ref: da1de51de2edb383cc26a1b726df4cfc9328e1c7
dir: /libstd/alloc.myr/
use "die.use" use "extremum.use" use "sys.use" use "types.use" use "units.use" /* The allocator implementation here is based on Bonwick's slab allocator. For small allocations (up to Bktmax), it works by requesting large, power of two aligned chunks from the operating system, and breaking them into a linked list of equal sized chunks. Allocations are then satisfied by taking the head of the list of chunks. Empty slabs are removed from the freelist. The data structure looks something like this: Bkts: [16 byte] -> [slab hdr | chunk -> chunk -> chunk] -> [slab hdr | chunk -> chunk -> chunk] [32 byte] -> Zslab [64 byte] -> [slab hdr | chunk -> chunk] ... [32k byte] -> ... Large allocations are simply satisfied by mmap(). */ pkg std = generic alloc : ( -> @a#) generic zalloc : ( -> @a#) generic free : (v:@a# -> void) generic slalloc : (len : size -> @a[:]) generic slzalloc : (len : size -> @a[:]) generic slgrow : (sl : @a[:], len : size -> @a[:]) generic slfree : (sl : @a[:] -> void) const bytealloc : (sz:size -> byte#) const zbytealloc : (sz:size -> byte#) const bytefree : (m:byte#, sz:size -> void) /* FIXME: This should be automatically exported as a hidden decl. */ const samebucket ;; /* null pointers. only used internally. */ const Zbyteptr = 0 castto(byte#) const Zslab = 0 castto(slab#) const Zchunk = 0 castto(chunk#) const Slabsz = 1*MiB /* 1 meg slabs */ const Cachemax = 16 /* maximum number of slabs in the cache */ const Bktmax = 32*KiB /* Slabsz / 8; a balance. */ const Align = 16 /* minimum allocation alignment */ var buckets : bucket[32] /* excessive */ var initdone : int type bucket = struct sz : size /* aligned size */ nper : size /* max number of elements per slab */ slabs : slab# /* partially filled or free slabs */ cache : slab# /* cache of empty slabs, to prevent thrashing */ ncache : size /* size of cache */ ;; type slab = struct head : byte# /* head of virtual addresses, so we don't leak address space */ next : slab# /* the next slab on the chain */ freehd : chunk# /* the nodes we're allocating */ nfree : size /* the number of free nodes */ ;; type chunk = struct /* NB: must be smaller than sizeof(slab) */ next : chunk# /* the next chunk in the free list */ ;; /* Allocates an object of type @a, returning a pointer to it. */ generic alloc = {-> @a# -> bytealloc(sizeof(@a)) castto(@a#) } generic zalloc = {-> @a# -> zbytealloc(sizeof(@a)) castto(@a#) } /* Frees a value of type @a */ generic free = {v:@a# -> void bytefree(v castto(byte#), sizeof(@a)) } /* allocates a slice of 'len' elements. */ generic slalloc = {len if len == 0 -> [][:] ;; -> (bytealloc(len*sizeof(@a)) castto(@a#))[0:len] } generic slzalloc = {len -> (zbytealloc(len*sizeof(@a)) castto(@a#))[0:len] } /* Frees a slice */ generic slfree = {sl if sl.len == 0 -> ;; bytefree(sl castto(byte#), sl.len * sizeof(@a)) } /* Grows a slice */ generic slgrow = {sl : @a[:], len var i var n var new /* if the slice wouldn't change buckets, we don't need to realloc. */ if samebucket(sl.len * sizeof(@a), len * sizeof(@a)) -> (sl castto(@a#))[:len] ;; new = slalloc(len) n = min(len, sl.len) for i = 0; i < n; i++ new[i] = sl[i] ;; if sl.len > 0 slfree(sl) ;; -> new } const samebucket = {oldsz, newsz if oldsz > 0 && newsz < Bktmax -> bktnum(oldsz) == bktnum(newsz) else -> false ;; } const zbytealloc = {sz var p var sl var i p = bytealloc(sz) sl = p[0:sz] for i = 0; i < sl.len; i++ sl[i] = 0 ;; -> p } /* Allocates a blob that is 'sz' bytes long. Dies if the allocation fails */ const bytealloc = {sz var i var bkt if !initdone for i = 0; i < buckets.len && (Align << i) <= Bktmax; i++ bktinit(&buckets[i], Align << i) ;; initdone = 1 ;; if (sz <= Bktmax) bkt = &buckets[bktnum(sz)] -> bktalloc(bkt) else -> mmap(Zbyteptr, sz, Mprotrw, Mpriv | Manon, -1, 0) ;; } /* frees a blob that is 'sz' bytes long. */ const bytefree = {m, sz var bkt if (sz < Bktmax) bkt = &buckets[bktnum(sz)] bktfree(bkt, m) else munmap(m, sz) ;; } /* Sets up a single empty bucket */ const bktinit = {b, sz b.sz = align(sz, Align) b.nper = (Slabsz - sizeof(slab))/b.sz b.slabs = Zslab b.cache = Zslab b.ncache = 0 } /* Creates a slab for bucket 'bkt', and fills the chunk list */ const mkslab = {bkt var i var p var s var b var bnext var off /* offset of chunk head */ if bkt.ncache > 0 s = bkt.cache bkt.cache = s.next bkt.ncache-- ;; /* tricky: we need power of two alignment, so we allocate double the needed size, chop off the unaligned ends, and waste the address space. Since the OS is "smart enough", this shouldn't actually cost us memory, and 64 bits of address space means that we're not going to have issues with running out of address space for a while. On a 32 bit system this would be a bad idea. */ p = mmap(Zbyteptr, Slabsz*2, Mprotrw, Mpriv | Manon, -1, 0) if p == Mapbad die("Unable to mmap") ;; s = align(p castto(size), Slabsz) castto(slab#) s.head = p s.nfree = bkt.nper /* skip past the slab header */ off = align(sizeof(slab), Align) bnext = nextchunk(s castto(chunk#), off) s.freehd = bnext for i = 0; i < bkt.nper; i++ b = bnext bnext = nextchunk(b, bkt.sz) b.next = bnext ;; b.next = Zchunk -> s } /* Allocates a node from bucket 'bkt', crashing if the allocation cannot be satisfied. Will create a new slab if there are no slabs on the freelist. */ const bktalloc = {bkt var s var b /* find a slab */ s = bkt.slabs if s == Zslab s = mkslab(bkt) if s == Zslab die("No memory left") ;; bkt.slabs = s ;; /* grab the first chunk on the slab */ b = s.freehd s.freehd = b.next s.nfree-- if !s.nfree bkt.slabs = s.next s.next = Zslab ;; -> b castto(byte#) } /* Frees a chunk of memory 'm' into bucket 'bkt'. Assumes that the memory already came from a slab that was created for bucket 'bkt'. Will crash if this is not the case. */ const bktfree = {bkt, m var s var b s = mtrunc(m, Slabsz) castto(slab#) b = m castto(chunk#) if s.nfree == 0 s.next = bkt.slabs bkt.slabs = s elif s.nfree == bkt.nper if bkt.ncache < Cachemax s.next = bkt.cache bkt.cache = s else /* we mapped 2*Slabsz so we could align it, so we need to unmap the same */ munmap(s.head, Slabsz*2) ;; ;; s.nfree++ b.next = s.freehd s.freehd = b } /* Finds the correct bucket index to allocate from for allocations of size 'sz' */ const bktnum = {sz var i var bktsz bktsz = Align for i = 0; bktsz <= Bktmax; i++ if bktsz >= sz -> i ;; bktsz *= 2 ;; die("Size does not match any buckets") } /* aligns a size to a requested alignment. 'align' must be a power of two */ const align = {v, align -> (v + align - 1) & ~(align - 1) } /* chunks are variable sizes, so we can't just index to get to the next one */ const nextchunk = {b, sz : size -> ((b castto(intptr)) + (sz castto(intptr))) castto(chunk#) } /* truncates a pointer to 'align'. 'align' must be a power of two. */ const mtrunc = {m, align -> ((m castto(intptr)) & ~((align castto(intptr)) - 1)) castto(byte#) }