ref: e24e91ebc63ac6dd4bdd6e7408e157c33f2d76e0
dir: /lib/math/ancillary/generate-arctan-tuples-for-GB91.c/
/* cc -o generate-arctan-tuples-for-GB91 generate-arctan-tuples-for-GB91.c -lmpfr # -fno-strict-aliasing */ /* cc -static -std=c99 -D_POSIX_C_SOURCE=999999999 -fno-strict-aliasing -O2 -o generate-arctan-tuples-for-GB91 generate-arctan-tuples-for-GB91.c -lmpfr -lgmp */ #include <errno.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include <unistd.h> #include <mpfr.h> /* [GB91] treat arctan by a table + minimax method: the range [0,1] is partitioned up, and on each partition arctan is approximated by a minimax polynomial pi(x - xi) =~= arctan(x - xi). The twist of [GB91], that of Highly Accurate Tables, here applies to the first two coefficients of the minimax polynomial: by adjusting xi and computing different polynomials, we obtain coefficients cij for pi such that ci0 and ci1, in perfect accuracy, have a bunch of zeroes in the binary expansion after the 53rd bit. This gives the stored cij a bit more accuracy for free. Note that there's a sign flip somewhere: so the even-degree elements need to be negated for use in atan-impl.myr. */ /* Something something -fno-strict-aliasing */ #define FLT64_TO_UINT64(f) (*((uint64_t *) ((char *) &f))) #define UINT64_TO_FLT64(u) (*((double *) ((char *) &u))) #define xmin(a, b) ((a) < (b) ? (a) : (b)) #define xmax(a, b) ((a) > (b) ? (a) : (b)) #define EXP_OF_FLT64(f) (((FLT64_TO_UINT64(f)) >> 52) & 0x7ff) typedef int (*mpfr_fn)(mpfr_ptr, mpfr_srcptr, mpfr_rnd_t); #define N 5 static int leeway_of(mpfr_t temp, mpfr_t f) { double d1 = mpfr_get_d(f, MPFR_RNDN); double d2 = 0.0; mpfr_set_d(temp, d1, MPFR_RNDN); mpfr_sub(temp, f, temp, MPFR_RNDN); d2 = mpfr_get_d(temp, MPFR_RNDN); return EXP_OF_FLT64(d1) - 52 - EXP_OF_FLT64(d2); } static void determinant_poorly(mpfr_t det, mpfr_t A[][N + 2]) { int sgn = 1; int sigma[N + 2]; mpfr_t prod; for (int j = 0; j < (N + 2); ++j) { sigma[j] = j; } mpfr_set_si(det, 0, MPFR_RNDN); mpfr_init2(prod, 200); while (1) { /* ∏ a_{j, sigma[j]} */ mpfr_set_si(prod, sgn, MPFR_RNDN); for (int j = 0; j < (N + 2); ++j) { mpfr_mul(prod, prod, A[j][sigma[j]], MPFR_RNDN); } mpfr_add(det, det, prod, MPFR_RNDN); /* increment sigma: algorithm K/L/something... */ int k = N + 1; int j = N + 1; int t; while (k > 0 && sigma[k - 1] >= sigma[k]) { k--; } if (!k) { break; } while (sigma[j] <= sigma[k - 1]) { j--; } if (k - 1 != j) { t = sigma[k - 1]; sigma[k - 1] = sigma[j]; sigma[j] = t; sgn *= -1; } for (int l = N + 1; l > k; --l, ++k) { t = sigma[l]; sigma[l] = sigma[k]; sigma[k] = t; sgn *= -1; } } } static void invert_poorly(mpfr_t A[][N + 2], mpfr_t Ainv[][N + 2]) { mpfr_t Mij[N + 2][N + 2]; mpfr_t det; mpfr_t Mijdet; mpfr_init2(det, 200); mpfr_init2(Mijdet, 200); determinant_poorly(det, A); for (int i = 0; i < N + 2; ++i) { for (int j = 0; j < N + 2; ++j) { mpfr_init2(Mij[i][j], 200); if (i == (N + 1) && j == (N + 1)) { mpfr_set_si(Mij[i][j], 1, MPFR_RNDN); } else if (i == (N + 1) || j == (N + 1)) { mpfr_set_si(Mij[i][j], 0, MPFR_RNDN); } } } /* Construct transpose adjugate poorly */ for (int i = 0; i < N + 2; ++i) { for (int j = 0; j < N + 2; ++j) { /* Copy over A, sans i, j, to Mij */ for (int ii = 0; ii < N + 2; ii++) { if (ii == i) { continue; } int ri = ii > i ? ii - 1 : ii; for (int jj = 0; jj < N + 2; jj++) { if (jj == j) { continue; } int rj = jj > j ? jj - 1 : jj; mpfr_set(Mij[ri][rj], A[ii][jj], MPFR_RNDN); } } /* Ainv[j][i] = | Mij | / det */ determinant_poorly(Mijdet, Mij); mpfr_div(Ainv[j][i], Mijdet, det, MPFR_RNDN); if ((i + j) % 2) { mpfr_mul_si(Ainv[j][i], Ainv[j][i], -1, MPFR_RNDN); } } } } static int find_tuple(int ii, int min_leeway) { int64_t r = 0; double xi_orig_d = ii / 256.0; uint64_t xi_orig = FLT64_TO_UINT64(xi_orig_d); double range_a = -1 / 512.0; double range_b = 1 / 512.0; uint64_t xi; double xi_d; mpfr_t xi_m; int best_lee = 0; long int best_r = 0; mpfr_t t[10]; mpfr_t cn[N + 2]; mpfr_t bi[N + 2]; mpfr_t best_bi[N + 2]; mpfr_t best_xi; mpfr_t xij[N + 2][N + 2]; mpfr_t xijinv[N + 2][N + 2]; mpfr_t fxi[N + 2]; double t_d = 0.0; uint64_t t_u = 0; long ec = 1; long start = time(0); long end = start; mpfr_init2(xi_m, 200); mpfr_init2(best_xi, 200); for (int i = 0; i < 10; ++i) { mpfr_init2(t[i], 200); } mpfr_set_d(t[1], range_a, MPFR_RNDN); mpfr_set_d(t[2], range_b, MPFR_RNDN); mpfr_add(t[3], t[2], t[1], MPFR_RNDN); mpfr_sub(t[4], t[2], t[1], MPFR_RNDN); mpfr_div_si(t[3], t[3], 2, MPFR_RNDN); mpfr_div_si(t[4], t[4], 2, MPFR_RNDN); /* Calculate Chebyshev nodes for the range */ for (int i = 0; i < (N + 2); ++i) { mpfr_init2(cn[i], 200); mpfr_init2(bi[i], 200); mpfr_init2(best_bi[i], 200); mpfr_set_si(best_bi[i], 0, MPFR_RNDN); mpfr_init2(fxi[i], 200); mpfr_set_si(cn[i], 2 * i - 1, MPFR_RNDN); mpfr_div_si(cn[i], cn[i], 2 * (N + 2), MPFR_RNDN); mpfr_cos(cn[i], cn[i], MPFR_RNDN); mpfr_mul(cn[i], cn[i], t[4], MPFR_RNDN); mpfr_add(cn[i], cn[i], t[3], MPFR_RNDN); } /* Set up M×M (M = N+2) matrix for one step of Remez algorithm: the cnI^Js in b0 + b1·cn1 + ⋯ + bN·cn1^n + (-1)^1·E = f(cn1) b0 + b1·cn2 + ⋯ + bN·cn2^n + (-1)^2·E = f(cn2) ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ b0 + b1·cnM + ⋯ + bN·cnM^n + (-1)^M·E = f(cnM) */ for (int i = 0; i < (N + 2); ++i) { mpfr_set_si(t[1], 1, MPFR_RNDN); for (int j = 0; j < (N + 1); ++j) { mpfr_init2(xij[i][j], 200); mpfr_init2(xijinv[i][j], 200); mpfr_set(xij[i][j], t[1], MPFR_RNDN); mpfr_mul(t[1], t[1], cn[i], MPFR_RNDN); } mpfr_init2(xij[i][N + 1], 200); mpfr_init2(xijinv[i][N + 1], 200); mpfr_set_si(xij[i][N + 1], ec, MPFR_RNDN); ec *= -1; } /* Compute (xij)^(-1) */ invert_poorly(xij, xijinv); while (r < (1 << 28)) { xi = xi_orig + r; xi_d = UINT64_TO_FLT64(xi); mpfr_set_d(xi_m, xi_d, MPFR_RNDN); /* compute f(cn[i]) = atan(cn[i] - xi) */ for (int i = 0; i < (N + 2); ++i) { mpfr_sub(fxi[i], cn[i], xi_m, MPFR_RNDN); mpfr_atan(fxi[i], fxi[i], MPFR_RNDN); } /* Now solve the linear system above for bi */ for (int i = 0; i < (N + 2); ++i) { mpfr_set_si(bi[i], 0, MPFR_RNDN); for (int j = 0; j < (N + 2); ++j) { mpfr_mul(t[i], xijinv[i][j], fxi[j], MPFR_RNDN); mpfr_add(bi[i], bi[i], t[i], MPFR_RNDN); } } /* If the error term isn't within close to 0, we should, by all rights, try a few more iterations of Remez. But that's incredibly slow, and we're in a tight loop, so let's just bail. */ double e = mpfr_get_d(bi[N + 1], MPFR_RNDN); if (FLT64_TO_UINT64(e) & 0x7fffffffffffffff > 0x08) { goto next_r; } /* Test if b[0] and b[1] are very precise */ int leeA = leeway_of(t[0], bi[0]); int leeB = 0; int lee = 0; if (leeA <= min_leeway) { goto next_r; } leeB = leeway_of(t[0], bi[1]); if (leeB + 4 <= min_leeway) { goto next_r; } lee = xmin(leeA, leeB + 4); if (lee <= best_lee) { goto next_r; } best_lee = lee; best_r = r; mpfr_set(best_xi, xi_m, MPFR_RNDN); for (int i = 0; i < (N + 2); ++i) { mpfr_set(best_bi[i], bi[i], MPFR_RNDN); } next_r: /* increment r */ if (r <= 0) { r = 1 - r; } else { r = -r; } } end = time(0); if (best_lee < min_leeway) { return -1; } /* Recall the N+1 entry in output is the error, which we don't care about */ t_d = mpfr_get_d(best_xi, MPFR_RNDN); t_u = FLT64_TO_UINT64(t_d); printf("(%#018lx, ", t_u); for (int i = 0; i < N; ++i) { t_d = mpfr_get_d(best_bi[i], MPFR_RNDN); printf("%#018lx, ", FLT64_TO_UINT64(t_d)); } t_d = mpfr_get_d(best_bi[N], MPFR_RNDN); t_u = FLT64_TO_UINT64(t_d); printf("%#018lx), ", t_u); printf("/* i = %03d, l = %02d, r = %010ld, t = %ld */\n", ii, best_lee, best_r, end - start); return 0; } static void usage(void) { printf("generate-arctan-tuples-for-GB91\n"); printf(" [-i start_idx]\n"); printf(" [-j end_idx]\n"); } int main(int argc, char **argv) { int c = 0; long i_start_arg = 1; long i_end_arg = 256; int i_start = 1; int i_end = 256; for (int k = 0; k < argc; ++k) { printf("%s ", argv[k]); } printf("\n"); while ((c = getopt(argc, argv, "i:j:")) != -1) { switch (c) { case 'i': errno = 0; i_start_arg = strtoll(optarg, 0, 0); if (errno) { fprintf(stderr, "bad start index %s\n", optarg); return 1; } break; case 'j': errno = 0; i_end_arg = strtoll(optarg, 0, 0); if (errno) { fprintf(stderr, "bad end index %s\n", optarg); return 1; } break; default: usage(); break; } } if (i_start_arg <= 0 || i_start_arg > 256) { printf("truncating start to (0, %d]\n", 256); i_start_arg = xmin(xmax(i_start_arg, 1), 256); } if (i_end_arg <= 0 || i_end_arg > 256) { printf("truncating end to (0, %d]\n", 256); i_end_arg = xmin(xmax(i_end_arg, 1), 256); } i_start = i_start_arg; i_end = i_end_arg; for (int i = i_start; i <= i_end; ++i) { if (find_tuple(i, 1) < 0) { printf("CANNOT FIND SUITABLE CANDIDATE FOR i = %03d\n", i); } } return 0; }