ref: e4e8fa6f7760221f843a924f058d11b58041db64
dir: /lib/math/fpmath.myr/
use std pkg math = trait fpmath @f = /* exp-impl */ exp : (f : @f -> @f) expm1 : (f : @f -> @f) /* fma-impl */ fma : (x : @f, y : @f, z : @f -> @f) /* poly-impl */ horner_poly : (x : @f, a : @f[:] -> @f) horner_polyu : (x : @f, a : @u[:] -> @f) /* scale2-impl */ scale2 : (f : @f, m : @i -> @f) /* sqrt-impl */ sqrt : (f : @f -> @f) /* sum-impl */ kahan_sum : (a : @f[:] -> @f) priest_sum : (a : @f[:] -> @f) /* trunc-impl */ trunc : (f : @f -> @f) ceil : (f : @f -> @f) floor : (f : @f -> @f) ;; trait roundable @f -> @i = /* round-impl */ rn : (f : @f -> @i) ;; impl std.equatable flt32 impl std.equatable flt64 impl roundable flt64 -> int64 impl roundable flt32 -> int32 impl fpmath flt32 impl fpmath flt64 ;; /* We consider two floating-point numbers equal if their bits are equal. This does not treat NaNs specially: two distinct NaNs may compare equal, or they may compare distinct (if they arise from different bit patterns). Additionally, +0.0 and -0.0 compare differently. */ impl std.equatable flt32 = eq = {a : flt32, b : flt32; -> std.flt32bits(a) == std.flt32bits(b)} ;; impl std.equatable flt64 = eq = {a : flt64, b : flt64; -> std.flt64bits(a) == std.flt64bits(b)} ;; impl roundable flt32 -> int32 = rn = {f : flt32; -> rn32(f) } ;; impl roundable flt64 -> int64 = rn = {f : flt64; -> rn64(f) } ;; impl fpmath flt32 = fma = {x, y, z; -> fma32(x, y, z)} exp = {f; -> exp32(f)} expm1 = {f; -> expm132(f)} horner_poly = {f, a; -> horner_poly32(f, a)} horner_polyu = {f, a; -> horner_polyu32(f, a)} scale2 = {f, m; -> scale232(f, m)} sqrt = {f; -> sqrt32(f)} kahan_sum = {l; -> kahan_sum32(l) } priest_sum = {l; -> priest_sum32(l) } trunc = {f; -> trunc32(f)} floor = {f; -> floor32(f)} ceil = {f; -> ceil32(f)} ;; impl fpmath flt64 = fma = {x, y, z; -> fma64(x, y, z)} exp = {f; -> exp64(f)} expm1 = {f; -> expm164(f)} horner_poly = {f, a; -> horner_poly64(f, a)} horner_polyu = {f, a; -> horner_polyu64(f, a)} scale2 = {f, m; -> scale264(f, m)} sqrt = {f; -> sqrt64(f)} kahan_sum = {l; -> kahan_sum64(l) } priest_sum = {l; -> priest_sum64(l) } trunc = {f; -> trunc64(f)} floor = {f; -> floor64(f)} ceil = {f; -> ceil64(f)} ;; extern const rn32 : (f : flt32 -> int32) extern const rn64 : (f : flt64 -> int64) extern const exp32 : (x : flt32 -> flt32) extern const exp64 : (x : flt64 -> flt64) extern const expm132 : (x : flt32 -> flt32) extern const expm164 : (x : flt64 -> flt64) extern const fma32 : (x : flt32, y : flt32, z : flt32 -> flt32) extern const fma64 : (x : flt64, y : flt64, z : flt64 -> flt64) extern const horner_poly32 : (f : flt32, a : flt32[:] -> flt32) extern const horner_poly64 : (f : flt64, a : flt64[:] -> flt64) extern const horner_polyu32 : (f : flt32, a : uint32[:] -> flt32) extern const horner_polyu64 : (f : flt64, a : uint64[:] -> flt64) extern const scale232 : (f : flt32, m : int32 -> flt32) extern const scale264 : (f : flt64, m : int64 -> flt64) extern const sqrt32 : (x : flt32 -> flt32) extern const sqrt64 : (x : flt64 -> flt64) extern const kahan_sum32 : (l : flt32[:] -> flt32) extern const kahan_sum64 : (l : flt64[:] -> flt64) extern const priest_sum32 : (l : flt32[:] -> flt32) extern const priest_sum64 : (l : flt64[:] -> flt64) extern const trunc32 : (f : flt32 -> flt32) extern const trunc64 : (f : flt64 -> flt64) extern const floor32 : (f : flt32 -> flt32) extern const floor64 : (f : flt64 -> flt64) extern const ceil32 : (f : flt32 -> flt32) extern const ceil64 : (f : flt64 -> flt64)