shithub: mc

ref: abe1191cd438e30dfb4708d42b4bc8260b258f14
dir: /lib/std/bigint.myr/

View raw version
use "alloc"
use "chartype"
use "cmp"
use "die"
use "errno"
use "extremum"
use "hasprefix"
use "memops"
use "option"
use "slcp"
use "sldup"
use "slfill"
use "slpush"
use "striter"
use "types"
use "utf"

pkg std =
	type bigint = struct
		dig	: uint32[:] 	/* little endian, no leading zeros. */
		sign	: int		/* -1 for -ve, 0 for zero, 1 for +ve. */
	;;

	/* administrivia */
	generic mkbigint	: (v : @a -> bigint#) :: numeric,integral @a
	const bigfrombytes	: (isneg : bool, v : byte[:] -> bigint#)
	const bigfree	: (a : bigint# -> void)
	const bigdup	: (a : bigint# -> bigint#)
	const bigassign	: (d : bigint#, s : bigint# -> bigint#)
	const bigmove	: (d : bigint#, s : bigint# -> bigint#)
	const bigsteal	: (d : bigint#, s : bigint# -> bigint#)
	const bigparse	: (s : byte[:] -> option(bigint#))
	const bigclear	: (a : bigint# -> bigint#)
	const bigbfmt	: (b : byte[:], a : bigint#, base : int -> size)
	/*
	const bigtoint	: (a : bigint#	-> @a::(numeric,integral))
	*/

	/* some useful predicates */
	const bigiszero	: (a : bigint# -> bool)
	const bigiseven	: (a : bigint# -> bool)
	const bigcmp	: (a : bigint#, b : bigint# -> order)
	generic bigcmpi	: (a : bigint#, b : @a -> order) :: numeric,integral @a

	/* shorthand for comparisons */
	const bigeq	: (a : bigint#, b : bigint# -> bool)
	const biglt	: (a : bigint#, b : bigint# -> bool)
	const bigle	: (a : bigint#, b : bigint# -> bool)
	const biggt	: (a : bigint#, b : bigint# -> bool)
	const bigge	: (a : bigint#, b : bigint# -> bool)
	generic bigeqi	: (a : bigint#, b : @a -> bool) :: numeric,integral @a
	generic biglti	: (a : bigint#, b : @a -> bool) :: numeric,integral @a
	generic biglei	: (a : bigint#, b : @a -> bool) :: numeric,integral @a
	generic biggti	: (a : bigint#, b : @a -> bool) :: numeric,integral @a
	generic biggei	: (a : bigint#, b : @a -> bool) :: numeric,integral @a

	/* bigint*bigint -> bigint ops */
	const bigadd	: (a : bigint#, b : bigint# -> bigint#)
	const bigsub	: (a : bigint#, b : bigint# -> bigint#)
	const bigmul	: (a : bigint#, b : bigint# -> bigint#)
	const bigdiv	: (a : bigint#, b : bigint# -> bigint#)
	const bigmod	: (a : bigint#, b : bigint# -> bigint#)
	const bigdivmod	: (a : bigint#, b : bigint# -> (bigint#, bigint#))
	const bigshl	: (a : bigint#, b : bigint# -> bigint#)
	const bigshr	: (a : bigint#, b : bigint# -> bigint#)
	const bigand	: (a : bigint#, b : bigint# -> bigint#)
	const bigor	: (a : bigint#, b : bigint# -> bigint#)

	const bigmodpow	: (b : bigint#, e : bigint#, m : bigint# -> bigint#)
	//const bigpow	: (a : bigint#, b : bigint# -> bigint#)


	/* bigint*int -> bigint ops */
	generic bigaddi	: (a : bigint#, b : @a -> bigint#) :: integral,numeric @a
	generic bigsubi	: (a : bigint#, b : @a -> bigint#) :: integral,numeric @a
	generic bigmuli	: (a : bigint#, b : @a -> bigint#) :: integral,numeric @a
	generic bigdivi	: (a : bigint#, b : @a -> bigint#) :: integral,numeric @a
	generic bigmodi	: (a : bigint#, b : @a -> bigint#) :: integral,numeric @a
	generic bigshli	: (a : bigint#, b : @a -> bigint#) :: integral,numeric @a
	generic bigshri	: (a : bigint#, b : @a -> bigint#) :: integral,numeric @a
	generic bigandi	: (a : bigint#, b : @a -> bigint#) :: integral,numeric @a
	generic bigori	: (a : bigint#, b : @a -> bigint#) :: integral,numeric @a

	//const bigpowi	: (a : bigint#, b : uint64 -> bigint#)
	//const bigmodpowi	: (b : bigint#, e : bigint#, m : bigint# -> bigint#)

	/* information about bigints */
	const bigbitcount	: (a : bigint# -> size)
;;

/* put for debugging */
extern const put : (fmt : byte[:], args : ... -> size)

const Base = 0x100000000ul
const Kmin = 64

generic mkbigint = {v : @a :: integral,numeric @a
	var a
	var val

	a = zalloc()

	if v < 0
		a.sign = -1
		v = -v
	elif v > 0
		a.sign = 1
	;;
	val = (v : uint64)
	slpush(&a.dig, (val : uint32))
	if val > Base
		slpush(&a.dig, (val/Base : uint32))
	;;
	-> trim(a)
}

const bigfrombytes = {isneg, v
	var i, off, a, last

	a = mkbigint(0)
	if isneg
		a.sign = -1
	else
		a.sign = 1
	;;

	for i = 0; i + 4 <= v.len; i += 4
		slpush(&a.dig, \
			(v[i + 0] <<  0 : uint32) | \
			(v[i + 1] <<  8 : uint32) | \
			(v[i + 2] << 16 : uint32) | \
			(v[i + 3] << 24 : uint32))
	;;
	last = 0
	for i; i < v.len; i++
		off = i & 0x3
		last |= (v[off] : uint32) << (8 *off)
	;;
	slpush(&a.dig, last)
	-> trim(a)
}

const bigfree = {a
	slfree(a.dig)
	free(a)
}

const bigdup = {a
	-> bigassign(zalloc(), a)
}

const bigassign = {d, s
	slfree(d.dig)
	d# = s#
	d.dig = sldup(s.dig)
	-> d
}

const bigmove = {d, s
	slfree(d.dig)
	d# = s#
	s.dig = [][:]
	s.sign = 0
	-> d
}

const bigsteal = {d, s
	bigmove(d, s);
	bigfree(s)
	-> d
}

const bigclear = {v
	slfree(v.dig)
	v.sign = 0
	v.dig = [][:]
	-> v
}

/* for now, just dump out something for debugging... */
const bigbfmt = {buf, x, base
	const digitchars = [
	'0','1','2','3','4','5','6','7','8','9',
	'a','b','c','d','e','f', 'g', 'h', 'i', 'j',
	'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
	't', 'u', 'v', 'w', 'x', 'y', 'z']
	var v, val
	var n, i
	var tmp, rem, b

	if base < 0 || base > 36
		die("invalid base in bigbfmt\n")
	;;

	if bigiszero(x)
		n
	;;

	if base == 0
		b = mkbigint(10)
	else
		b = mkbigint(base)
	;;
	n = 0
	val = bigdup(x)
	/* generate the digits in reverse order */
	while !bigiszero(val)
		(v, rem) = bigdivmod(val, b)
		if rem.dig.len > 0
			n += encode(buf[n:], digitchars[rem.dig[0]])
		else
			n += encode(buf[n:], '0')
		;;
		bigfree(val)
		bigfree(rem)
		val = v
	;;
	bigfree(val)
	bigfree(b)

	/* this is done last, so we get things right when we reverse the string */
	if x.sign == 0
		n += encode(buf[n:], '0')
	elif x.sign == -1
		n += encode(buf[n:], '-')
	;;

	/* we only generated ascii digits, so this works for reversing. */
	for i = 0; i < n/2; i++
		tmp = buf[i]
		buf[i] = buf[n - i - 1]
		buf[n - i - 1] = tmp
	;;
	-> n
}

const bigparse = {str
	var val : int, base
	var v, b
	var a

	if hasprefix(str, "0x") || hasprefix(str, "0X")
		base = 16
	elif hasprefix(str, "0o") || hasprefix(str, "0O")
		base = 8
	elif hasprefix(str, "0b") || hasprefix(str, "0B")
		base = 2
	else
		base = 10
	;;
	if base != 10
		str = str[2:]
	;;

	a = mkbigint(0)
	b = mkbigint(base)
	/*
	 efficiency hack: to save allocations,
	 just mutate v[0]. The value will always
	 fit in one digit.
	 */
	v = mkbigint(1)
	for c : bychar(str)
		if c == '_'
			continue
		;;
		val = charval(c, base)
		if val < 0 || val > base
			bigfree(a)
			bigfree(b)
			bigfree(v)
			-> `None
		;;
		v.dig[0] = (val : uint32)
		if val == 0
			v.sign = 0
		else
			v.sign = 1
		;;
		bigmul(a, b)
		bigadd(a, v)

	;;
	-> `Some a
}

const bigiszero = {v
	-> v.dig.len == 0
}

const bigiseven = {v
	-> v.dig.len == 0 || v.dig[0] & 1 == 0
}

const bigeq = {a, b
	if a.sign != b.sign || a.dig.len != b.dig.len
		-> false
	;;
	for var i = 0; i < a.dig.len; i++
		if a.dig[i] != b.dig[i]
			-> false
		;;
	;;
	-> true
}

const biglt = {a, b
	match bigcmp(a, b)
	| `Before:	-> true
	| _:	-> false
	;;
}


const bigle = {a, b
	match bigcmp(a, b)
	| `Before:	-> true
	| `Equal:	-> true
	| _:	-> false
	;;
}

const biggt = {a, b
	match bigcmp(a, b)
	| `After:	-> true
	| _:	-> false
	;;
}


const bigge = {a, b
	match bigcmp(a, b)
	| `After:	-> true
	| `Equal:	-> true
	| _:	-> false
	;;
}

generic bigeqi = {a, b
	var v
	var dig : uint32[2]

	bigdigit(&v, b < 0, (b : uint64), dig[:])
	-> bigeq(a, &v)
}

generic biglti = {a, b
	match bigcmpi(a, b)
	| `Before:	-> true
	| _:	-> false
	;;
}


generic biglei = {a, b
	match bigcmpi(a, b)
	| `Before:	-> true
	| `Equal:	-> true
	| _:	-> false
	;;
}

generic biggti = {a, b
	match bigcmpi(a, b)
	| `After:	-> true
	| _:	-> false
	;;
}


generic biggei = {a, b
	match bigcmpi(a, b)
	| `After:	-> true
	| `Equal:	-> true
	| _:	-> false
	;;
}

generic bigcmpi = {a, b
	var v
	var dig : uint32[2]

	bigdigit(&v, b < 0, (b : uint64), dig[:])
	-> bigcmp(a, &v)
}

const bigcmp = {a, b
	var da, db, sa, sb

	sa = (a.sign : int64)
	sb = (b.sign : int64)
	if sa < sb
		-> `Before
	elif sa > sb
		-> `After
	elif a.dig.len < b.dig.len
		-> signedorder(-sa)
	elif a.dig.len > b.dig.len
		-> signedorder(sa)
	else
		/* otherwise, the one with the first larger digit is bigger */
		for var i = a.dig.len; i > 0; i--
			da = (a.dig[i - 1]  : int64)
			db = (b.dig[i - 1]  : int64)
			if da != db
				-> signedorder(sa * (da - db))
			;;
		;;
	;;
	-> `Equal
}

const signedorder = {sign
	if sign < 0
		-> `Before 
	elif sign == 0
		-> `Equal
	else
		-> `After
	;;
}

/* a += b */
const bigadd = {a, b
	if a.sign == b.sign || a.sign == 0 
		a.sign = b.sign
		-> uadd(a, b)
	elif b.sign == 0
		-> a
	else
		match bigcmp(a, b)
		| `Before: /* a is negative */
			a.sign = b.sign
			-> usub(b, a)
		| `After: /* b is negative */
			-> usub(a, b)
		| `Equal:
			die("Impossible. Equal vals with different sign.")
		;;
	;;
}

/* adds two unsigned values together. */
const uadd = {a, b
	var v, i
	var carry
	var n

	carry = 0
	n = max(a.dig.len, b.dig.len)
	/* guaranteed to carry no more than one value */
	slzgrow(&a.dig, n + 1)
	for i = 0; i < n; i++
		v = (a.dig[i] : uint64) + carry;
		if i < b.dig.len
			v += (b.dig[i]  : uint64)
		;;

		if v >= Base
			carry = 1
		else
			carry = 0
		;;
		a.dig[i] = (v  : uint32)
	;;
	a.dig[i] += (carry  : uint32)
	-> trim(a)
}

/* a -= b */
const bigsub = {a, b
	/* 0 - x = -x */
	if a.sign == 0
		bigassign(a, b)
		a.sign = -b.sign
		-> a
	/* x - 0 = x */
	elif b.sign == 0
		-> a
	elif a.sign != b.sign
		-> uadd(a, b)
	else
		match bigcmp(a, b)
		| `Before: /* a is negative */
		    a.sign = b.sign
		    -> usub(b, a)
		| `After: /* b is negative */
		    -> usub(a, b)
		| `Equal:
		    -> bigclear(a)
		;;
	;;
	-> a
}

/* subtracts two unsigned values, where 'a' is strictly greater than 'b' */
const usub = {a, b
	var carry
	var v, i

	carry = 0
	for i = 0; i < a.dig.len; i++
		v = (a.dig[i] : int64) - carry
		if i < b.dig.len
			v -= (b.dig[i] : int64)
		;;
		if v < 0
			carry = 1
		else
			carry = 0
		;;
		a.dig[i] = (v  : uint32)
	;;
	-> trim(a)
}

/* a *= b */
const bigmul = {a, b
	var s

	if a.sign == 0 || b.sign == 0
		a.sign = 0
		slfree(a.dig)
		a.dig = [][:]
		-> a
	elif a.sign != b.sign
		s = -1
	else
		s = 1
	;;

	umul(a, b)

	a.sign = s
	-> trim(a)
}

const umul = {a, b
	var r

	if a.dig.len < Kmin || b.dig.len < Kmin
		smallmul(a, b)
	else
		r = mkbigint(0)
		kmul(r, a, b)
		bigmove(a, r)
	;;
}

const kmul = {r, a, b
	var x0, x1, y0, y1, n
	var z0, z1, z2, t0

	if a.dig.len < b.dig.len
		t0 = a
		a = b
		b = t0
	;;
	n = min(a.dig.len / 2, b.dig.len - 1)

	x0 = [.sign=1, .dig=a.dig[:n]]
	x1 = [.sign=1, .dig=a.dig[n:]]
	y0 = [.sign=1, .dig=b.dig[:n]]
	y1 = [.sign=1, .dig=b.dig[n:]]

	z0 = bigdup(&x0)
	trim(z0)
	umul(z0, &y0)

	z2 = bigdup(&x1)
	trim(z2)
	umul(z2, &y1)


	z1 = bigdup(&x0)
	trim(z1)
	bigsub(z1, &x1)
	t0 = bigdup(&y1)
	bigsub(t0, &y0)

	umul(z1, t0)
	bigadd(z1, z0)
	bigadd(z1, z2)

	bigshli(z1, 32*n)
	bigshli(z2, 32*2*n)

	bigclear(r)
	bigadd(r, z0)
	bigadd(r, z1)
	bigadd(r, z2)

	bigfree(z0)
	bigfree(z1)
	bigfree(z2)
	bigfree(t0)
}

const smallmul = {a, b
	var i, j
	var ai, bj, wij
	var carry, t
	var w

	w  = slzalloc(a.dig.len + b.dig.len)
	for j = 0; j < b.dig.len; j++
		carry = 0
		for i = 0; i < a.dig.len; i++
			ai = (a.dig[i]  : uint64)
			bj = (b.dig[j]  : uint64)
			wij = (w[i+j]  : uint64)
			t = ai * bj + wij + carry
			w[i+j] = (t  : uint32)
			carry = t >> 32
		;;
		w[i + j] = (carry  : uint32)
	;;
	slfree(a.dig)
	a.dig = w
}

const bigdiv = {a : bigint#, b : bigint# -> bigint#
	var q, r

	(q, r) = bigdivmod(a, b)
	bigfree(r)
	-> bigsteal(a, q)
}

const bigmod = {a : bigint#, b : bigint# -> bigint#
	var q, r

	(q, r) = bigdivmod(a, b)
	bigfree(q)
	-> bigsteal(a, r)
}

/* a /= b */
const bigdivmod = {a : bigint#, b : bigint# -> (bigint#, bigint#)
	/*
	Implements bigint division using Algorithm D from
	Knuth: Seminumerical algorithms, Section 4.3.1.
	*/
	var m : int64, n : int64
	var qhat, rhat, carry, shift
	var x, y, z, w, p, t /* temporaries */
	var pt, tt
	var b0, aj
	var u, v
	var i, j : int64
	var q

	if bigiszero(b)
		die("divide by zero\n")
	;;
	/* if b > a, we trucate to 0, with remainder 'a' */
	if a.dig.len < b.dig.len
		-> (mkbigint(0), bigdup(a))
	;;

	q = zalloc()
	q.dig = slzalloc(max(a.dig.len, b.dig.len) + 1)
	if a.sign != b.sign
		q.sign = -1
	else
		q.sign = 1
	;;

	/* handle single digit divisor separately: the knuth algorithm needs at least 2 digits. */
	if b.dig.len == 1
		carry = 0
		b0 = ((b.dig[0]  : uint64))
		for j = a.dig.len; j > 0; j--
			aj = ((a.dig[j - 1]  : uint64))
			q.dig[j - 1] = ((((carry << 32) + aj)/b0)  : uint32)
			carry = (carry << 32) + aj - (q.dig[j-1] : uint64)*b0
		;;
		q = trim(q)
		-> (q, trim(mkbigint((carry : int32))))
	;;

	u = bigdup(a)
	v = bigdup(b)
	m = u.dig.len
	n = v.dig.len

	/* normalize */
	shift = nlz(v.dig[n - 1])
	bigshli(u, shift)
	bigshli(v, shift)
	slzgrow(&u.dig, u.dig.len + 1)

	/* Since we're little endian, we iterate backwards from Knuth */
	for j = m - n; j >= 0; j--
		/* load a few temps for less casting */
		x = (u.dig[j + n]  : uint64)
		y = (u.dig[j + n - 1]  : uint64)
		z = (v.dig[n - 1]  : uint64)
		w = (v.dig[n - 2]  : uint64)
		t = (u.dig[j + n - 2]  : uint64)

		/* calculate qhat */
		qhat = (x*Base + y)/z
		rhat = (x*Base + y) - qhat*z
:divagain
		if qhat >= Base || (qhat * w) > (rhat*Base + t)
			qhat--
			rhat += z
			if rhat < Base
				goto divagain
			;;
		;;

		/* multiply and subtract */
		carry = 0
		for i = 0; i < n; i++
			p = (qhat * (v.dig[i]  : uint64))

			t = (u.dig[i+j]  : uint64) - carry - (p % Base)
			u.dig[i+j] = (t  : uint32)
			tt = (t : int64) >> 32
			pt = (p >> 32)
			carry = ((pt : int64) - (tt : int64) : uint64)
		;;
		t = (u.dig[j + n] : uint64) - carry
		u.dig[j + n] = (t  : uint32)

		q.dig[j] = (qhat  : uint32)
		/* adjust */
		if (t : int64) < 0
			q.dig[j]--
			carry = 0
			for i = 0; i < n; i++
				t = (u.dig[i+j] : uint64) + (v.dig[i] : uint64) + carry
				u.dig[i+j] = (t  : uint32)
				carry = t >> 32
			;;
			u.dig[j+n] = u.dig[j+n] + (carry : uint32)
		;;

	;;
	/* undo the biasing for remainder */
	bigshri(u, shift)
	bigfree(v)
	-> (trim(q), trim(u))
}

const bigand = {a, b
	for var i = 0; i < min(a.dig.len, b.dig.len); i++
		a.dig[i] &= b.dig[i]
	;;
	-> trim(a)
}

const bigor = {a, b
	slzgrow(&a.dig, max(a.dig.len, b.dig.len))
	for var i = 0; i < a.dig.len; i++
		a.dig[i] |= b.dig[i]
	;;
	-> trim(a)
}

/* computes b^e % m */
const bigmodpow = {base, exp, mod
	var r, n

	r = mkbigint(1)
	n = 0
    	while !bigiszero(exp)
		if (exp.dig[0] & 1) != 0
			bigmul(r, base)
			bigmod(r, mod)
		;;
		bigshri(exp, 1)
		bigmul(base, base)
		bigmod(base, mod)
	;;
	-> bigsteal(base, r)
}

/* returns the number of leading zeros */
const nlz = {a : uint32
	var n

	if a == 0
		-> 32
	;;
	n = 0
	if a <= 0x0000ffff
		n += 16
		a <<= 16
	;;
	if a <= 0x00ffffff
		n += 8
		a <<= 8
	;;
	if a <= 0x0fffffff
		n += 4
		a <<= 4
	;;
	if a <= 0x3fffffff
		n += 2
		a <<= 2
	;;
	if a <= 0x7fffffff
		n += 1
		a <<= 1
	;;
	-> n
}


/* a <<= b */
const bigshl = {a, b
	match b.dig.len
	| 0:	-> a
	| 1:	-> bigshli(a, (b.dig[0] : uint64))
	| n:	die("shift by way too much\n")
	;;
}

/* a >>= b, unsigned */
const bigshr = {a, b
	match b.dig.len
	| 0:	-> a
	| 1:	-> bigshri(a, (b.dig[0]:  uint64))
	| n:	die("shift by way too much\n")
	;;
}

/* a + b, b is integer.
FIXME: acually make this a performace improvement
*/
generic bigaddi = {a, b
	var bigb : bigint
	var dig : uint32[2]

	bigdigit(&bigb, b < 0, (b : uint64), dig[:])
	bigadd(a, &bigb)
	-> a
}

generic bigsubi = {a, b : @a :: numeric,integral @a
	var bigb : bigint
	var dig : uint32[2]

	bigdigit(&bigb, b < 0, (b : uint64), dig[:])
	bigsub(a, &bigb)
	-> a
}

generic bigmuli = {a, b
	var bigb : bigint
	var dig : uint32[2]

	bigdigit(&bigb, b < 0, (b : uint64), dig[:])
	bigmul(a, &bigb)
	-> a
}

generic bigdivi = {a, b
	var bigb : bigint
	var dig : uint32[2]

	bigdigit(&bigb, b < 0, (b : uint64), dig[:])
	bigdiv(a, &bigb)
	-> a
}

generic bigmodi = {a, b
	var bigb : bigint
	var dig : uint32[2]

	bigdigit(&bigb, b < 0, (b : uint64), dig[:])
	bigmod(a, &bigb)
	-> a
}

/* 
  a << s, with integer arg.
  logical left shift. any other type would be illogical.
 */
generic bigshli = {a, s : @a :: numeric,integral @a
	var off, shift
	var t, carry

	iassert(s >= 0, "shift amount must be positive")
	off = (s : uint64) / 32
	shift = (s : uint64) % 32

	/* zero shifted by anything is zero */
	if a.sign == 0
		-> a
	;;
	slzgrow(&a.dig, (1 + a.dig.len + off : size))
	/* blit over the base values */
	for var i = a.dig.len; i > off; i--
		a.dig[i - 1] = a.dig[i - 1 - off]
	;;
	for var i = 0; i < off; i++
		a.dig[i] = 0
	;;
	/* and shift over by the remainder */
	carry = 0
	for var i = 0; i < a.dig.len; i++
		t = (a.dig[i] : uint64) << shift
		a.dig[i] = (t | carry: uint32) 
		carry = t >> 32
	;;
	-> trim(a)
}

/* logical shift right, zero fills. sign remains untouched. */
generic bigshri = {a, s
	var off, shift
	var t, carry

	iassert(s >= 0, "shift amount must be positive")
	off = (s : uint64) / 32
	shift = (s : uint64) % 32

	/* blit over the base values */
	for var i = 0; i < a.dig.len - off; i++
		a.dig[i] = a.dig[i + off]
	;;
	a.dig = a.dig[:a.dig.len - off]

	/* and shift over by the remainder */
	carry = 0
	for var i = a.dig.len; i > 0; i--
		t = ((a.dig[i - 1]  : uint64))
		a.dig[i - 1] = (carry | (t >> shift): uint32)
		carry = t << (32 - shift)
	;;
	-> trim(a)
}

generic bigandi = {a, b
	var v
	var dig : uint32[2]
	bigdigit(&v, b < 0, (b : uint64), dig[:])
	-> bigand(a, &v)
}

generic bigori = {a, b
	var v
	var dig : uint32[2]
	bigdigit(&v, b < 0, (b : uint64), dig[:])
	-> bigor(a, &v)
}

/* creates a bigint on the stack; should not be modified. */
const bigdigit = {v, isneg : bool, val : uint64, dig
	v.sign = 1
	if isneg
		val = -val
		v.sign = -1
	;;
	if val == 0
		v.sign = 0
		v.dig = [][:]
	elif val < Base
		v.dig = dig[:1]
		v.dig[0] = (val  : uint32)
	else
		v.dig = dig
		v.dig[0] = (val  : uint32)
		v.dig[1] = ((val >> 32)  : uint32)
	;;
}

/* trims leading zeros */
const trim = {a
	var i

	for i = a.dig.len; i > 0; i--
		if a.dig[i - 1] != 0
			break
		;;
	;;
	a.dig = a.dig[:i]
	if i == 0
		a.sign = 0
	;;
	-> a
}


const bigbitcount = {a
	var top, len, mask

	len = 32*a.dig.len
	if len > 0
		top = a.dig[a.dig.len - 1]
		mask = 1 << 31
		while top & mask == 0
			len--
			mask >>= 1
		;;
	;;
	-> len
}