ref: 09c67660129f91f9a11e68589b5e96af290cbf5f
dir: /silk/SKP_Silk_main.h/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifndef SKP_SILK_MAIN_H #define SKP_SILK_MAIN_H #ifdef __cplusplus extern "C" { #endif #include "SKP_Silk_SigProc_FIX.h" #include "SKP_Silk_define.h" #include "SKP_Silk_structs.h" #include "SKP_Silk_tables.h" #include "SKP_Silk_PLC.h" #include "SKP_Silk_control.h" #include "SKP_debug.h" #include "entenc.h" #include "entdec.h" /* Uncomment the next line to store intermadiate data to files */ //#define SAVE_ALL_INTERNAL_DATA 1 /* Uncomment the next line to force a fixed internal sampling rate (independent of what bitrate is used */ //#define FORCE_INTERNAL_FS_KHZ 16 /* Convert Left/Right stereo signal to adaptive Mid/Side representation */ void SKP_Silk_stereo_LR_to_MS( ec_enc *psRangeEnc, /* I/O Compressor data structure */ stereo_state *state, /* I/O State */ SKP_int16 x1[], /* I/O Left input signal, becomes mid signal */ SKP_int16 x2[], /* I/O Right input signal, becomes side signal */ SKP_int fs_kHz, /* I Samples rate (kHz) */ SKP_int frame_length /* I Number of samples */ ); /* Convert adaptive Mid/Side representation to Left/Right stereo signal */ void SKP_Silk_stereo_MS_to_LR( stereo_state *state, /* I/O State */ SKP_int16 x1[], /* I/O Left input signal, becomes mid signal */ SKP_int16 x2[], /* I/O Right input signal, becomes side signal */ const SKP_int32 pred_Q13[], /* I Predictors */ SKP_int fs_kHz, /* I Samples rate (kHz) */ SKP_int frame_length /* I Number of samples */ ); /* Find least-squares prediction gain for one signal based on another and quantize it */ SKP_int32 SKP_Silk_stereo_find_predictor( /* O Returns predictor in Q13 */ const SKP_int16 x[], /* I Basis signal */ const SKP_int16 y[], /* I Target signal */ SKP_int length /* I Number of samples */ ); /* Quantize mid/side predictors and entropy code the quantization indices */ void SKP_Silk_stereo_encode_pred( ec_enc *psRangeEnc, /* I/O Compressor data structure */ SKP_int32 pred_Q13[] /* I/O Predictors (out: quantized) */ ); /* Decode mid/side predictors */ void SKP_Silk_stereo_decode_pred( ec_dec *psRangeDec, /* I/O Compressor data structure */ SKP_int32 pred_Q13[] /* O Predictors */ ); /* Encodes signs of excitation */ void SKP_Silk_encode_signs( ec_enc *psRangeEnc, /* I/O Compressor data structure */ const SKP_int8 pulses[], /* I pulse signal */ SKP_int length, /* I length of input */ const SKP_int signalType, /* I Signal type */ const SKP_int quantOffsetType, /* I Quantization offset type */ const SKP_int sum_pulses[ MAX_NB_SHELL_BLOCKS ] /* I Sum of absolute pulses per block */ ); /* Decodes signs of excitation */ void SKP_Silk_decode_signs( ec_dec *psRangeDec, /* I/O Compressor data structure */ SKP_int pulses[], /* I/O pulse signal */ SKP_int length, /* I length of input */ const SKP_int signalType, /* I Signal type */ const SKP_int quantOffsetType, /* I Quantization offset type */ const SKP_int sum_pulses[ MAX_NB_SHELL_BLOCKS ] /* I Sum of absolute pulses per block */ ); /* Check encoder control struct */ SKP_int check_control_input( SKP_SILK_SDK_EncControlStruct *encControl /* I: Control structure */ ); /* Control internal sampling rate */ SKP_int SKP_Silk_control_audio_bandwidth( SKP_Silk_encoder_state *psEncC /* I/O Pointer to Silk encoder state */ ); /* Control SNR of redidual quantizer */ SKP_int SKP_Silk_control_SNR( SKP_Silk_encoder_state *psEncC, /* I/O Pointer to Silk encoder state */ SKP_int32 TargetRate_bps /* I Target max bitrate (bps) */ ); /***************/ /* Shell coder */ /***************/ /* Encode quantization indices of excitation */ void SKP_Silk_encode_pulses( ec_enc *psRangeEnc, /* I/O compressor data structure */ const SKP_int signalType, /* I Signal type */ const SKP_int quantOffsetType, /* I quantOffsetType */ SKP_int8 pulses[], /* I quantization indices */ const SKP_int frame_length /* I Frame length */ ); /* Shell encoder, operates on one shell code frame of 16 pulses */ void SKP_Silk_shell_encoder( ec_enc *psRangeEnc, /* I/O compressor data structure */ const SKP_int *pulses0 /* I data: nonnegative pulse amplitudes */ ); /* Shell decoder, operates on one shell code frame of 16 pulses */ void SKP_Silk_shell_decoder( SKP_int *pulses0, /* O data: nonnegative pulse amplitudes */ ec_dec *psRangeDec, /* I/O Compressor data structure */ const SKP_int pulses4 /* I number of pulses per pulse-subframe */ ); /* Gain scalar quantization with hysteresis, uniform on log scale */ void SKP_Silk_gains_quant( SKP_int8 ind[ MAX_NB_SUBFR ], /* O gain indices */ SKP_int32 gain_Q16[ MAX_NB_SUBFR ], /* I/O gains (quantized out) */ SKP_int8 *prev_ind, /* I/O last index in previous frame */ const SKP_int conditional, /* I first gain is delta coded if 1 */ const SKP_int nb_subfr /* I number of subframes */ ); /* Gains scalar dequantization, uniform on log scale */ void SKP_Silk_gains_dequant( SKP_int32 gain_Q16[ MAX_NB_SUBFR ], /* O quantized gains */ const SKP_int8 ind[ MAX_NB_SUBFR ], /* I gain indices */ SKP_int8 *prev_ind, /* I/O last index in previous frame */ const SKP_int conditional, /* I first gain is delta coded if 1 */ const SKP_int nb_subfr /* I number of subframes */ ); /* Convert NLSF parameters to stable AR prediction filter coefficients */ void SKP_Silk_NLSF2A_stable( SKP_int16 pAR_Q12[ MAX_LPC_ORDER ], /* O Stabilized AR coefs [LPC_order] */ const SKP_int16 pNLSF[ MAX_LPC_ORDER ], /* I NLSF vector [LPC_order] */ const SKP_int LPC_order /* I LPC/LSF order */ ); /* Interpolate two vectors */ void SKP_Silk_interpolate( SKP_int16 xi[ MAX_LPC_ORDER ], /* O interpolated vector */ const SKP_int16 x0[ MAX_LPC_ORDER ], /* I first vector */ const SKP_int16 x1[ MAX_LPC_ORDER ], /* I second vector */ const SKP_int ifact_Q2, /* I interp. factor, weight on 2nd vector */ const SKP_int d /* I number of parameters */ ); /* LTP tap quantizer */ void SKP_Silk_quant_LTP_gains( SKP_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (un)quantized LTP gains */ SKP_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook Index */ SKP_int8 *periodicity_index, /* O Periodicity Index */ const SKP_int32 W_Q18[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ], /* I Error Weights in Q18 */ SKP_int mu_Q9, /* I Mu value (R/D tradeoff) */ SKP_int lowComplexity, /* I Flag for low complexity */ const SKP_int nb_subfr /* I number of subframes */ ); /* Entropy constrained matrix-weighted VQ, for a single input data vector */ void SKP_Silk_VQ_WMat_EC( SKP_int8 *ind, /* O index of best codebook vector */ SKP_int32 *rate_dist_Q14, /* O best weighted quantization error + mu * rate*/ const SKP_int16 *in_Q14, /* I input vector to be quantized */ const SKP_int32 *W_Q18, /* I weighting matrix */ const SKP_int8 *cb_Q7, /* I codebook */ const SKP_uint8 *cl_Q5, /* I code length for each codebook vector */ const SKP_int mu_Q9, /* I tradeoff between weighted error and rate */ SKP_int L /* I number of vectors in codebook */ ); /***********************************/ /* Noise shaping quantization (NSQ)*/ /***********************************/ void SKP_Silk_NSQ( const SKP_Silk_encoder_state *psEncC, /* I/O Encoder State */ SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const SKP_int16 x[], /* I prefiltered input signal */ SKP_int8 pulses[], /* O quantized qulse signal */ const SKP_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefficients */ const SKP_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefficients */ const SKP_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I */ const SKP_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I */ const SKP_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ const SKP_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I */ const SKP_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ const SKP_int pitchL[ MAX_NB_SUBFR ], /* I */ const SKP_int Lambda_Q10, /* I */ const SKP_int LTP_scale_Q14 /* I LTP state scaling */ ); /* Noise shaping using delayed decision */ void SKP_Silk_NSQ_del_dec( const SKP_Silk_encoder_state *psEncC, /* I/O Encoder State */ SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const SKP_int16 x[], /* I Prefiltered input signal */ SKP_int8 pulses[], /* O Quantized pulse signal */ const SKP_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Prediction coefs */ const SKP_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I LT prediction coefs */ const SKP_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I */ const SKP_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I */ const SKP_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ const SKP_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I */ const SKP_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ const SKP_int pitchL[ MAX_NB_SUBFR ], /* I */ const SKP_int Lambda_Q10, /* I */ const SKP_int LTP_scale_Q14 /* I LTP state scaling */ ); /************/ /* Silk VAD */ /************/ /* Initialize the Silk VAD */ SKP_int SKP_Silk_VAD_Init( /* O Return value, 0 if success */ SKP_Silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ ); /* Silk VAD noise level estimation */ void SKP_Silk_VAD_GetNoiseLevels( const SKP_int32 pX[ VAD_N_BANDS ], /* I subband energies */ SKP_Silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ ); /* Get speech activity level in Q8 */ SKP_int SKP_Silk_VAD_GetSA_Q8( /* O Return value, 0 if success */ SKP_Silk_encoder_state *psEncC, /* I/O Encoder state */ const SKP_int16 pIn[] /* I PCM input */ ); /* High-pass filter with cutoff frequency adaptation based on pitch lag statistics */ void SKP_Silk_HP_variable_cutoff( SKP_Silk_encoder_state *psEncC, /* I/O Encoder state */ SKP_int16 *out, /* O high-pass filtered output signal */ const SKP_int16 *in, /* I input signal */ const SKP_int frame_length /* I length of input */ ); /* Low-pass filter with variable cutoff frequency based on */ /* piece-wise linear interpolation between elliptic filters */ /* Start by setting transition_frame_no = 1; */ void SKP_Silk_LP_variable_cutoff( SKP_Silk_LP_state *psLP, /* I/O LP filter state */ SKP_int16 *signal, /* I/O Low-pass filtered output signal */ const SKP_int frame_length /* I Frame length */ ); /******************/ /* NLSF Quantizer */ /******************/ /* Limit, stabilize, convert and quantize NLSFs */ void SKP_Silk_process_NLSFs( SKP_Silk_encoder_state *psEncC, /* I/O Encoder state */ SKP_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ], /* O Prediction coefficients */ SKP_int16 pNLSF_Q15[ MAX_LPC_ORDER ], /* I/O Normalized LSFs (quant out) (0 - (2^15-1)) */ const SKP_int16 prev_NLSFq_Q15[ MAX_LPC_ORDER ] /* I Previous Normalized LSFs (0 - (2^15-1)) */ ); SKP_int32 SKP_Silk_NLSF_encode( /* O Returns RD value in Q25 */ SKP_int8 *NLSFIndices, /* I Codebook path vector [ LPC_ORDER + 1 ] */ SKP_int16 *pNLSF_Q15, /* I/O Quantized NLSF vector [ LPC_ORDER ] */ const SKP_Silk_NLSF_CB_struct *psNLSF_CB, /* I Codebook object */ const SKP_int16 *pW_Q5, /* I NLSF weight vector [ LPC_ORDER ] */ const SKP_int NLSF_mu_Q20, /* I Rate weight for the RD optimization */ const SKP_int nSurvivors, /* I Max survivors after first stage */ const SKP_int signalType /* I Signal type: 0/1/2 */ ); /* Compute quantization errors for an LPC_order element input vector for a VQ codebook */ void SKP_Silk_NLSF_VQ( SKP_int32 err_Q26[], /* O Quantization errors [K] */ const SKP_int16 in_Q15[], /* I Input vectors to be quantized [LPC_order] */ const SKP_uint8 pCB_Q8[], /* I Codebook vectors [K*LPC_order] */ const SKP_int K, /* I Number of codebook vectors */ const SKP_int LPC_order /* I Number of LPCs */ ); /* Delayed-decision quantizer for NLSF residuals */ SKP_int32 SKP_Silk_NLSF_del_dec_quant( /* O Returns RD value in Q25 */ SKP_int8 indices[], /* O Quantization indices [ order ] */ const SKP_int16 x_Q10[], /* I Input [ order ] */ const SKP_int16 w_Q5[], /* I Weights [ order ] */ const SKP_uint8 pred_coef_Q8[], /* I Backward predictor coefs [ order ] */ const SKP_int16 ec_ix[], /* I Indices to entropy coding tables [ order ] */ const SKP_uint8 ec_rates_Q5[], /* I Rates [] */ const SKP_int quant_step_size_Q16, /* I Quantization step size */ const SKP_int16 inv_quant_step_size_Q6, /* I Inverse quantization step size */ const SKP_int32 mu_Q20, /* I R/D tradeoff */ const SKP_int16 order /* I Number of input values */ ); /* Unpack predictor values and indices for entropy coding tables */ void SKP_Silk_NLSF_unpack( SKP_int16 ec_ix[], /* O Indices to entropy tales [ LPC_ORDER ] */ SKP_uint8 pred_Q8[], /* O LSF predictor [ LPC_ORDER ] */ const SKP_Silk_NLSF_CB_struct *psNLSF_CB, /* I Codebook object */ const SKP_int CB1_index /* I Index of vector in first LSF codebook */ ); /***********************/ /* NLSF vector decoder */ /***********************/ void SKP_Silk_NLSF_decode( SKP_int16 *pNLSF_Q15, /* O Quantized NLSF vector [ LPC_ORDER ] */ SKP_int8 *NLSFIndices, /* I Codebook path vector [ LPC_ORDER + 1 ] */ const SKP_Silk_NLSF_CB_struct *psNLSF_CB /* I Codebook object */ ); /****************************************************/ /* Decoder Functions */ /****************************************************/ SKP_int SKP_Silk_create_decoder( SKP_Silk_decoder_state **ppsDec /* I/O Decoder state pointer pointer */ ); SKP_int SKP_Silk_free_decoder( SKP_Silk_decoder_state *psDec /* I/O Decoder state pointer */ ); SKP_int SKP_Silk_init_decoder( SKP_Silk_decoder_state *psDec /* I/O Decoder state pointer */ ); /* Set decoder sampling rate */ void SKP_Silk_decoder_set_fs( SKP_Silk_decoder_state *psDec, /* I/O Decoder state pointer */ SKP_int fs_kHz /* I Sampling frequency (kHz) */ ); /****************/ /* Decode frame */ /****************/ SKP_int SKP_Silk_decode_frame( SKP_Silk_decoder_state *psDec, /* I/O Pointer to Silk decoder state */ ec_dec *psRangeDec, /* I/O Compressor data structure */ SKP_int16 pOut[], /* O Pointer to output speech frame */ SKP_int32 *pN, /* O Pointer to size of output frame */ SKP_int lostFlag /* I 0: no loss, 1 loss, 2 decode fec */ ); /* Decode LBRR side info and excitation */ void SKP_Silk_LBRR_extract( SKP_Silk_decoder_state *psDec, /* I/O State */ ec_dec *psRangeDec /* I/O Compressor data structure */ ); /* Decode indices from payload v4 Bitstream */ void SKP_Silk_decode_indices( SKP_Silk_decoder_state *psDec, /* I/O State */ ec_dec *psRangeDec, /* I/O Compressor data structure */ SKP_int FrameIndex, /* I Frame number */ SKP_int decode_LBRR /* I Flag indicating LBRR data is being decoded */ ); /* Decode parameters from payload */ void SKP_Silk_decode_parameters( SKP_Silk_decoder_state *psDec, /* I/O State */ SKP_Silk_decoder_control *psDecCtrl /* I/O Decoder control */ ); /* Core decoder. Performs inverse NSQ operation LTP + LPC */ void SKP_Silk_decode_core( SKP_Silk_decoder_state *psDec, /* I/O Decoder state */ SKP_Silk_decoder_control *psDecCtrl, /* I Decoder control */ SKP_int16 xq[], /* O Decoded speech */ const SKP_int pulses[ MAX_FRAME_LENGTH ] /* I Pulse signal */ ); /* Decode quantization indices of excitation (Shell coding) */ void SKP_Silk_decode_pulses( ec_dec *psRangeDec, /* I/O Compressor data structure */ SKP_int pulses[], /* O Excitation signal */ const SKP_int signalType, /* I Sigtype */ const SKP_int quantOffsetType, /* I quantOffsetType */ const SKP_int frame_length /* I Frame length */ ); /******************/ /* CNG */ /******************/ /* Reset CNG */ void SKP_Silk_CNG_Reset( SKP_Silk_decoder_state *psDec /* I/O Decoder state */ ); /* Updates CNG estimate, and applies the CNG when packet was lost */ void SKP_Silk_CNG( SKP_Silk_decoder_state *psDec, /* I/O Decoder state */ SKP_Silk_decoder_control *psDecCtrl, /* I/O Decoder control */ SKP_int16 signal[], /* I/O Signal */ SKP_int length /* I Length of residual */ ); /* Encoding of various parameters */ void SKP_Silk_encode_indices( SKP_Silk_encoder_state *psEncC, /* I/O Encoder state */ ec_enc *psRangeEnc, /* I/O Compressor data structure */ SKP_int FrameIndex, /* I Frame number */ SKP_int encode_LBRR /* I Flag indicating LBRR data is being encoded */ ); #ifdef __cplusplus } #endif #endif