ref: 6eb284f99e7adb18dcad5e14bd619c08dfc864e6
dir: /src/asm/rgbasm.5/
.\" .\" This file is part of RGBDS. .\" .\" Copyright (c) 2017-2018, Antonio Nino Diaz and RGBDS contributors. .\" .\" SPDX-License-Identifier: MIT .\" .Dd December 5, 2019 .Dt RGBASM 5 .Os .Sh NAME .Nm rgbasm .Nd language documentation .Sh DESCRIPTION .Pp This is the full description of the language used by .Xr rgbasm 1 . The description of the instructions supported by the Game Boy CPU is in .Xr gbz80 7 . .Pp It is strongly recommended to have some familiarity with the Game Boy hardware before reading this document. RGBDS is specifically targeted at the Game Boy, and thus a lot of its features tie directly to its concepts. This document is not intended to be a Game Boy hardware reference. .Pp Generally, .Dq the linker will refer to .Xr rgblink 1 , but any program that processes RGB object files (described in .Xr rgbds 5 ) can be used in its place. .Sh SYNTAX .Pp The syntax is line‐based, just as in any other assembler, meaning that you do one instruction or pseudo‐op per line: .Pp .Dl Oo Ar label Oc Oo Ar instruction Oc Oo Ar ;\ comment Oc .Pp Example: .Bd -literal -offset indent John: ld a,87 ;Weee .Ed .Pp All reserved keywords (pseudo‐ops, mnemonics, registers etc.) are case‐insensitive, all identifiers (symbol names) are case-sensitive. .Pp Comments are used to give humans information about the code, such as explanations. The assembler .Em always ignores comments and their contents. .Pp There are two syntaxes for comments. The most common is that anything that follows a semicolon .Ql \&; not inside a string, is a comment until the end of the line. The other is that lines beginning with a .Ql * (not even spaces before it) are ignored. This second syntax is deprecated (will be removed in a future version) and should be replaced with the first one. .Pp Sometimes lines can be too long and it may be necessary to split them. To do so, put a backslash at the end of the line: .Bd -literal -offset indent DB 1, 2, 3,\ \[rs] 4, 5, 6,\ \[rs]\ ;\ Put it before any comments 7, 8, 9 .Ed .Pp This works anywhere in the code except inside of strings. To split strings it is needed to use .Fn STRCAT like this: .Bd -literal -offset indent db STRCAT("Hello ",\ \[rs] "world!") .Ed .Sh EXPRESSIONS .Pp An expression can be composed of many things. Numerical expressions are always evaluated using signed 32-bit math. Zero is considered to be the only "false" number, all non-zero numbers (including negative) are "true". .Pp An expression is said to be "constant" if .Nm knows its value. This is generally always the case, unless a label is involved, as explained in the .Sx SYMBOLS section. .Pp The instructions in the macro-language generally require constant expressions. .Ss Numeric Formats .Pp There are a number of numeric formats. .Pp .Bl -column -offset indent "Fixed point (16.16)" "Prefix" .It Sy Format type Ta Sy Prefix Ta Sy Accepted characters .It Hexadecimal Ta $ Ta 0123456789ABCDEF .It Decimal Ta none Ta 0123456789 .It Octal Ta & Ta 01234567 .It Binary Ta % Ta 01 .It Fixed point (16.16) Ta none Ta 01234.56789 .It Character constant Ta none Ta \(dqABYZ\(dq .It Gameboy graphics Ta \` Ta 0123 .El .Pp The "character constant" form yields the value the character maps to in the current charmap. For example, by default .Pq refer to Xr ascii 7 .Sq \(dqA\(dq yields 65. See .Sx Character maps for information on charmaps. .Pp The last one, Gameboy graphics, is quite interesting and useful. After the backtick, 8 digits between 0 and 3 are expected, corresponding to pixel values. The resulting value is the two bytes of tile data that would produce that row of pixels. For example, .Sq \`01012323 is equivalent to .Sq $0F55 . .Pp You can also use symbols, which are implicitly replaced with their value. .Ss Operators .Pp A great number of operators you can use in expressions are available (listed from highest to lowest precedence): .Pp .Bl -column -offset indent "!= == <= >= < >" .It Sy Operator Ta Sy Meaning .It Li \&( \&) Ta Precedence override .It Li FUNC() Ta Built-in function call .It Li ~ + - Ta Unary complement/plus/minus .It Li * / % Ta Multiply/divide/modulo .It Li << >> Ta Shift left/right .It Li & \&| ^ Ta Binary and/or/xor .It Li + - Ta Add/subtract .It Li != == <= >= < > Ta Comparison .It Li && || Ta Boolean and/or .It Li \&! Ta Unary not .El .Pp .Ic ~ complements a value by inverting all its bits. .Pp .Ic % is used to get the remainder of the corresponding division. .Sq 5 % 2 is 1. .Pp Shifting works by shifting all bits in the left operand either left .Pq Sq << or right .Pq Sq >> by the right operand's amount. When shifting left, all newly-inserted bits are reset; when shifting right, they are copies of the original most significant bit instead. This makes .Sq a << b and .Sq a >> b equivalent to multiplying and dividing by 2 to the power of b, respectively. .Pp Comparison operators return 0 if the comparison is false, and 1 otherwise. .Pp Unlike in a lot of languages, and for technical reasons, .Nm still evaluates both operands of .Sq && and .Sq || . .Pp ! returns 1 if the operand was 0, and 0 otherwise. .Ss Fixed‐point Expressions .Pp Fixed-point numbers are basically normal (32-bit) integers, which count 65536th's instead of entire units, offering better precision than integers but limiting the range of values. The upper 16 bits are used for the integer part and the lower 16 bits are used for the fraction (65536ths). Since they are still akin to integers, you can use them in normal integer expressions, and some integer operators like .Sq + and .Sq - don't care whether the operands are integers or fixed-point. You can easily truncate a fixed-point number into an integer by shifting it right by 16 bits. It follows that you can convert an integer to a fixed-point number by shifting it left. .Pp The following functions are designed to operate with fixed-point numbers: .EQ delim $$ .EN .Pp .Bl -column -offset indent "ATAN2(x, y)" .It Sy Name Ta Sy Operation .It Fn DIV x y Ta $x \[di] y$ .It Fn MUL x y Ta $x \[mu] y$ .It Fn SIN x Ta $sin ( x )$ .It Fn COS x Ta $cos ( x )$ .It Fn TAN x Ta $tan ( x )$ .It Fn ASIN x Ta $asin ( x )$ .It Fn ACOS x Ta $acos ( x )$ .It Fn ATAN x Ta $atan ( x )$ .It Fn ATAN2 x y Ta Angle between $( x , y )$ and $( 1 , 0 )$ .El .EQ delim off .EN .Pp These functions are useful for automatic generation of various tables. Example: assuming a circle has 65536.0 degrees, and sine values are in range .Bq -1.0 ;\ 1.0 : .Bd -literal -offset indent ;\ -- ;\ -- Generate a 256-byte sine table with values between 0 and 128 ;\ -- ANGLE = 0.0 REPT 256 db MUL(64.0, SIN(ANGLE) + 1.0) >> 16 ANGLE = ANGLE + 256.0 ; 256 = 65536 / table_len, with table_len = 256 ENDR .Ed .Ss String Expressions .Pp The most basic string expression is any number of characters contained in double quotes .Pq Ql \&"for instance" . The backslash character .Ql \[rs] is special in that it causes the character following it to be .Dq escaped , meaning that it is treated differently from normal. There are a number of escape sequences you can use within a string: .Pp .Bl -column -offset indent "'\1' - '\9'" .It Sy String Ta Sy Meaning .It Ql \[rs]\[rs] Ta Produces a backslash .It Ql \[rs]" Ta Produces a double quote without terminating .It Ql \[rs], Ta Comma .It Ql \[rs]{ Ta Curly bracket left .It Ql \[rs]} Ta Curly bracket right .It Ql \[rs]n Ta Newline ($0A) .It Ql \[rs]r Ta Carriage return ($0D) .It Ql \[rs]t Ta Tab ($09) .It Qo \[rs]1 Qc \[en] Qo \[rs]9 Qc Ta Macro argument (Only the body of a macro, see Sx Invoking macros ) .It Ql \[rs]@ Ta Label name suffix (Only in the body of macros and REPTs) .El (Note that some of those can be used outside of strings, when noted further in this document.) .Pp A funky feature is .Ql {symbol} within a string, called .Dq symbol interpolation . This will paste .Ar symbol Ap s contents as a string. If it's a string symbol, the string is simply inserted. If it's a numeric symbol, its value is converted to hexadecimal notation with a dollar sign .Sq $ prepended. .Bd -literal -offset indent TOPIC equs "life, the universe, and everything" ANSWER = 42 ;\ Prints "The answer to life, the universe, and everything is $2A" PRINTT "The answer to {TOPIC} is {ANSWER}\[rs]n" .Ed .Pp Symbol interpolations can be nested, too! .Pp It's possible to change the way numeric symbols are converted by specifying a print type like so: .Ql {d:symbol} . Valid print types are: .Bl -column -offset indent "Print type" "Lowercase hexadecimal" "Example" .It Sy Print type Ta Sy Format Ta Sy Example .It Ql d Ta Decimal Ta 42 .It Ql x Ta Lowercase hexadecimal Ta 2a .It Ql X Ta Uppercase hexadecimal Ta 2A .It Ql b Ta Binary Ta 101010 .El .Pp Note that print types should only be used with numeric values, not strings. .Pp HINT: The .Ic {symbol} construct can also be used outside strings. The symbol's value is again inserted directly. .Pp The following functions operate on string expressions. Most of them return a string, however some of these functions actually return an integer and can be used as part of an integer expression! .Pp .Bl -column "STRSUB(str, pos, len)" .It Sy Name Ta Sy Operation .It Fn STRLEN string Ta Returns the number of characters in Ar string . .It Fn STRCAT str1 str2 Ta Appends Ar str2 No to Ar str1 . .It Fn STRCMP str1 str2 Ta Returns negative if Ar str1 No is alphabetically lower than Ar str2 No , zero if they match, positive if Ar str1 No is greater than Ar str2 . .It Fn STRIN str1 str2 Ta Returns the position of Ar str2 No in Ar str1 No or zero if it's not present Pq first character is position 1 . .It Fn STRSUB str pos len Ta Returns a substring from Ar str No starting at Ar pos Po first character is position 1 Pc and Ar len No characters long. .It Fn STRUPR str Ta Converts all characters in Ar str No to capitals and returns the new string. .It Fn STRLWR str Ta Converts all characters in Ar str No to lower case and returns the new string. .El .Ss Character maps .Pp When writing text that is meant to be displayed in the Game Boy, the characters used in the source code may have a different encoding than the default of ASCII. For example, the tiles used for uppercase letters may be placed starting at tile index 128, which makes it difficult to add text strings to the ROM. .Pp Character maps allow mapping strings up to 16 characters long to an abitrary 8-bit value: .Bd -literal -offset indent CHARMAP "<LF>", 10 CHARMAP "í", 20 CHARMAP "A", 128 .Ed By default, a character map contains ASCII encoding. .Pp It is possible to create multiple character maps and then switch between them as desired. This can be used to encode debug information in ASCII and use a different encoding for other purposes, for example. Initially, there is one character map called .Sq main and it is automatically selected as the current character map from the beginning. There is also a character map stack that can be used to save and restore which character map is currently active. .Bl -column "NEWCHARMAP name, basename" .It Sy Command Ta Sy Meaning .It Ic NEWCHARMAP Ar name Ta Creates a new, empty character map called Ar name . .It Ic NEWCHARMAP Ar name , basename Ta Creates a new character map called Ar name , No copied from character map Ar basename . .It Ic SETCHARMAP Ar name Ta Switch to character map Ar name . .It Ic PUSHC Ta Push the current character map onto the stack. .It Ic POPC Ta Pop a character map off the stack and switch to it. .El .Pp .Sy Note: Character maps affect all strings in the file from the point in which they are defined, until switching to a different character map. This means that any string that the code may want to print as debug information will also be affected by it. .Pp .Sy Note: The output value of a mapping can be 0. If this happens, the assembler will treat this as the end of the string and the rest of it will be trimmed. .Ss Other functions .Pp There are a few other functions that do various useful things: .Pp .Bl -column "DEF(label)" .It Sy Name Ta Sy Operation .It Fn BANK arg Ta Returns a bank number. If .Ar arg is the symbol .Ic @ , this function returns the bank of the current section. If .Ar arg is a string, it returns the bank of the section that has that name. If .Ar arg is a label, it returns the bank number the label is in. The result may be constant if .Nm is able to compute it. .It Fn DEF label Ta Returns TRUE (1) if .Ar label has been defined, FALSE (0) otherwise. String symbols are not expanded within the parentheses. .It Fn HIGH arg Ta Returns the top 8 bits of the operand if Ar arg No is a label or constant, or the top 8-bit register if it is a 16-bit register. .It Fn LOW arg Ta Returns the bottom 8 bits of the operand if Ar arg No is a label or constant, or the bottom 8-bit register if it is a 16-bit register Pq Cm AF No isn't a valid register for this function . .It Fn ISCONST arg Ta Returns 1 if Ar arg Ap s value is known by RGBASM (e.g. if it can be an argument to .Ic IF ) , or 0 if only RGBLINK can compute its value. .El .Sh SECTIONS .Pp Before you can start writing code, you must define a section. This tells the assembler what kind of information follows and, if it is code, where to put it. .Pp .Dl SECTION Ar name , type .Dl SECTION Ar name , type , options .Dl SECTION Ar name , type Ns Bo Ar addr Bc .Dl SECTION Ar name , type Ns Bo Ar addr Bc , Ar options .Pp .Ar name is a string enclosed in double quotes, and can be a new name or the name of an existing section. If the type doesn't match, an error occurs. All other sections must have a unique name, even in different source files, or the linker will treat it as an error. .Pp Possible section .Ar type Ns s are as follows: .Pp .Bl -tag .It Ic ROM0 A ROM section. .Ar addr can range from .Ad $0000 to .Ad $3FFF , or .Ad $0000 to .Ad $7FFF if tiny ROM mode is enabled in the linker. .It Ic ROMX A banked ROM section. .Ar addr can range from .Ad $4000 to .Ad $7FFF . .Ar bank can range from 1 to 511. Becomes an alias for .Ic ROM0 if tiny ROM mode is enabled in the linker. .It Ic VRAM A banked video RAM section. .Ar addr can range from .Ad $8000 to .Ad $9FFF . .Ar bank can be 0 or 1, but bank 1 is unavailable if DMG mode is enabled in the linker. .It Ic SRAM A banked external (save) RAM section. .Ar addr can range from .Ad $A000 to .Ad $BFFF . .Ar bank can range from 0 to 15. .It Ic WRAM0 A general-purpose RAM section. .Ar addr can range from .Ad $C000 to .Ad $CFFF , or .Ad $C000 to .Ad $DFFF if WRAM0 mode is enabled in the linker. .It Ic WRAMX A banked general-purpose RAM section. .Ar addr can range from .Ad $D000 to .Ad $DFFF . .Ar bank can range from 1 to 7. Becomes an alias for .Ic WRAM0 if WRAM0 mode is enabled in the linker. .It Ic OAM An object attribute RAM section. .Ar addr can range from .Ad $FE00 to .Ad $FE9F . .It Ic HRAM A high RAM section. .Ar addr can range from .Ad $FF80 to .Ad $FFFE . .Pp .Sy Note : While .Nm will automatically optimize .Ic ld instructions to the smaller and faster .Ic ldh (see .Xr gbz80 7 ) whenever possible, it is generally unable to do so when a label is involved. Using the .Ic ldh instruction directly is recommended. This forces the assembler to emit a .Ic ldh instruction and the linker to check if the value is in the correct range. .El .Pp Since RGBDS produces ROMs, code and data can only be placed in .Ic ROM0 and .Ic ROMX sections. To put some in RAM, have it stored in ROM, and copy it to RAM. .Pp .Ar option Ns s are comma-separated and may include: .Bl -tag .It Ic BANK Ns Bq Ar bank Specify which .Ar bank for the linker to place the section in. See above for possible values for .Ar bank , depending on .Ar type . .It Ic ALIGN Ns Bq Ar align , offset Place the section at an address whose .Ar align least‐significant bits are equal to .Ar offset . (Note that .Ic ALIGN Ns Bq Ar align is a shorthand for .Ic ALIGN Ns Bq Ar align , No 0 ) . This option can be used with .Bq Ar addr , as long as they don't contradict eachother. It's also possible to request alignment in the middle of a section, see .Sx Requesting alignment below. .El .Pp If .Bq Ar addr is not specified, the section is considered .Dq floating ; the linker will automatically calculate an appropriate address for the section. Similarly, if .Ic BANK Ns Bq Ar bank is not specified, the linker will automatically find a bank with enough space. .Pp Sections can also be placed by using a linker script file. The format is described in .Xr rgblink 5 . They allow the user to place floating sections in the desired bank in the order specified in the script. This is useful if the sections can't be placed at an address manually because the size may change, but they have to be together. .Pp Section examples: .Bl -item .It .Bd -literal -offset indent SECTION "Cool Stuff",ROMX .Ed This switches to the section called .Dq CoolStuff , creating it if it doesn't already exist. It can end up in any ROM bank. Code and data may follow. .It If it is needed, the the base address of the section can be specified: .Bd -literal -offset indent SECTION "Cool Stuff",ROMX[$4567] .Ed .It An example with a fixed bank: .Bd -literal -offset indent SECTION "Cool Stuff",ROMX[$4567],BANK[3] .Ed .It And if you want to force only the section's bank, and not its position within the bank, that's also possible: .Bd -literal -offset indent SECTION "Cool Stuff",ROMX,BANK[7] .Ed .It Alignment examples: The first one could be useful for defining an OAM buffer to be DMA'd, since it must be aligned to 256 bytes. The second could also be appropriate for GBC HDMA, or for an optimized copy code that requires alignment. .Bd -literal -offset indent SECTION "OAM Data",WRAM0,ALIGN[8] ;\ align to 256 bytes SECTION "VRAM Data",ROMX,BANK[2],ALIGN[4] ;\ align to 16 bytes .Ed .El .Ss Section Stack .Pp .Ic POPS and .Ic PUSHS provide the interface to the section stack. The number of entries in the stack is limited only by the amount of memory in your machine. .Pp .Ic PUSHS will push the current section context on the section stack. .Ic POPS can then later be used to restore it. Useful for defining sections in included files when you don't want to override the section context at the point the file was included. .Ss RAM Code .Pp Sometimes you want to have some code in RAM. But then you can't simply put it in a RAM section, you have to store it in ROM and copy it to RAM at some point. .Pp This means the code (or data) will not be stored in the place it gets executed. Luckily, .Ic LOAD blocks are the perfect solution to that. Here's an example of how to use them: .Bd -literal -offset indent SECTION "LOAD example", ROMX CopyCode: ld de, RAMCode ld hl, RAMLocation ld c, RAMLocation.end - RAMLocation \&.loop ld a, [de] inc de ld [hli], a dec c jr nz, .loop ret RAMCode: LOAD "RAM code", WRAM0 RAMLocation: ld hl, .string ld de, $9864 \&.copy ld a, [hli] ld [de], a inc de and a jr nz, .copy ret \&.string db "Hello World!", 0 \&.end ENDL .Ed .Pp A .Ic LOAD block feels similar to a .Ic SECTION declaration because it creates a new one. All data and code generated within such a block is placed in the current section like usual, but all labels are created as if they were placed in this newly-created section. .Pp In the example above, all of the code and data will end up in the "LOAD example" section. You will notice the .Sq RAMCode and .Sq RAMLocation labels. The former is situated in ROM, where the code is stored, the latter in RAM, where the code will be loaded. .Pp You cannot nest .Ic LOAD blocks, nor can you change the current section within them. .Ss Unionized Sections .Pp When you're tight on RAM, you may want to define overlapping blocks of variables, as explained in the .Sx Unions section. However, the .Ic UNION keyword only works within a single file, which prevents e.g. defining temporary variables on a single memory area across several files. Unionized sections solve this problem. To declare an unionized section, add a .Ic UNION keyword after the .Ic SECTION one; the declaration is otherwise not different. Unionized sections follow some different rules from normal sections: .Bl -bullet -offset indent .It The same unionized section (= having the same name) can be declared several times per .Nm invocation, and across several invocations. Different declarations are treated and merged identically whether within the same invocation, or different ones. .It If one section has been declared as unionized, all sections with the same name must be declared unionized as well. .It All declarations must have the same type. For example, even if .Xr rgblink 1 Ap s .Fl w flag is used, .Ic WRAM0 and .Ic WRAMX types are still considered different. .It Different constraints (alignment, bank, etc.) can be specified for each unionized section declaration, but they must all be compatible. For example, alignment must be compatible with any fixed address, all specified banks must be the same, etc. .It Unionized sections cannot have type .Ic ROM0 or .Ic ROMX . .El .Pp Different declarations of the same unionized section are not appended, but instead overlaid on top of eachother, just like .Sx Unions . Similarly, the size of an unionized section is the largest of all its declarations. .Ss Section Fragments Section fragments are sections with a small twist: when several of the same name are encountered, they are concatenated instead of producing an error. This works within the same file (paralleling the behavior "plain" sections has in previous versions), but also across object files. However, similarly to .Sx Unionized Sections , some rules must be followed: .Bl -bullet -offset indent .It If one section has been declared as fragment, all sections with the same name must be declared fragments as well. .It All declarations must have the same type. For example, even if .Xr rgblink 1 Ap s .Fl w flag is used, .Ic WRAM0 and .Ic WRAMX types are still considered different. .It Different constraints (alignment, bank, etc.) can be specified for each unionized section declaration, but they must all be compatible. For example, alignment must be compatible with any fixed address, all specified banks must be the same, etc. .It A section fragment may not be unionized; after all, that wouldn't make much sense. .El .Pp When RGBASM merges two fragments, the one encountered later is appended to the one encountered earlier. .Pp When RGBLINK merges two fragments, the one whose file was specified last is appended to the one whose file was specified first. For example, assuming .Ql bar.o , .Ql baz.o , and .Ql foo.o all contain a fragment with the same name, the command .Dl rgblink -o rom.gb baz.o foo.o bar.o would produce the fragment from .Ql baz.o first, followed by the one from .Ql foo.o , and the one from .Ql bar.o last. .Sh SYMBOLS .Pp RGBDS supports several types of symbols: .Pp .Bl -hang .It Sy Label Numerical symbol designating a memory location. May or may not have a value known at assembly time. .It Sy Constant Numerical symbol whose value has to be known at assembly time. .It Sy Macro A block of .Nm code that can be invoked later. .It Sy String equate String symbol that can be evaluated, similarly to a macro. .El .Pp Symbol names can contain letters, numbers, underscores, hashes and .Sq @ . However, they must begin with either a letter, a number, or an underscore. Periods are allowed exclusively for labels, as described below. A symbol cannot have the same name as a reserved keyword. .Em \&In the line where a symbol is defined there mustn't be any whitespace before it , otherwise .Nm will treat it as a macro invocation. .Bl -tag -width indent .It Sy Label declaration One of the assembler's main tasks is to keep track of addresses for you, so you can work with meaningful names instead of "magic" numbers. .Pp This can be done in a number of ways: .Bd -literal -offset indent GlobalLabel ;\ This syntax is deprecated, AnotherGlobal: ;\ please use this instead \&.locallabel \&.yet_a_local: AnotherGlobal.with_another_local: ThisWillBeExported:: ;\ Note the two colons ThisWillBeExported.too:: .Ed .Pp Declaring a label (global or local) with .Ql :: does an .Ic EXPORT at the same time. (See .Sx Exporting and importing symbols below). .Pp Any label whose name does not contain a period is a global label, others are locals. Declaring a global label sets it as the current label scope until the next one; any local label whose first character is a period will have the global label's name implicitly prepended. Local labels can be declared as .Ql scope.local: or simply as as .Ql .local: . If the former notation is used, then .Ql scope must be the actual current scope. .Pp Local labels may have whitespace before their declaration as the only exception to the rule. .Pp A label's location (and thus value) is usually not determined until the linking stage, so labels usually cannot be used as constants. However, if the section in which the label is declared has a fixed base address, its value is known at assembly time. .Pp .Nm is able to compute the subtraction of two labels either if both are constant as described above, or if both belong to the same section. .It Ic EQU .Ic EQU allows defining constant symbols. Unlike .Ic SET below, constants defined this way cannot be redefined. They can, for example, be used for things such as bit definitions of hardware registers. .Bd -literal -offset indent SCREEN_WIDTH equ 160 ;\ In pixels SCREEN_HEIGHT equ 144 .Ed .Pp Note that colons .Ql \&: following the name are not allowed. .It Ic SET .Ic SET , or its synonym .Ic = , defines constant symbols like .Ic EQU , but those constants can be re-defined. This is useful for variables in macros, for counters, etc. .Bd -literal -offset indent ARRAY_SIZE EQU 4 COUNT SET 2 COUNT SET ARRAY_SIZE+COUNT ;\ COUNT now has the value 6 COUNT = COUNT + 1 .Ed .Pp Note that colons .Ql \&: following the name are not allowed. .It Ic RSSET , RSRESET , RB , RW The RS group of commands is a handy way of defining structures: .Bd -literal -offset indent RSRESET str_pStuff RW 1 str_tData RB 256 str_bCount RB 1 str_SIZEOF RB 0 .Ed .Pp The example defines four constants as if by: .Bd -literal -offset indent str_pStuff EQU 0 str_tData EQU 2 str_bCount EQU 258 str_SIZEOF EQU 259 .Ed .Pp There are five commands in the RS group of commands: .Pp .Bl -column "RSSET constexpr" .It Sy Command Ta Sy Meaning .It Ic RSRESET Ta Equivalent to Ql RSSET 0 . .It Ic RSSET Ar constexpr Ta Sets the Ic _RS No counter to Ar constexpr . .It Ic RB Ar constexpr Ta Sets the preceding symbol to Ic _RS No and adds Ar constexpr No to Ic _RS . .It Ic RW Ar constexpr Ta Sets the preceding symbol to Ic _RS No and adds Ar constexpr No * 2 to Ic _RS . .It Ic RL Ar constexpr Ta Sets the preceding symbol to Ic _RS No and adds Ar constexpr No * 4 to Ic _RS . (In practice, this one cannot be used due to a bug). .El .Pp Note that colons .Ql \&: following the name are not allowed. .It Ic EQUS .Ic EQUS is used to define string symbols. Wherever the assembler meets a string symbol its name is replaced with its value. If you are familiar with C you can think of it as similar to .Fd #define . .Bd -literal -offset indent COUNTREG EQUS "[hl+]" ld a,COUNTREG PLAYER_NAME EQUS "\[rs]"John\[rs]"" db PLAYER_NAME .Ed .Pp This will be interpreted as: .Bd -literal -offset indent ld a,[hl+] db "John" .Ed .Pp String symbols can also be used to define small one-line macros: .Bd -literal -offset indent pusha EQUS "push af\[rs]npush bc\[rs]npush de\[rs]npush hl\[rs]n" .Ed .Pp Note that colons .Ql \&: following the name are not allowed. String equates can't be exported or imported. .Pp .Sy Important note : An .Ic EQUS can be expanded to a string that contains another .Ic EQUS and it will be expanded as well. If this creates an infinite loop, .Nm will error out once a certain depth is reached. See the .Fl r command-line option in .Xr rgbasm 1 . Also, a macro can contain an .Ic EQUS which calls the same macro, which causes the same problem. .It Ic MACRO One of the best features of an assembler is the ability to write macros for it. Macros can be called with arguments, and can react depending on input using .Ic IF constructs. .Bd -literal -offset indent MyMacro: MACRO ld a,80 call MyFunc ENDM .Ed .Pp Note that a single colon .Ql \&: following the macro's name is required. Macros can't be exported or imported. .El .Ss Exporting and importing symbols .Pp Importing and exporting of symbols is a feature that is very useful when your project spans many source files and, for example, you need to jump to a routine defined in another file. .Pp Exporting of symbols has to be done manually, importing is done automatically if .Nm finds a symbol it does not know about. .Pp The following will cause .Ar symbol1 , symbol2 and so on to be accessible to other files during the link process: .Dl Ic EXPORT Ar symbol1 Bq , Ar symbol2 , No ... .Pp .Ic GLOBAL is a deprecated synonym for .Ic EXPORT , do not use it. .Pp Note also that only exported symbols will appear in symbol and map files produced by .Xr rgblink 1 . .Ss Purging symbols .Pp .Ic PURGE allows you to completely remove a symbol from the symbol table as if it had never existed. .Em USE WITH EXTREME CAUTION!!! I can't stress this enough, .Sy you seriously need to know what you are doing . DON'T purge a symbol that you use in expressions the linker needs to calculate. When not sure, it's probably not safe to purge anything other than string symbols, macros, and constants. .Bd -literal -offset indent Kamikaze EQUS "I don't want to live anymore" AOLer EQUS "Me too" PURGE Kamikaze, AOLer .Ed .Pp Note that, as an exception, string symbols in the argument list of a .Ic PURGE command .Em will not be expanded . .Ss Predeclared Symbols .Pp The following symbols are defined by the assembler: .Pp .Bl -column -offset indent "EQUS" "__ISO_8601_LOCAL__" .It Sy Type Ta Sy Name Ta Sy Contents .It Ic EQU Ta Dv @ Ta PC value (essentially, the current memory address) .It Ic EQU Ta Dv _PI Ta Fixed point \[*p] .It Ic SET Ta Dv _RS Ta _RS Counter .It Ic EQU Ta Dv _NARG Ta Number of arguments passed to macro .It Ic EQU Ta Dv __LINE__ Ta The current line number .It Ic EQUS Ta Dv __FILE__ Ta The current filename .It Ic EQUS Ta Dv __DATE__ Ta Today's date .It Ic EQUS Ta Dv __TIME__ Ta The current time .It Ic EQUS Ta Dv __ISO_8601_LOCAL__ Ta ISO 8601 timestamp (local) .It Ic EQUS Ta Dv __ISO_8601_UTC__ Ta ISO 8601 timestamp (UTC) .It Ic EQU Ta Dv __UTC_YEAR__ Ta Today's year .It Ic EQU Ta Dv __UTC_MONTH__ Ta Today's month number, 1\[en]12 .It Ic EQU Ta Dv __UTC_DAY__ Ta Today's day of the month, 1\[en]31 .It Ic EQU Ta Dv __UTC_HOUR__ Ta Current hour, 0\[en]23 .It Ic EQU Ta Dv __UTC_MINUTE__ Ta Current minute, 0\[en]59 .It Ic EQU Ta Dv __UTC_SECOND__ Ta Current second, 0\[en]59 .It Ic EQU Ta Dv __RGBDS_MAJOR__ Ta Major version number of RGBDS .It Ic EQU Ta Dv __RGBDS_MINOR__ Ta Minor version number of RGBDS .It Ic EQU Ta Dv __RGBDS_PATCH__ Ta Patch version number of RGBDS .El .Sh DEFINING DATA .Ss Declaring variables in a RAM section .Pp .Ic DS allocates a number of empty bytes. This is the preferred method of allocating space in a RAM section. You can also use .Ic DB , DW and .Ic DL without any arguments instead (see .Sx Defining constant data below). .Bd -literal -offset indent DS 42 ;\ Allocates 42 bytes .Ed .Pp Empty space in RAM sections will not be initialized. In ROM sections, it will be filled with the value passed to the .Fl p command-line option, except when using overlays with .Fl O . .Ss Defining constant data .Pp .Ic DB defines a list of bytes that will be stored in the final image. Ideal for tables and text. Note that strings are not zero-terminated! .Bd -literal -offset indent DB 1,2,3,4,"This is a string" .Ed .Pp .Ic DS can also be used to fill a region of memory with some value. The following produces 42 times the byte $FF: .Bd -literal -offset indent DS 42, $FF .Ed .Pp Alternatively, you can use .Ic DW to store a list of words (16-bit) or .Ic DL to store a list of double-words/longs (32-bit). Strings are not allowed as arguments to .Ic DW and .Ic DL . .Pp You can also use .Ic DB , DW and .Ic DL without arguments, or leaving empty elements at any point in the list. This works exactly like .Ic DS 1 , DS 2 and .Ic DS 4 respectively. Consequently, no-argument .Ic DB , DW and .Ic DL can be used in a .Ic WRAM0 / .Ic WRAMX / .Ic HRAM / .Ic VRAM / .Ic SRAM section. .Ss Including binary files .Pp You probably have some graphics, level data, etc. you'd like to include. Use .Ic INCBIN to include a raw binary file as it is. If the file isn't found in the current directory, the include-path list passed to .Xr rgbasm 1 (see the .Fl i option) on the command line will be searched. .Bd -literal -offset indent INCBIN "titlepic.bin" INCBIN "sprites/hero.bin" .Ed .Pp You can also include only part of a file with .Ic INCBIN . The example below includes 256 bytes from data.bin, starting from byte 78. .Bd -literal -offset indent INCBIN "data.bin",78,256 .Ed .Pp The length argument is optional. If only the start position is specified, the bytes from the start position until the end of the file will be included. .Ss Unions .Pp Unions allow multiple memory allocations to overlap, like unions in C. This does not increase the amount of memory available, but allows re-using the same memory region for different purposes. .Pp A union starts with a .Ic UNION keyword, and ends at the corresponding .Ic ENDU keyword. .Ic NEXTU separates each block of allocations, and you may use it as many times within a union as necessary. .Bd -literal -offset indent ; Let's say PC = $C0DE here UNION ; Here, PC = $C0DE Name: ds 8 ; PC = $C0E6 Nickname: ds 8 ; PC = $C0EE NEXTU ; PC is back to $C0DE Health: dw ; PC = $C0E0 Something: ds 6 ; And so on Lives: db NEXTU VideoBuffer: ds 19 ENDU .Ed .Pp In the example above, .Sq Name , Health , VideoBuffer all have the same value, as do .Sq Nickname and .Sq Lives . Thus, keep in mind that .Ic ld [Health], a is identical to .Ic ld [Name], a . .Pp The size of this union is 19 bytes, as this is the size of the largest block (the last one, containing .Sq VideoBuffer ) . Nesting unions is possible, with each inner union's size being considered as described above. .Pp Unions may be used in any section, but inside them may only be .Ic DS - like commands (see .Sx Declaring variables in a RAM section ) . .Sh THE MACRO LANGUAGE .Ss Invoking macros .Pp You execute the macro by inserting its name. .Bd -literal -offset indent add a,b ld sp,hl MyMacro ;\ This will be expanded sub a,87 .Ed .Pp It's valid to call a macro from a macro (yes, even the same one). .Pp When .Nm sees .Ic MyMacro it will insert the macro definition (the code enclosed in .Ic MACRO / .Ic ENDM ) . .Pp Suppose your macro contains a loop. .Bd -literal -offset indent LoopyMacro: MACRO xor a,a \&.loop ld [hl+],a dec c jr nz,.loop ENDM .Ed .Pp This is fine, but only if you use the macro no more than once per scope. To get around this problem, there is the escape sequence .Ic \[rs]@ that expands to a unique string. .Pp .Ic \[rs]@ also works in .Ic REPT blocks. .Bd -literal -offset indent LoopyMacro: MACRO xor a,a \&.loop\[rs]@ ld [hl+],a dec c jr nz,.loop\[rs]@ ENDM .Ed .Pp .Sy Important note : Since a macro can call itself (or a different macro that calls the first one), there can be circular dependency problems. If this creates an infinite loop, .Nm will error out once a certain depth is reached. See the .Fl r command-line option in .Xr rgbasm 1 . Also, a macro can have inside an .Sy EQUS which references the same macro, which has the same problem. .Pp .Pp It's possible to pass arguments to macros as well! You retrieve the arguments by using the escape sequences .Ic \[rs]1 through .Ic \[rs]9 , \[rs]1 being the first argument specified on the macro invocation. .Bd -literal -offset indent LoopyMacro: MACRO ld hl,\[rs]1 ld c,\[rs]2 xor a,a \&.loop\[rs]@ ld [hl+],a dec c jr nz,.loop\[rs]@ ENDM .Ed .Pp Now I can call the macro specifying two arguments, the first being the address and the second being a byte count. The generated code will then reset all bytes in this range. .Bd -literal -offset indent LoopyMacro MyVars,54 .Ed .Pp Arguments are passed as string equates, although there's no need to enclose them in quotes. Thus, an expression will not be evaluated first but kind of copy-pasted. This means that it's probably a very good idea to use brackets around .Ic \[rs]1 to .Ic \[rs]9 if you perform further calculations on them. For instance, consider the following: .Bd -literal -offset indent print_double: MACRO PRINTV \[rs]1 * 2 ENDM print_double 1 + 2 .Ed .Pp The .Ic PRINTV statement will expand to .Ql PRINTV 1 + 2 * 2 , which will print 5 and not 6 as you might have expected. .Pp Line continuations work as usual inside macros or lists of macro arguments. However, some characters need to be escaped, as in the following example: .Bd -literal -offset indent PrintMacro: MACRO PRINTT \[rs]1 ENDM PrintMacro STRCAT("Hello "\[rs], \[rs] "world\[rs]\[rs]n") .Ed .Pp The comma needs to be escaped to avoid it being treated as separating the macro's arguments. The backslash .Sq \[rs] .Pq from Sq \[rs]n also needs to be escaped because of the way .Nm processes macro arguments. .Pp In reality, up to 256 arguments can be passed to a macro, but you can only use the first 9 like this. If you want to use the rest, you need to use the .Ic SHIFT command. .Pp .Ic SHIFT is a special command only available in macros. Very useful in .Ic REPT blocks. It will shift the arguments by one to the left. .Ic \[rs]1 will get the value of .Ic \[rs]2 , \[rs]2 will get the value of .Ic \[rs]3 , and so forth. .Pp This is the only way of accessing the value of arguments from 10 to 256. .Pp .Ic SHIFT can optionally be given an integer parameter, and will apply the above shifting that number of times. .Ss Printing things during assembly .Pp The next four commands print text and values to the standard output. Useful for debugging macros, or wherever you may feel the need to tell yourself some important information. .Bd -literal -offset indent PRINTT "I'm the greatest programmer in the whole wide world\[rs]n" PRINTI (2 + 3) / 5 PRINTV $FF00 + $F0 PRINTF MUL(3.14, 3987.0) .Ed .Pp .Bl -inset .It Ic PRINTT prints out a string. Be careful to add a line feed .Pq Qq \[rs]n at the end, as it is not added automatically. .It Ic PRINTV prints out an integer value in hexadecimal or, as in the example, the result of a calculation. Unsurprisingly, you can also print out a constant symbol's value. .It Ic PRINTI prints out a signed integer value. .It Ic PRINTF prints out a fixed point value. .El .Pp Be careful that none of those automatically print a line feed; if you need one, use .Ic PRINTT "\[rs]n" . .Ss Automatically repeating blocks of code .Pp Suppose you want to unroll a time consuming loop without copy-pasting it. .Ic REPT is here for that purpose. Everything between .Ic REPT and the matching .Ic ENDR will be repeated a number of times just as if you had done a copy/paste operation yourself. The following example will assemble .Ql add a,c four times: .Bd -literal -offset indent REPT 4 add a,c ENDR .Ed .Pp You can also use .Ic REPT to generate tables on the fly: .Bd -literal -offset indent ;\ -- ;\ -- Generate a 256 byte sine table with values between 0 and 128 ;\ -- ANGLE = 0.0 REPT 256 db (MUL(64.0, SIN(ANGLE)) + 64.0) >> 16 ANGLE = ANGLE+256.0 ENDR .Ed .Pp As in macros, you can also use the escape sequence .Ic \[rs]@ . .Ic REPT blocks can be nested. .Ss Aborting the assembly process .Pp .Ic FAIL and .Ic WARN can be used to print errors and warnings respectively during the assembly process. This is especially useful for macros that get an invalid argument. .Ic FAIL and .Ic WARN take a string as the only argument and they will print this string out as a normal error with a line number. .Pp .Ic FAIL stops assembling immediately while .Ic WARN shows the message but continues afterwards. .Pp If you need to ensure some assumption is correct when compiling, you can use .Ic ASSERT and .Ic STATIC_ASSERT . Syntax examples are given below: .Pp .Bd -literal -offset indent Function: xor a ASSERT LOW(Variable) == 0 ld h, HIGH(Variable) ld l, a ld a, [hli] ; You can also indent this! ASSERT BANK(OtherFunction) == BANK(Function) call OtherFunction ; Lowercase also works assert Variable + 1 == OtherVariable ld c, [hl] ret \&.end ; If you specify one, a message will be printed STATIC_ASSERT .end - Function < 256, "Function is too large!" .Ed .Pp First, the difference between .Ic ASSERT and .Ic STATIC_ASSERT is that the former is evaluated by RGBASM if it can, otherwise by RGBLINK; but the latter is only ever evaluated by RGBASM. If RGBASM cannot compute the value of the argument to .Ic STATIC_ASSERT , it will produce an error. .Pp Second, as shown above, a string can be optionally added at the end, to give insight into what the assertion is checking. .Pp Finally, you can add one of .Ic WARN , FAIL or .Ic FATAL as the first optional argument to either .Ic ASSERT or .Ic STATIC_ASSERT . If the assertion fails, .Ic WARN will cause a simple warning (controlled by .Xr rgbasm 1 flag .Fl Wassert ) to be emitted; .Ic FAIL (the default) will cause a non-fatal error; and .Ic FATAL immediately aborts. .Ss Including other source files .Pp Use .Ic INCLUDE to process another assembler file and then return to the current file when done. If the file isn't found in the current directory the include path list (see the .Fl i option in .Xr rgbasm 1 ) will be searched. You may nest .Ic INCLUDE calls infinitely (or until you run out of memory, whichever comes first). .Bd -literal -offset indent INCLUDE "irq.inc" .Ed .Ss Conditional assembling .Pp The four commands .Ic IF , ELIF , ELSE , and .Ic ENDC let you have .Nm skip over parts of your code depending on a condition. This is a powerful feature commonly used in macros. .Bd -literal -offset indent IF NUM < 0 PRINTT "NUM < 0\[rs]n" ELIF NUM == 0 PRINTT "NUM == 0\[rs]n" ELSE PRINTT "NUM > 0\[rs]n" ENDC .Ed .Pp The .Ic ELIF (standing for "else if") and .Ic ELSE blocks are optional. .Ic IF / .Ic ELIF / .Ic ELSE / .Ic ENDC blocks can be nested. .Pp Note that if an .Ic ELSE block is found before an .Ic ELIF block, the .Ic ELIF block will be ignored. All .Ic ELIF blocks must go before the .Ic ELSE block. Also, if there is more than one .Ic ELSE block, all of them but the first one are ignored. .Sh MISCELLANEOUS .Ss Changing options while assembling .Pp .Ic OPT can be used to change some of the options during assembling from within the source, instead of defining them on the command-line. .Pp .Ic OPT takes a comma-separated list of options as its argument: .Bd -literal -offset indent PUSHO OPT g.oOX ;Set the GB graphics constants to use these characters DW `..ooOOXX POPO DW `00112233 .Ed .Pp The options that OPT can modify are currently: .Cm b , g and .Cm p . .Pp .Ic POPO and .Ic PUSHO provide the interface to the option stack. .Ic PUSHO will push the current set of options on the option stack. .Ic POPO can then later be used to restore them. Useful if you want to change some options in an include file and you don't want to destroy the options set by the program that included your file. The stack's number of entries is limited only by the amount of memory in your machine. .Ss Requesting alignment .Pp While .Ic ALIGN as presented in .Sx SECTIONS is often useful as-is, sometimes you instead want a particular piece of data (or code) in the middle of the section to be aligned. This is made easier through the use of mid-section .Ic align Ar align , offset . It will alter the section's attributes to ensure that the location the .Ic align directive is at, has its .Ar align lower bits equal to .Ar offset . .Pp If the constraint cannot be met (for example because the section is fixed at an incompatible address), and error is produced. Note that .Ic align Ar align is a shorthand for .Ic align Ar align , No 0 . .Sh SEE ALSO .Xr rgbasm 1 , .Xr rgblink 1 , .Xr rgblink 5 , .Xr rgbds 5 , .Xr rgbds 7 , .Xr gbz80 7 .Sh HISTORY .Pp .Nm was originally written by Carsten S\(/orensen as part of the ASMotor package, and was later packaged in RGBDS by Justin Lloyd. It is now maintained by a number of contributors at .Lk https://github.com/rednex/rgbds .