Silk encoder state FLP */ SKP_int fs_kHz /* I External (API) sampling rate (Hz) */ ) { SKP_int ret = SKP_SILK_NO_ERROR; if( psEnc->sCmn.fs_kHz != fs_kHz || psEnc->sCmn.prev_API_fs_Hz != psEnc->sCmn.API_fs_Hz ) { if( psEnc->sCmn.fs_kHz == 0 ) { /* Initialize the resampler for enc_API.c preparing resampling from API_fs_Hz to fs_kHz */ ret += SKP_Silk_resampler_init( &psEnc->sCmn.resampler_state, psEnc->sCmn.API_fs_Hz, fs_kHz * 1000 ); } else { /* Allocate space for worst case temporary upsampling, 8 to 48 kHz, so a factor 6 */ SKP_int16 x_buf_API_fs_Hz[ ( 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ) * ( MAX_API_FS_KHZ / 8 ) ]; SKP_int16 x_bufFIX[ 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ]; SKP_int32 nSamples_temp = 2 * psEnc->sCmn.frame_length + LA_SHAPE_MS * psEnc->sCmn.fs_kHz; SKP_float2short_array( x_bufFIX, psEnc->x_buf, nSamples_temp ); if( fs_kHz * 1000 < psEnc->sCmn.API_fs_Hz && psEnc->sCmn.fs_kHz != 0 ) { /* Resample buffered data in x_buf to API_fs_Hz */ SKP_Silk_resampler_state_struct temp_resampler_state; /* Initialize resampler for temporary resampling of x_buf data to API_fs_Hz */ ret += SKP_Silk_resampler_init( &temp_resampler_state, psEnc->sCmn.fs_kHz * 1000, psEnc->sCmn.API_fs_Hz ); /* Temporary resampling of x_buf data to API_fs_Hz */ ret += SKP_Silk_resampler( &temp_resampler_state, x_buf_API_fs_Hz, x_bufFIX, nSamples_temp ); /* Calculate number of samples that has been temporarily upsampled */ nSamples_temp = SKP_DIV32_16( nSamples_temp * psEnc->sCmn.API_fs_Hz, psEnc->sCmn.fs_kHz * 1000 ); /* Initialize the resampler for enc_API.c preparing resampling from API_fs_Hz to fs_kHz */ ret += SKP_Silk_resampler_init( &psEnc->sCmn.resampler_state, psEnc->sCmn.API_fs_Hz, fs_kHz * 1000 ); } else { /* Copy data */ SKP_memcpy( x_buf_API_fs_Hz, x_bufFIX, nSamples_temp * sizeof( SKP_int16 ) ); } if( 1000 * fs_kHz != psEnc->sCmn.API_fs_Hz ) { /* Correct resampler state (unless resampling by a factor 1) by resampling buffered data from API_fs_Hz to fs_kHz */ ret += SKP_Silk_resampler( &psEnc->sCmn.resampler_state, x_bufFIX, x_buf_API_fs_Hz, nSamples_temp ); } SKP_short2float_array( psEnc->x_buf, x_bufFIX, ( 2 * MAX_FRAME_LENGTH_MS + LA_SHAPE_MS ) * fs_kHz ); } } psEnc->sCmn.prev_API_fs_Hz = psEnc->sCmn.API_fs_Hz; return(ret); } SKP_INLINE SKP_int SKP_Silk_setup_fs( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int fs_kHz, /* I */ SKP_int PacketSize_ms /* I */ ) { SKP_int ret = SKP_SILK_NO_ERROR; /* Set packet size */ if( PacketSize_ms != psEnc->sCmn.PacketSize_ms ) { if( ( PacketSize_ms != 10 ) && ( PacketSize_ms != 20 ) && ( PacketSize_ms != 40 ) && ( PacketSize_ms != 60 ) ) { ret = SKP_SILK_ENC_PACKET_SIZE_NOT_SUPPORTED; } if( PacketSize_ms == 10 ) { /* Only allowed when the payload buffer is empty */ psEnc->sCmn.nb_subfr = MAX_NB_SUBFR >> 1; psEnc->sPred.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS_2_SF, fs_kHz ); if( psEnc->sCmn.fs_kHz == 8 ) { psEnc->sCmn.pitch_contour_iCDF = SKP_Silk_pitch_contour_10_ms_NB_iCDF; } else { psEnc->sCmn.pitch_contour_iCDF = SKP_Silk_pitch_contour_10_ms_iCDF; } } else { psEnc->sCmn.nb_subfr = MAX_NB_SUBFR; psEnc->sPred.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS, fs_kHz ); if( psEnc->sCmn.fs_kHz == 8 ) { psEnc->sCmn.pitch_contour_iCDF = SKP_Silk_pitch_contour_NB_iCDF; } else { psEnc->sCmn.pitch_contour_iCDF = SKP_Silk_pitch_contour_iCDF; } } psEnc->sCmn.PacketSize_ms = PacketSize_ms; psEnc->sCmn.LBRR_nBytes = 0; } /* Set internal sampling frequency */ if( psEnc->sCmn.fs_kHz != fs_kHz ) { /* reset part of the state */ SKP_memset( &psEnc->sShape, 0, sizeof( SKP_Silk_shape_state_FLP ) ); SKP_memset( &psEnc->sPrefilt, 0, sizeof( SKP_Silk_prefilter_state_FLP ) ); SKP_memset( &psEnc->sNSQ, 0, sizeof( SKP_Silk_nsq_state ) ); SKP_memset( &psEnc->sPred, 0, sizeof( SKP_Silk_predict_state_FLP ) ); SKP_memset( psEnc->sNSQ.xq, 0, 2 * MAX_FRAME_LENGTH * sizeof( SKP_int16 ) ); SKP_memset( psEnc->sNSQ_LBRR.xq, 0, 2 * MAX_FRAME_LENGTH * sizeof( SKP_int16 ) ); SKP_memset( psEnc->sPred.prev_NLSFq, 0, MAX_LPC_ORDER * sizeof( SKP_float ) ); #if SWITCH_TRANSITION_FILTERING SKP_memset( psEnc->sCmn.sLP.In_LP_State, 0, 2 * sizeof( SKP_int32 ) ); if( psEnc->sCmn.sLP.mode == 1 ) { /* Begin transition phase */ psEnc->sCmn.sLP.transition_frame_no = 1; } else { /* End transition phase */ psEnc->sCmn.sLP.transition_frame_no = 0; } #endif psEnc->sCmn.LBRR_nBytes = 0; psEnc->sCmn.inputBufIx = 0; psEnc->sCmn.nFramesInPayloadBuf = 0; psEnc->sCmn.nBytesInPayloadBuf = 0; psEnc->sCmn.TargetRate_bps = 0; /* Ensures that psEnc->SNR_dB is recomputed */ /* Initialize non-zero parameters */ psEnc->sCmn.prevLag = 100; psEnc->sCmn.first_frame_after_reset = 1; psEnc->sPrefilt.lagPrev = 100; psEnc->sShape.LastGainIndex = 1; psEnc->sNSQ.lagPrev = 100; psEnc->sNSQ.prev_inv_gain_Q16 = 65536; psEnc->sNSQ_LBRR.prev_inv_gain_Q16 = 65536; psEnc->sCmn.fs_kHz = fs_kHz; if( psEnc->sCmn.fs_kHz == 8 ) { psEnc->sCmn.predictLPCOrder = MIN_LPC_ORDER; psEnc->sCmn.psNLSF_CB[ 0 ] = &SKP_Silk_NLSF_CB0_10; psEnc->sCmn.psNLSF_CB[ 1 ] = &SKP_Silk_NLSF_CB1_10; if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ){ psEnc->sCmn.pitch_contour_iCDF = SKP_Silk_pitch_contour_NB_iCDF; } else if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR / 2 ){ psEnc->sCmn.pitch_contour_iCDF = SKP_Silk_pitch_contour_10_ms_NB_iCDF; } else { /* Unsupported number of frames */ SKP_assert( 0 ); } } else { psEnc->sCmn.predictLPCOrder = MAX_LPC_ORDER; psEnc->sCmn.psNLSF_CB[ 0 ] = &SKP_Silk_NLSF_CB0_16; psEnc->sCmn.psNLSF_CB[ 1 ] = &SKP_Silk_NLSF_CB1_16; if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ){ psEnc->sCmn.pitch_contour_iCDF = SKP_Silk_pitch_contour_iCDF; } else if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR / 2 ){ psEnc->sCmn.pitch_contour_iCDF = SKP_Silk_pitch_contour_10_ms_iCDF; } else { /* Unsupported number of frames */ SKP_assert( 0 ); } } psEnc->sCmn.subfr_length = SUB_FRAME_LENGTH_MS * fs_kHz; psEnc->sCmn.frame_length = psEnc->sCmn.subfr_length * psEnc->sCmn.nb_subfr; psEnc->sCmn.ltp_mem_length = LTP_MEM_LENGTH_MS * fs_kHz; psEnc->sCmn.la_pitch = LA_PITCH_MS * fs_kHz; psEnc->sPred.min_pitch_lag = 3 * fs_kHz; psEnc->sPred.max_pitch_lag = 18 * fs_kHz; if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ){ psEnc->sPred.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS, fs_kHz ); } else if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR / 2 ){ psEnc->sPred.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS_2_SF, fs_kHz ); } else { /* Unsupported number of frames */ SKP_assert( 0 ); } if( psEnc->sCmn.fs_kHz == 16 ) { psEnc->sCmn.mu_LTP_Q9 = SKP_FIX_CONST( MU_LTP_QUANT_WB, 9 ); psEnc->sCmn.bitrate_threshold_up = SKP_int32_MAX; psEnc->sCmn.bitrate_threshold_down = WB2MB_BITRATE_BPS; psEnc->sCmn.pitch_lag_low_bits_iCDF = SKP_Silk_uniform8_iCDF; } else if( psEnc->sCmn.fs_kHz == 12 ) { psEnc->sCmn.mu_LTP_Q9 = SKP_FIX_CONST( MU_LTP_QUANT_MB, 9 ); psEnc->sCmn.bitrate_threshold_up = MB2WB_BITRATE_BPS; psEnc->sCmn.bitrate_threshold_down = MB2NB_BITRATE_BPS; psEnc->sCmn.pitch_lag_low_bits_iCDF = SKP_Silk_uniform6_iCDF; } else if( psEnc->sCmn.fs_kHz == 8 ) { psEnc->sCmn.mu_LTP_Q9 = SKP_FIX_CONST( MU_LTP_QUANT_NB, 9 ); psEnc->sCmn.bitrate_threshold_up = NB2MB_BITRATE_BPS; psEnc->sCmn.bitrate_threshold_down = 0; psEnc->sCmn.pitch_lag_low_bits_iCDF = SKP_Silk_uniform4_iCDF; } else { /* unsupported sampling rate */ SKP_assert( 0 ); } psEnc->sCmn.fs_kHz_changed = 1; } /* Check that settings are valid */ SKP_assert( ( psEnc->sCmn.subfr_length * psEnc->sCmn.nb_subfr ) == psEnc->sCmn.frame_length ); return( ret ); } SKP_INLINE SKP_int SKP_Silk_setup_rate( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Pointer to Silk encoder state FLP */ SKP_int TargetRate_bps /* I Target max bitrate */ ) { SKP_int k, ret = SKP_SILK_NO_ERROR; SKP_float frac; const SKP_uint16 *rateTable; /* Set bitrate/coding quality */ if( TargetRate_bps != psEnc->sCmn.TargetRate_bps ) { psEnc->sCmn.TargetRate_bps = TargetRate_bps; /* If new TargetRate_bps, translate to SNR_dB value */ if( psEnc->sCmn.fs_kHz == 8 ) { rateTable = TargetRate_table_NB; } else if( psEnc->sCmn.fs_kHz == 12 ) { rateTable = TargetRate_table_MB; } else if( psEnc->sCmn.fs_kHz == 16 ) { rateTable = TargetRate_table_WB; } else { SKP_assert( 0 ); } /* Reduce bitrate for 10 ms modes in these calculations */ if( psEnc->sCmn.nb_subfr == 2 ) { TargetRate_bps -= REDUCE_BITRATE_10_MS_BPS; } for( k = 1; k < TARGET_RATE_TAB_SZ; k++ ) { /* Find bitrate interval in table and interpolate */ if( TargetRate_bps < rateTable[ k ] ) { frac = (SKP_float)( TargetRate_bps - rateTable[ k - 1 ] ) / (SKP_float)( rateTable[ k ] - rateTable[ k - 1 ] ); psEnc->SNR_dB = 0.5f * ( SNR_table_Q1[ k - 1 ] + frac * ( SNR_table_Q1[ k ] - SNR_table_Q1[ k - 1 ] ) ); break; } } } return( ret ); } SKP_INLINE SKP_int SKP_Silk_setup_LBRR( SKP_Silk_encoder_state_FLP *psEnc /* I/O Pointer to Silk encoder state FLP */ ) { SKP_int ret = SKP_SILK_NO_ERROR; #if USE_LBRR SKP_int32 LBRRRate_thres_bps; if( psEnc->sCmn.useInBandFEC < 0 || psEnc->sCmn.useInBandFEC > 1 ) { ret = SKP_SILK_ENC_INVALID_INBAND_FEC_SETTING; } psEnc->sCmn.LBRR_enabled = psEnc->sCmn.useInBandFEC; if( psEnc->sCmn.fs_kHz == 8 ) { LBRRRate_thres_bps = INBAND_FEC_MIN_RATE_BPS - 9000; } else if( psEnc->sCmn.fs_kHz == 12 ) { LBRRRate_thres_bps = INBAND_FEC_MIN_RATE_BPS - 6000;; } else if( psEnc->sCmn.fs_kHz == 16 ) { LBRRRate_thres_bps = INBAND_FEC_MIN_RATE_BPS - 3000; } else { LBRRRate_thres_bps = INBAND_FEC_MIN_RATE_BPS; } if( psEnc->sCmn.TargetRate_bps >= LBRRRate_thres_bps ) { /* Set gain increase / rate reduction for LBRR usage */ /* Coarsely tuned with PESQ for now. */ /* Linear regression coefs G = 8 - 0.5 * loss */ /* Meaning that at 16% loss main rate and redundant rate is the same, -> G = 0 */ psEnc->sCmn.LBRR_GainIncreases = SKP_max_int( 8 - SKP_RSHIFT( psEnc->sCmn.PacketLoss_perc, 1 ), 0 ); /* Set main stream rate compensation */ if( psEnc->sCmn.LBRR_enabled && psEnc->sCmn.PacketLoss_perc > LBRR_LOSS_THRES ) { /* Tuned to give approx same mean / weighted bitrate as no inband FEC */ psEnc->inBandFEC_SNR_comp = 6.0f - 0.5f * psEnc->sCmn.LBRR_GainIncreases; } else { psEnc->inBandFEC_SNR_comp = 0; psEnc->sCmn.LBRR_enabled = 0; } } else { psEnc->inBandFEC_SNR_comp = 0; psEnc->sCmn.LBRR_enabled = 0; } #else if( psEnc->sCmn.LBRR_enabled != 0 ) { ret = SKP_SILK_ENC_INVALID_INBAND_FEC_SETTING; psEnc->sCmn.LBRR_enabled = 0; } #endif return ret; }