ref: 3f5f9bcaf01c0f6b3382f6fb85daa3ac7857ebee
dir: /src/asm/lexer.c/
/* * This file is part of RGBDS. * * Copyright (c) 2020, Eldred Habert and RGBDS contributors. * * SPDX-License-Identifier: MIT */ #include <sys/mman.h> #include <sys/stat.h> #include <assert.h> #include <ctype.h> #include <errno.h> #include <fcntl.h> #include <inttypes.h> #include <limits.h> #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include "extern/utf8decoder.h" #include "asm/asm.h" #include "asm/lexer.h" #include "asm/fstack.h" #include "asm/macro.h" #include "asm/main.h" #include "asm/rpn.h" #include "asm/symbol.h" #include "asm/util.h" #include "asm/warning.h" /* Include this last so it gets all type & constant definitions */ #include "asmy.h" /* For token definitions, generated from asmy.y */ #ifdef LEXER_DEBUG #define dbgPrint(...) fprintf(stderr, "[lexer] " __VA_ARGS__) #else #define dbgPrint(...) #endif /* * Identifiers that are also keywords are listed here. This ONLY applies to ones * that would normally be matched as identifiers! Check out `yylex_NORMAL` to * see how this is used. * Tokens / keywords not handled here are handled in `yylex_NORMAL`'s switch. */ static struct KeywordMapping { char const *name; int token; } const keywords[] = { /* * CAUTION when editing this: adding keywords will probably require extra nodes in the * `keywordDict` array. If you forget to, you will probably trip up an assertion, anyways. * Also, all entries in this array must be in uppercase for the dict to build correctly. */ {"ADC", T_Z80_ADC}, {"ADD", T_Z80_ADD}, {"AND", T_Z80_AND}, {"BIT", T_Z80_BIT}, {"CALL", T_Z80_CALL}, {"CCF", T_Z80_CCF}, {"CPL", T_Z80_CPL}, {"CP", T_Z80_CP}, {"DAA", T_Z80_DAA}, {"DEC", T_Z80_DEC}, {"DI", T_Z80_DI}, {"EI", T_Z80_EI}, {"HALT", T_Z80_HALT}, {"INC", T_Z80_INC}, {"JP", T_Z80_JP}, {"JR", T_Z80_JR}, {"LD", T_Z80_LD}, {"LDI", T_Z80_LDI}, {"LDD", T_Z80_LDD}, {"LDIO", T_Z80_LDIO}, {"LDH", T_Z80_LDIO}, {"NOP", T_Z80_NOP}, {"OR", T_Z80_OR}, {"POP", T_Z80_POP}, {"PUSH", T_Z80_PUSH}, {"RES", T_Z80_RES}, {"RETI", T_Z80_RETI}, {"RET", T_Z80_RET}, {"RLCA", T_Z80_RLCA}, {"RLC", T_Z80_RLC}, {"RLA", T_Z80_RLA}, {"RL", T_Z80_RL}, {"RRC", T_Z80_RRC}, {"RRCA", T_Z80_RRCA}, {"RRA", T_Z80_RRA}, {"RR", T_Z80_RR}, {"RST", T_Z80_RST}, {"SBC", T_Z80_SBC}, {"SCF", T_Z80_SCF}, {"SET", T_POP_SET}, {"SLA", T_Z80_SLA}, {"SRA", T_Z80_SRA}, {"SRL", T_Z80_SRL}, {"STOP", T_Z80_STOP}, {"SUB", T_Z80_SUB}, {"SWAP", T_Z80_SWAP}, {"XOR", T_Z80_XOR}, {"NZ", T_CC_NZ}, {"Z", T_CC_Z}, {"NC", T_CC_NC}, /* Handled in list of registers */ /* { "C", T_CC_C }, */ {"AF", T_MODE_AF}, {"BC", T_MODE_BC}, {"DE", T_MODE_DE}, {"HL", T_MODE_HL}, {"SP", T_MODE_SP}, {"A", T_TOKEN_A}, {"B", T_TOKEN_B}, {"C", T_TOKEN_C}, {"D", T_TOKEN_D}, {"E", T_TOKEN_E}, {"H", T_TOKEN_H}, {"L", T_TOKEN_L}, {"DEF", T_OP_DEF}, {"FRAGMENT", T_POP_FRAGMENT}, {"BANK", T_OP_BANK}, {"ALIGN", T_OP_ALIGN}, {"ROUND", T_OP_ROUND}, {"CEIL", T_OP_CEIL}, {"FLOOR", T_OP_FLOOR}, {"DIV", T_OP_FDIV}, {"MUL", T_OP_FMUL}, {"SIN", T_OP_SIN}, {"COS", T_OP_COS}, {"TAN", T_OP_TAN}, {"ASIN", T_OP_ASIN}, {"ACOS", T_OP_ACOS}, {"ATAN", T_OP_ATAN}, {"ATAN2", T_OP_ATAN2}, {"HIGH", T_OP_HIGH}, {"LOW", T_OP_LOW}, {"ISCONST", T_OP_ISCONST}, {"STRCMP", T_OP_STRCMP}, {"STRIN", T_OP_STRIN}, {"STRSUB", T_OP_STRSUB}, {"STRLEN", T_OP_STRLEN}, {"STRCAT", T_OP_STRCAT}, {"STRUPR", T_OP_STRUPR}, {"STRLWR", T_OP_STRLWR}, {"INCLUDE", T_POP_INCLUDE}, {"PRINTT", T_POP_PRINTT}, {"PRINTI", T_POP_PRINTI}, {"PRINTV", T_POP_PRINTV}, {"PRINTF", T_POP_PRINTF}, {"EXPORT", T_POP_EXPORT}, {"XDEF", T_POP_XDEF}, {"GLOBAL", T_POP_GLOBAL}, {"DS", T_POP_DS}, {"DB", T_POP_DB}, {"DW", T_POP_DW}, {"DL", T_POP_DL}, {"SECTION", T_POP_SECTION}, {"PURGE", T_POP_PURGE}, {"RSRESET", T_POP_RSRESET}, {"RSSET", T_POP_RSSET}, {"INCBIN", T_POP_INCBIN}, {"CHARMAP", T_POP_CHARMAP}, {"NEWCHARMAP", T_POP_NEWCHARMAP}, {"SETCHARMAP", T_POP_SETCHARMAP}, {"PUSHC", T_POP_PUSHC}, {"POPC", T_POP_POPC}, {"FAIL", T_POP_FAIL}, {"WARN", T_POP_WARN}, {"FATAL", T_POP_FATAL}, {"ASSERT", T_POP_ASSERT}, {"STATIC_ASSERT", T_POP_STATIC_ASSERT}, {"MACRO", T_POP_MACRO}, {"ENDM", T_POP_ENDM}, {"SHIFT", T_POP_SHIFT}, {"REPT", T_POP_REPT}, {"ENDR", T_POP_ENDR}, {"LOAD", T_POP_LOAD}, {"ENDL", T_POP_ENDL}, {"IF", T_POP_IF}, {"ELSE", T_POP_ELSE}, {"ELIF", T_POP_ELIF}, {"ENDC", T_POP_ENDC}, {"UNION", T_POP_UNION}, {"NEXTU", T_POP_NEXTU}, {"ENDU", T_POP_ENDU}, {"WRAM0", T_SECT_WRAM0}, {"VRAM", T_SECT_VRAM}, {"ROMX", T_SECT_ROMX}, {"ROM0", T_SECT_ROM0}, {"HRAM", T_SECT_HRAM}, {"WRAMX", T_SECT_WRAMX}, {"SRAM", T_SECT_SRAM}, {"OAM", T_SECT_OAM}, {"RB", T_POP_RB}, {"RW", T_POP_RW}, {"EQU", T_POP_EQU}, {"EQUS", T_POP_EQUS}, /* Handled before in list of CPU instructions */ /* {"SET", T_POP_SET}, */ {"PUSHS", T_POP_PUSHS}, {"POPS", T_POP_POPS}, {"PUSHO", T_POP_PUSHO}, {"POPO", T_POP_POPO}, {"OPT", T_POP_OPT} }; #define LEXER_BUF_SIZE 42 /* TODO: determine a sane value for this */ /* This caps the size of buffer reads, and according to POSIX, passing more than SSIZE_MAX is UB */ static_assert(LEXER_BUF_SIZE <= SSIZE_MAX); struct Expansion { struct Expansion *firstChild; struct Expansion *next; char *name; char const *contents; size_t len; size_t totalLen; size_t distance; /* Distance between the beginning of this expansion and of its parent */ uint8_t skip; /* How many extra characters to skip after the expansion is over */ }; struct LexerState { char const *path; /* mmap()-dependent IO state */ bool isMmapped; union { struct { /* If mmap()ed */ char *ptr; /* Technically `const` during the lexer's execution */ off_t size; off_t offset; }; struct { /* Otherwise */ int fd; size_t index; /* Read index into the buffer */ char buf[LEXER_BUF_SIZE]; /* Circular buffer */ size_t nbChars; /* Number of "fresh" chars in the buffer */ }; }; /* Common state */ bool isFile; enum LexerMode mode; bool atLineStart; uint32_t lineNo; uint32_t colNo; int lastToken; bool capturing; /* Whether the text being lexed should be captured */ size_t captureSize; /* Amount of text captured */ char *captureBuf; /* Buffer to send the captured text to if non-NULL */ size_t captureCapacity; /* Size of the buffer above */ size_t macroArgScanDistance; /* Max distance already scanned for macro args */ bool expandStrings; struct Expansion *expansions; size_t expansionOfs; /* Offset into the current top-level expansion (negative = before) */ }; struct LexerState *lexerState = NULL; struct LexerState *lexerStateEOL = NULL; static void initState(struct LexerState *state) { state->mode = LEXER_NORMAL; state->atLineStart = true; /* yylex() will init colNo due to this */ state->lastToken = 0; state->capturing = false; state->captureBuf = NULL; state->macroArgScanDistance = 0; state->expandStrings = true; state->expansions = NULL; state->expansionOfs = 0; } struct LexerState *lexer_OpenFile(char const *path) { dbgPrint("Opening file \"%s\"\n", path); bool isStdin = !strcmp(path, "-"); struct LexerState *state = malloc(sizeof(*state)); /* Give stdin a nicer file name */ if (isStdin) path = "<stdin>"; if (!state) { error("Failed to allocate memory for lexer state: %s\n", strerror(errno)); return NULL; } state->path = path; state->isFile = true; state->fd = isStdin ? STDIN_FILENO : open(path, O_RDONLY); if (state->fd == -1) { error("Failed to open file \"%s\": %s\n", path, strerror(errno)); free(state); return NULL; } state->isMmapped = false; /* By default, assume it won't be mmap()ed */ off_t size = lseek(state->fd, 0, SEEK_END); if (size != 1) { /* The file is a regular file, so use `mmap` for better performance */ /* * Important: do NOT assign to `state->ptr` directly, to avoid a cast that may * alter an eventual `MAP_FAILED` value. It would also invalidate `state->fd`, * being on the other side of the union. */ void *pa = mmap(NULL, size, PROT_READ, MAP_PRIVATE, state->fd, 0); if (pa == MAP_FAILED && errno == ENOTSUP) /* * The implementation may not support MAP_PRIVATE; try again with MAP_SHARED * instead, offering, I believe, weaker guarantees about external * modifications to the file while reading it. That's still better than not * opening it at all, though. */ pa = mmap(NULL, size, PROT_READ, MAP_SHARED, state->fd, 0); if (pa == MAP_FAILED) { /* If mmap()ing failed, try again using another method (below) */ state->isMmapped = false; } else { /* IMPORTANT: the `union` mandates this is accessed before other members! */ close(state->fd); state->isMmapped = true; state->ptr = pa; state->size = size; state->offset = 0; if (verbose) printf("File %s successfully mmap()ped\n", path); } } if (!state->isMmapped) { /* Sometimes mmap() fails or isn't available, so have a fallback */ if (verbose) printf("File %s opened as regular, errno reports \"%s\"\n", path, strerror(errno)); lseek(state->fd, 0, SEEK_SET); state->index = 0; state->nbChars = 0; } initState(state); state->lineNo = 0; /* Will be incremented at first line start */ return state; } struct LexerState *lexer_OpenFileView(char *buf, size_t size, uint32_t lineNo) { dbgPrint("Opening view on buffer \"%.*s\"[...]\n", size < 16 ? (int)size : 16, buf); struct LexerState *state = malloc(sizeof(*state)); if (!state) { error("Failed to allocate memory for lexer state: %s\n", strerror(errno)); return NULL; } // TODO: init `path` state->isFile = false; state->isMmapped = true; /* It's not *really* mmap()ed, but it behaves the same */ state->ptr = buf; state->size = size; state->offset = 0; initState(state); state->lineNo = lineNo; /* Will be incremented at first line start */ return state; } void lexer_RestartRept(uint32_t lineNo) { dbgPrint("Restarting REPT\n"); lexerState->offset = 0; initState(lexerState); lexerState->lineNo = lineNo; } void lexer_DeleteState(struct LexerState *state) { if (!state->isMmapped) close(state->fd); else if (state->isFile) munmap(state->ptr, state->size); free(state); } struct KeywordDictNode { /* * The identifier charset is (currently) 44 characters big. By storing entries for the * entire printable ASCII charset, minus lower-case due to case-insensitivity, * we only waste (0x60 - 0x20) - 70 = 20 entries per node, which should be acceptable. * In turn, this allows greatly simplifying checking an index into this array, * which should help speed up the lexer. */ uint16_t children[0x60 - ' ']; struct KeywordMapping const *keyword; /* Since the keyword structure is invariant, the min number of nodes is known at compile time */ } keywordDict[336] = {0}; /* Make sure to keep this correct when adding keywords! */ /* Convert a char into its index into the dict */ static inline uint8_t dictIndex(char c) { /* Translate uppercase to lowercase (roughly) */ if (c > 0x60) c = c - ('a' - 'A'); return c - ' '; } void lexer_Init(void) { /* * Build the dictionary of keywords. This could be done at compile time instead, however: * - Doing so manually is a task nobody wants to undertake * - It would be massively hard to read * - Doing it within CC or CPP would be quite non-trivial * - Doing it externally would require some extra work to use only POSIX tools * - The startup overhead isn't much compared to the program's */ uint16_t usedNodes = 1; for (size_t i = 0; i < sizeof(keywords) / sizeof(*keywords); i++) { uint16_t nodeID = 0; /* Walk the dictionary, creating intermediate nodes for the keyword */ for (char const *ptr = keywords[i].name; *ptr; ptr++) { /* We should be able to assume all entries are well-formed */ if (keywordDict[nodeID].children[*ptr - ' '] == 0) { /* * If this gets tripped up, set the size of keywordDict to * something high, compile with `-DPRINT_NODE_COUNT` (see below), * and set the size to that. */ assert(usedNodes < sizeof(keywordDict) / sizeof(*keywordDict)); /* There is no node at that location, grab one from the pool */ keywordDict[nodeID].children[*ptr - ' '] = usedNodes; usedNodes++; } nodeID = keywordDict[nodeID].children[*ptr - ' ']; } /* This assumes that no two keywords have the same name */ keywordDict[nodeID].keyword = &keywords[i]; } #ifdef PRINT_NODE_COUNT /* For the maintainer to check how many nodes are needed */ printf("Lexer keyword dictionary: %zu keywords in %u nodes (pool size %zu)\n", sizeof(keywords) / sizeof(*keywords), usedNodes, sizeof(keywordDict) / sizeof(*keywordDict)); #endif } void lexer_SetMode(enum LexerMode mode) { lexerState->mode = mode; } void lexer_ToggleStringExpansion(bool enable) { lexerState->expandStrings = enable; } /* Functions for the actual lexer to obtain characters */ static void reallocCaptureBuf(void) { lexerState->captureCapacity *= 2; lexerState->captureBuf = realloc(lexerState->captureBuf, lexerState->captureCapacity); if (!lexerState->captureBuf) fatalerror("realloc error while resizing capture buffer: %s\n", strerror(errno)); } /* * The multiple evaluations of `retvar` causing side effects is INTENTIONAL, and * required for example by `lexer_dumpStringExpansions`. It is however only * evaluated once per level, and only then. * * This uses the concept of "X macros": you must #define LOOKUP_PRE_NEST and * LOOKUP_POST_NEST before invoking this (and #undef them right after), and * those macros will be expanded at the corresponding points in the loop. * This is necessary because there are at least 3 places which need to iterate * through iterations while performing custom actions */ #define lookupExpansion(retvar, dist) do { \ struct Expansion *exp = lexerState->expansions; \ \ for (;;) { \ /* Find the closest expansion whose end is after the target */ \ while (exp && exp->totalLen + exp->distance <= (dist)) { \ (dist) -= exp->totalLen + exp->skip; \ exp = exp->next; \ } \ \ /* If there is none, or it begins after the target, return the previous level */ \ if (!exp || exp->distance > (dist)) \ break; \ \ /* We know we are inside of that expansion */ \ (dist) -= exp->distance; /* Distances are relative to their parent */ \ \ /* Otherwise, register this expansion and repeat the process */ \ LOOKUP_PRE_NEST(exp); \ (retvar) = exp; \ if (!exp->firstChild) /* If there are no children, this is it */ \ break; \ exp = exp->firstChild; \ \ LOOKUP_POST_NEST(exp); \ } \ } while (0) static struct Expansion *getExpansionAtDistance(size_t *distance) { struct Expansion *expansion = NULL; /* Top level has no "previous" level */ #define LOOKUP_PRE_NEST(exp) #define LOOKUP_POST_NEST(exp) struct Expansion *exp = lexerState->expansions; for (;;) { /* Find the closest expansion whose end is after the target */ while (exp && exp->totalLen + exp->distance <= *distance) { *distance -= exp->totalLen - exp->skip; exp = exp->next; } /* If there is none, or it begins after the target, return the previous level */ if (!exp || exp->distance > *distance) break; /* We know we are inside of that expansion */ *distance -= exp->distance; /* Distances are relative to their parent */ /* Otherwise, register this expansion and repeat the process */ LOOKUP_PRE_NEST(exp); expansion = exp; if (!exp->firstChild) /* If there are no children, this is it */ break; exp = exp->firstChild; LOOKUP_POST_NEST(exp); } #undef LOOKUP_PRE_NEST #undef LOOKUP_POST_NEST return expansion; } static void beginExpansion(size_t distance, uint8_t skip, char const *str, size_t size, char const *name) { distance += lexerState->expansionOfs; /* Distance argument is relative to read offset! */ /* Increase the total length of all parents, and return the topmost one */ struct Expansion *parent = NULL; unsigned int depth = 0; #define LOOKUP_PRE_NEST(exp) (exp)->totalLen += size - skip #define LOOKUP_POST_NEST(exp) do { \ if (name && ++depth >= nMaxRecursionDepth) \ fatalerror("Recursion limit (%u) exceeded\n", nMaxRecursionDepth); \ } while (0) lookupExpansion(parent, distance); #undef LOOKUP_PRE_NEST #undef LOOKUP_POST_NEST struct Expansion **insertPoint = parent ? &parent->firstChild : &lexerState->expansions; /* We know we are in none of the children expansions: add ourselves, keeping it sorted */ while (*insertPoint && (*insertPoint)->distance < distance) insertPoint = &(*insertPoint)->next; *insertPoint = malloc(sizeof(**insertPoint)); if (!*insertPoint) fatalerror("Unable to allocate new expansion: %s\n", strerror(errno)); (*insertPoint)->firstChild = NULL; (*insertPoint)->next = NULL; /* Expansions are always performed left to right */ (*insertPoint)->name = name ? strdup(name) : NULL; (*insertPoint)->contents = str; (*insertPoint)->len = size; (*insertPoint)->totalLen = size; (*insertPoint)->distance = distance; (*insertPoint)->skip = skip; /* If expansion is the new closest one, update offset */ if (insertPoint == &lexerState->expansions) lexerState->expansionOfs = 0; } static void freeExpansion(struct Expansion *expansion) { struct Expansion *child = expansion->firstChild; while (child) { struct Expansion *next = child->next; freeExpansion(child); child = next; } free(expansion->name); free(expansion); } static char const *expandMacroArg(char name, size_t distance) { char const *str; if (name == '@') str = macro_GetUniqueIDStr(); else if (name == '0') fatalerror("Invalid macro argument '\\0'\n"); else str = macro_GetArg(name - '0'); if (!str) fatalerror("Macro argument '\\%c' not defined\n", name); beginExpansion(distance, 2, str, strlen(str), NULL); return str; } /* If at any point we need more than 255 characters of lookahead, something went VERY wrong. */ static int peekInternal(uint8_t distance) { if (distance >= LEXER_BUF_SIZE) fatalerror("Internal lexer error: buffer has insufficient size for peeking (%u >= %u)\n", distance, LEXER_BUF_SIZE); size_t ofs = lexerState->expansionOfs + distance; struct Expansion const *expansion = getExpansionAtDistance(&ofs); if (expansion) { assert(ofs < expansion->len); return expansion->contents[ofs]; } distance = ofs; if (lexerState->isMmapped) { if (lexerState->offset + distance >= lexerState->size) return EOF; return (unsigned char)lexerState->ptr[lexerState->offset + distance]; } if (lexerState->nbChars <= distance) { /* Buffer isn't full enough, read some chars in */ size_t target = LEXER_BUF_SIZE - lexerState->nbChars; /* Aim: making the buf full */ /* Compute the index we'll start writing to */ size_t writeIndex = (lexerState->index + lexerState->nbChars) % LEXER_BUF_SIZE; ssize_t nbCharsRead = 0, totalCharsRead = 0; #define readChars(size) do { \ nbCharsRead = read(lexerState->fd, &lexerState->buf[writeIndex], (size)); \ if (nbCharsRead == -1) \ fatalerror("Error while reading \"%s\": %s\n", lexerState->path, errno); \ totalCharsRead += nbCharsRead; \ writeIndex += nbCharsRead; \ if (writeIndex == LEXER_BUF_SIZE) \ writeIndex = 0; \ target -= nbCharsRead; \ } while (0) /* If the range to fill passes over the buffer wrapping point, we need two reads */ if (writeIndex + target > LEXER_BUF_SIZE) { readChars(LEXER_BUF_SIZE - writeIndex); /* If the read was incomplete, don't perform a second read */ if (nbCharsRead < LEXER_BUF_SIZE - writeIndex) target = 0; } if (target != 0) readChars(target); #undef readChars lexerState->nbChars += totalCharsRead; /* If there aren't enough chars even after refilling, give up */ if (lexerState->nbChars <= distance) return EOF; } return (unsigned char)lexerState->buf[(lexerState->index + distance) % LEXER_BUF_SIZE]; } static int peek(uint8_t distance) { int c = peekInternal(distance); if (distance >= lexerState->macroArgScanDistance) { lexerState->macroArgScanDistance = distance + 1; /* Do not consider again */ /* If not capturing and character is a backslash, check for a macro arg */ if (!lexerState->capturing && c == '\\') { distance++; lexerState->macroArgScanDistance++; c = peekInternal(distance); if (c == '@' || (c >= '0' && c <= '9')) { /* Expand the argument and return its first character */ char const *str = expandMacroArg(c, distance - 1); /* * Assuming macro args can't be recursive (I'll be damned if a way * is found...), then we mark the entire macro arg as scanned; * however, the two macro arg characters (\1) will be ignored, * so they shouldn't be counted in the scan distance! */ lexerState->macroArgScanDistance += strlen(str) - 2; /* WARNING: this assumes macro args can't be empty!! */ c = str[0]; } else { c = '\\'; } } } return c; } static void shiftChars(uint8_t distance) { if (lexerState->capturing) { if (lexerState->captureBuf) { if (lexerState->captureSize + distance >= lexerState->captureCapacity) reallocCaptureBuf(); /* TODO: improve this? */ for (uint8_t i = 0; i < distance; i++) lexerState->captureBuf[lexerState->captureSize++] = peek(i); } else { lexerState->captureSize += distance; } } lexerState->macroArgScanDistance -= distance; /* FIXME: this may not be too great, as only the top level is considered... */ /* * The logic is as follows: * - Any characters up to the expansion need to be consumed in the file * - If some remain after that, advance the offset within the expansion * - If that goes *past* the expansion, then leftovers shall be consumed in the file * - If we went past the expansion, we're back to square one, and should re-do all */ nextExpansion: if (lexerState->expansions) { /* If the read cursor reaches into the expansion, update offset */ if (distance > lexerState->expansions->distance) { /* distance = <file chars (expansion distance)> + <expansion chars> */ lexerState->expansionOfs += distance - lexerState->expansions->distance; distance = lexerState->expansions->distance; /* Nb chars to read in file */ /* Now, check if the expansion finished being read */ if (lexerState->expansionOfs >= lexerState->expansions->totalLen) { /* Add the leftovers to the distance */ distance += lexerState->expansionOfs; distance -= lexerState->expansions->totalLen; /* Also add in the post-expansion skip */ distance += lexerState->expansions->skip; /* Move on to the next expansion */ struct Expansion *next = lexerState->expansions->next; freeExpansion(lexerState->expansions); lexerState->expansions = next; /* Reset the offset for the next expansion */ lexerState->expansionOfs = 0; /* And repeat, in case we also go into or over the next expansion */ goto nextExpansion; } } /* Getting closer to the expansion */ lexerState->expansions->distance -= distance; /* Now, `distance` is how many bytes to move forward **in the file** */ } if (lexerState->isMmapped) { lexerState->offset += distance; } else { lexerState->index += distance; lexerState->colNo += distance; /* Wrap around if necessary */ if (lexerState->index >= LEXER_BUF_SIZE) lexerState->index %= LEXER_BUF_SIZE; assert(lexerState->nbChars >= distance); lexerState->nbChars -= distance; } } static int nextChar(void) { int c = peek(0); /* If not at EOF, advance read position */ if (c != EOF) shiftChars(1); return c; } /* "Services" provided by the lexer to the rest of the program */ char const *lexer_GetFileName(void) { return lexerState ? lexerState->path : NULL; } uint32_t lexer_GetLineNo(void) { return lexerState->lineNo; } uint32_t lexer_GetColNo(void) { return lexerState->colNo; } void lexer_DumpStringExpansions(void) { if (!lexerState) return; struct Expansion *stack[nMaxRecursionDepth + 1]; struct Expansion *expansion; /* Temp var for `lookupExpansion` */ unsigned int depth = 0; size_t distance = lexerState->expansionOfs; #define LOOKUP_PRE_NEST(exp) do { \ /* Only register EQUS expansions, not string args */ \ if ((exp)->name) \ stack[depth++] = (exp); \ } while (0) #define LOOKUP_POST_NEST(exp) lookupExpansion(expansion, distance); (void)expansion; #undef LOOKUP_PRE_NEST #undef LOOKUP_POST_NEST while (depth--) fprintf(stderr, "while expanding symbol \"%s\"\n", stack[depth]->name); } /* Function to discard all of a line's comments */ static void discardComment(void) { dbgPrint("Discarding comment\n"); for (;;) { int c = peek(0); if (c == EOF || c == '\r' || c == '\n') break; shiftChars(1); } } /* Function to read a line continuation */ static bool isWhitespace(int c) { return c == ' ' || c == '\t'; } static void readLineContinuation(void) { dbgPrint("Beginning line continuation\n"); for (;;) { int c = peek(0); if (isWhitespace(c)) { shiftChars(1); } else if (c == '\r' || c == '\n') { shiftChars(1); if (!lexerState->expansions || lexerState->expansions->distance) { lexerState->lineNo++; } return; } else { error("Begun line continuation, but encountered character %s\n", print(c)); return; } } } /* Functions to lex numbers of various radixes */ static void readNumber(int radix, int32_t baseValue) { uint32_t value = baseValue; for (;;) { int c = peek(0); if (c < '0' || c > '0' + radix - 1) break; if (value > (UINT32_MAX - (c - '0')) / radix) warning(WARNING_LARGE_CONSTANT, "Integer constant is too large\n"); value = value * radix + (c - '0'); shiftChars(1); } yylval.nConstValue = value; } static void readFractionalPart(void) { uint32_t value = 0, divisor = 1; dbgPrint("Reading fractional part\n"); for (;;) { int c = peek(0); if (c < '0' || c > '9') break; if (divisor > (UINT32_MAX - (c - '0')) / 10) { warning(WARNING_LARGE_CONSTANT, "Precision of fixed-point constant is too large\n"); /* Discard any additional digits */ while (c = peek(0), c >= '0' && c <= '9') shiftChars(1); break; } value = value * 10 + (c - '0'); } if (yylval.nConstValue > INT16_MAX || yylval.nConstValue < INT16_MIN) warning(WARNING_LARGE_CONSTANT, "Magnitude of fixed-point constant is too large\n"); /* Cast to unsigned avoids UB if shifting discards bits */ yylval.nConstValue = (uint32_t)yylval.nConstValue << 16; /* Cast to unsigned avoids undefined overflow behavior */ uint16_t fractional = value * 65536 / divisor; yylval.nConstValue |= fractional * (yylval.nConstValue >= 0 ? 1 : -1); } static void readBinaryNumber(void) { uint32_t value = 0; dbgPrint("Reading binary number\n"); for (;;) { int c = peek(0); /* TODO: handle `-b`'s dynamic chars */ if (c != '0' && c != '1') break; if (value > (UINT32_MAX - (c - '0')) / 2) warning(WARNING_LARGE_CONSTANT, "Integer constant is too large\n"); value = value * 2 + (c - '0'); shiftChars(1); } yylval.nConstValue = value; } static void readHexNumber(void) { uint32_t value = 0; bool empty = true; dbgPrint("Reading hex number\n"); for (;;) { int c = peek(0); if (c >= 'a' && c <= 'f') /* Convert letters to right after digits */ c = c - 'a' + 10; else if (c >= 'A' && c <= 'F') c = c - 'A' + 10; else if (c >= '0' && c <= '9') c = c - '0'; else break; if (value > (UINT32_MAX - c) / 16) warning(WARNING_LARGE_CONSTANT, "Integer constant is too large\n"); value = value * 16 + c; shiftChars(1); empty = false; } if (empty) error("Invalid integer constant, no digits after '$'\n"); yylval.nConstValue = value; } static void readGfxConstant(void) { uint32_t bp0 = 0, bp1 = 0; uint8_t width = 0; dbgPrint("Reading gfx constant\n"); for (;;) { int c = peek(0); /* TODO: handle `-g`'s dynamic chars */ if (c < '0' || c > '3') break; uint8_t pixel = c - '0'; if (width < 8) { bp0 = bp0 << 1 | (pixel & 1); bp1 = bp1 << 1 | (pixel >> 1); } if (width < 9) width++; shiftChars(1); } if (width == 0) error("Invalid graphics constant, no digits after '`'\n"); else if (width == 9) warning(WARNING_LARGE_CONSTANT, "Graphics constant is too long, only 8 first pixels considered\n"); yylval.nConstValue = bp1 << 8 | bp0; } /* Function to read identifiers & keywords */ static bool startsIdentifier(int c) { return (c <= 'Z' && c >= 'A') || (c <= 'z' && c >= 'a') || c == '.' || c == '_'; } static int readIdentifier(char firstChar) { dbgPrint("Reading identifier or keyword\n"); /* Lex while checking for a keyword */ yylval.tzSym[0] = firstChar; uint16_t nodeID = keywordDict[0].children[dictIndex(firstChar)]; int tokenType = firstChar == '.' ? T_LOCAL_ID : T_ID; size_t i; for (i = 1; ; i++) { int c = peek(0); /* If that char isn't in the symbol charset, end */ if ((c > '9' || c < '0') && (c > 'Z' || c < 'A') && (c > 'z' || c < 'a') && c != '#' && c != '.' && c != '@' && c != '_') break; shiftChars(1); /* Write the char to the identifier's name */ if (i < sizeof(yylval.tzSym) - 1) yylval.tzSym[i] = c; /* If the char was a dot, mark the identifier as local */ if (c == '.') tokenType = T_LOCAL_ID; /* Attempt to traverse the tree to check for a keyword */ if (nodeID) /* Do nothing if matching already failed */ nodeID = keywordDict[nodeID].children[dictIndex(c)]; } if (i > sizeof(yylval.tzSym) - 1) { warning(WARNING_LONG_STR, "Symbol name too long, got truncated\n"); i = sizeof(yylval.tzSym) - 1; } yylval.tzSym[i] = '\0'; /* Terminate the string */ dbgPrint("Ident/keyword = \"%s\"\n", yylval.tzSym); if (keywordDict[nodeID].keyword) return keywordDict[nodeID].keyword->token; return tokenType; } /* Functions to read strings */ enum PrintType { TYPE_NONE, TYPE_DECIMAL, /* d */ TYPE_UPPERHEX, /* X */ TYPE_LOWERHEX, /* x */ TYPE_BINARY, /* b */ }; static void intToString(char *dest, size_t bufSize, struct Symbol const *sym, enum PrintType type) { uint32_t value = sym_GetConstantSymValue(sym); int fullLength; /* Special cheat for binary */ if (type == TYPE_BINARY) { char binary[33]; /* 32 bits + 1 terminator */ char *write_ptr = binary + 32; fullLength = 0; binary[32] = 0; do { *(--write_ptr) = (value & 1) + '0'; value >>= 1; fullLength++; } while (value); strncpy(dest, write_ptr, bufSize - 1); } else { static char const * const formats[] = { [TYPE_NONE] = "$%" PRIX32, [TYPE_DECIMAL] = "%" PRId32, [TYPE_UPPERHEX] = "%" PRIX32, [TYPE_LOWERHEX] = "%" PRIx32 }; fullLength = snprintf(dest, bufSize, formats[type], value); if (fullLength < 0) { error("snprintf encoding error: %s\n", strerror(errno)); dest[0] = '\0'; } } if ((size_t)fullLength >= bufSize) warning(WARNING_LONG_STR, "Interpolated symbol %s too long to fit buffer\n", sym->name); } static char const *readInterpolation(void) { char symName[MAXSYMLEN + 1]; size_t i = 0; enum PrintType type = TYPE_NONE; for (;;) { int c = peek(0); if (c == '{') { /* Nested interpolation */ shiftChars(1); char const *inner = readInterpolation(); if (inner) { while (*inner) { if (i == sizeof(symName)) break; symName[i++] = *inner++; } } } else if (c == EOF || c == '\r' || c == '\n' || c == '"') { error("Missing }\n"); break; } else if (c == '}') { shiftChars(1); break; } else if (c == ':' && type == TYPE_NONE) { /* Print type, only once */ if (i != 1) { error("Print types are exactly 1 character long\n"); } else { switch (symName[0]) { case 'b': type = TYPE_BINARY; break; case 'd': type = TYPE_DECIMAL; break; case 'X': type = TYPE_UPPERHEX; break; case 'x': type = TYPE_LOWERHEX; break; default: error("Invalid print type '%s'\n", print(symName[0])); } } i = 0; /* Now that type has been set, restart at beginning of string */ shiftChars(1); } else { if (i < sizeof(symName)) /* Allow writing an extra char to flag overflow */ symName[i++] = c; shiftChars(1); } } if (i == sizeof(symName)) { warning(WARNING_LONG_STR, "Symbol name too long\n"); i--; } symName[i] = '\0'; struct Symbol const *sym = sym_FindSymbol(symName); if (!sym) { error("Interpolated symbol \"%s\" does not exist\n", symName); } else if (sym->type == SYM_EQUS) { if (type != TYPE_NONE) error("Print types are only allowed for numbers\n"); return sym_GetStringValue(sym); } else if (sym_IsNumeric(sym)) { static char buf[33]; /* Worst case of 32 digits + terminator */ intToString(buf, sizeof(buf), sym, type); return buf; } else { error("Only numerical and string symbols can be interpolated\n"); } return NULL; } static void readString(void) { size_t i = 0; dbgPrint("Reading string\n"); for (;;) { int c = peek(0); switch (c) { case '"': shiftChars(1); if (i == sizeof(yylval.tzString)) { i--; warning(WARNING_LONG_STR, "String constant too long\n"); } yylval.tzString[i] = '\0'; dbgPrint("Read string \"%s\"\n", yylval.tzString); return; case '\r': case '\n': /* Do not shift these! */ case EOF: if (i == sizeof(yylval.tzString)) { i--; warning(WARNING_LONG_STR, "String constant too long\n"); } yylval.tzString[i] = '\0'; error("Unterminated string\n"); dbgPrint("Read string \"%s\"\n", yylval.tzString); return; case '\\': /* Character escape */ c = peek(1); switch (c) { case '\\': /* Return that character unchanged */ case '"': case '{': case '}': shiftChars(1); break; case 'n': c = '\n'; shiftChars(1); break; case 'r': c = '\r'; shiftChars(1); break; case 't': c = '\t'; shiftChars(1); break; case ' ': case '\r': case '\n': shiftChars(1); /* Shift the backslash */ readLineContinuation(); continue; case EOF: /* Can't really print that one */ error("Illegal character escape at end of input\n"); c = '\\'; break; default: error("Illegal character escape '%s'\n", print(c)); c = '\\'; break; } break; case '{': /* Symbol interpolation */ shiftChars(1); char const *ptr = readInterpolation(); if (ptr) { while (*ptr) { if (i == sizeof(yylval.tzString)) break; yylval.tzString[i++] = *ptr++; } } continue; /* Do not copy an additional character */ /* Regular characters will just get copied */ } if (i < sizeof(yylval.tzString)) /* Copy one extra to flag overflow */ yylval.tzString[i++] = c; shiftChars(1); } } /* Function to report one character's worth of garbage bytes */ static char const *reportGarbageChar(unsigned char firstByte) { static char bytes[6 + 2 + 1]; /* Max size of a UTF-8 encoded code point, plus "''\0" */ /* First, attempt UTF-8 decoding */ uint32_t state = 0; /* UTF8_ACCEPT */ uint32_t codepoint; uint8_t size = 0; /* Number of additional bytes to shift */ bytes[1] = firstByte; /* No need to init the rest of the array */ decode(&state, &codepoint, firstByte); while (state != 0 && state != 1 /* UTF8_REJECT */) { int c = peek(size++); if (c == EOF) break; bytes[size + 1] = c; decode(&state, &codepoint, c); } if (state == 0 && (codepoint > UCHAR_MAX || isprint((unsigned char)codepoint))) { /* Character is valid, printable UTF-8! */ shiftChars(size); bytes[0] = '\''; bytes[size + 2] = '\''; bytes[size + 3] = '\0'; return bytes; } /* The character isn't valid UTF-8, so we'll only print that first byte */ if (isprint(firstByte)) { /* bytes[1] = firstByte; */ bytes[0] = '\''; bytes[2] = '\''; bytes[3] = '\0'; return bytes; } /* Well then, print its hex value */ static char const hexChars[16] = "0123456789ABCDEF"; bytes[0] = '0'; bytes[1] = 'x'; bytes[2] = hexChars[firstByte >> 4]; bytes[3] = hexChars[firstByte & 0x0f]; bytes[4] = '\0'; return bytes; } /* Lexer core */ static int yylex_NORMAL(void) { dbgPrint("Lexing in normal mode\n"); for (;;) { int c = nextChar(); switch (c) { /* Ignore whitespace and comments */ case '*': if (!lexerState->atLineStart) return T_OP_MUL; warning(WARNING_OBSOLETE, "'*' is deprecated for comments, please use ';' instead\n"); /* fallthrough */ case ';': discardComment(); /* fallthrough */ case ' ': case '\t': break; /* Handle unambiguous single-char tokens */ case '^': return T_OP_XOR; case '+': return T_OP_ADD; case '-': return T_OP_SUB; case '/': return T_OP_DIV; case '~': return T_OP_NOT; case '@': yylval.tzSym[0] = '@'; yylval.tzSym[1] = '\0'; return T_ID; /* Handle accepted single chars */ case '[': case ']': case '(': case ')': case ',': case ':': return c; /* Handle ambiguous 1- or 2-char tokens */ char secondChar; case '|': /* Either binary or logical OR */ secondChar = peek(0); if (secondChar == '|') { shiftChars(1); return T_OP_LOGICOR; } return T_OP_OR; case '=': /* Either SET alias, or EQ */ secondChar = peek(0); if (secondChar == '=') { shiftChars(1); return T_OP_LOGICEQU; } return T_POP_EQUAL; case '<': /* Either a LT, LTE, or left shift */ secondChar = peek(0); if (secondChar == '=') { shiftChars(1); return T_OP_LOGICLE; } else if (secondChar == '<') { shiftChars(1); return T_OP_SHL; } return T_OP_LOGICLT; case '>': /* Either a GT, GTE, or right shift */ secondChar = peek(0); if (secondChar == '=') { shiftChars(1); return T_OP_LOGICGE; } else if (secondChar == '>') { shiftChars(1); return T_OP_SHR; } return T_OP_LOGICGT; case '!': /* Either a NEQ, or negation */ secondChar = peek(0); if (secondChar == '=') { shiftChars(1); return T_OP_LOGICNE; } return T_OP_LOGICNOT; /* Handle numbers */ case '$': yylval.nConstValue = 0; readHexNumber(); return T_NUMBER; case '0': /* Decimal number */ case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': readNumber(10, c - '0'); if (peek(0) == '.') { shiftChars(1); readFractionalPart(); } return T_NUMBER; case '&': secondChar = peek(0); if (secondChar == '&') { shiftChars(1); return T_OP_LOGICAND; } else if (secondChar >= '0' && secondChar <= '7') { readNumber(8, 0); return T_NUMBER; } return T_OP_AND; case '%': /* Either a modulo, or a binary constant */ secondChar = peek(0); if (secondChar != '0' && secondChar != '1') return T_OP_MOD; yylval.nConstValue = 0; readBinaryNumber(); return T_NUMBER; case '`': /* Gfx constant */ readGfxConstant(); return T_NUMBER; /* Handle strings */ case '"': readString(); return T_STRING; /* Handle newlines and EOF */ case '\r': if (peek(0) == '\n') shiftChars(1); /* Shift that EOL */ /* fallthrough */ case '\n': return '\n'; case EOF: return 0; /* Handle identifiers... or error out */ default: if (startsIdentifier(c)) { int tokenType = readIdentifier(c); /* If a keyword, don't try to expand */ if (tokenType != T_ID && tokenType != T_LOCAL_ID) return tokenType; if (lexerState->expandStrings) { /* Attempt string expansion */ struct Symbol const *sym = sym_FindSymbol(yylval.tzSym); if (sym && sym->type == SYM_EQUS) { char const *s = sym_GetStringValue(sym); beginExpansion(0, 0, s, strlen(s), sym->name); continue; /* Restart, reading from the new buffer */ } } if (tokenType == T_ID && lexerState->atLineStart) return T_LABEL; return tokenType; } /* Do not report weird characters when capturing, it'll be done later */ if (!lexerState->capturing) { /* TODO: try to group reportings */ error("Unknown character %s\n", reportGarbageChar(c)); } } lexerState->atLineStart = false; } } static int yylex_RAW(void) { dbgPrint("Lexing in raw mode\n"); /* This is essentially a modified `readString` */ size_t i = 0; bool insideString = false; /* Trim left of string... */ while (isWhitespace(peek(0))) shiftChars(1); for (;;) { int c = peek(0); switch (c) { case '"': insideString = !insideString; /* Other than that, just process quotes normally */ break; case ';': /* Comments inside macro args */ if (insideString) break; do { shiftChars(1); c = peek(0); } while (c != EOF && c != '\r' && c != '\n'); /* fallthrough */ case ',': case '\r': case '\n': case EOF: if (i == sizeof(yylval.tzString)) { i--; warning(WARNING_LONG_STR, "Macro argument too long\n"); } /* Trim whitespace */ while (i && isWhitespace(yylval.tzString[i - 1])) i--; /* Empty macro args break their expansion, so prevent that */ if (i == 0) { /* Return the EOF token, and don't shift a non-existent char! */ if (c == EOF) return 0; shiftChars(1); return c; } yylval.tzString[i] = '\0'; dbgPrint("Read raw string \"%s\"\n", yylval.tzString); return T_STRING; case '\\': /* Character escape */ c = peek(1); switch (c) { case ',': shiftChars(1); break; case ' ': case '\r': case '\n': shiftChars(1); /* Shift the backslash */ readLineContinuation(); continue; case EOF: /* Can't really print that one */ error("Illegal character escape at end of input\n"); c = '\\'; break; default: /* Pass the rest as-is */ c = '\\'; break; } break; case '{': /* Symbol interpolation */ shiftChars(1); char const *ptr = readInterpolation(); if (ptr) { while (*ptr) { if (i == sizeof(yylval.tzString)) break; yylval.tzString[i++] = *ptr++; } } continue; /* Do not copy an additional character */ /* Regular characters will just get copied */ } if (i < sizeof(yylval.tzString)) /* Copy one extra to flag overflow */ yylval.tzString[i++] = c; shiftChars(1); } } /* * This function uses the fact that `if`, etc. constructs are only valid when * there's nothing before them on their lines. This enables filtering * "meaningful" (= at line start) vs. "meaningless" (everything else) tokens. * It's especially important due to macro args not being handled in this * state, and lexing them in "normal" mode potentially producing such tokens. */ static int skipIfBlock(bool toEndc) { dbgPrint("Skipping IF block (toEndc = %s)\n", toEndc ? "true" : "false"); lexer_SetMode(LEXER_NORMAL); int startingDepth = nIFDepth; int token; bool atLineStart = lexerState->atLineStart; /* Prevent expanding macro args in this state by enabling capture to nothing */ lexerState->capturing = true; lexerState->captureSize = 0; lexerState->captureBuf = NULL; for (;;) { if (atLineStart) { int c; for (;;) { c = peek(0); if (!isWhitespace(c)) break; shiftChars(1); } if (startsIdentifier(c)) { shiftChars(1); token = readIdentifier(c); switch (token) { case T_POP_IF: nIFDepth++; break; case T_POP_ELIF: case T_POP_ELSE: if (toEndc) /* Ignore ELIF and ELSE, go to ENDC */ break; /* fallthrough */ case T_POP_ENDC: if (nIFDepth == startingDepth) goto finish; if (token == T_POP_ENDC) nIFDepth--; } } atLineStart = false; } /* Read chars until EOL */ do { int c = nextChar(); if (c == EOF) { token = 0; goto finish; } else if (c == '\\') { /* Unconditionally skip the next char, including line conts */ c = nextChar(); } else if (c == '\r' || c == '\n') { atLineStart = true; } if (c == '\r' || c == '\n') /* Do this both on line continuations and plain EOLs */ lexerState->lineNo++; /* Handle CRLF */ if (c == '\r' && peek(0) == '\n') shiftChars(1); } while (!atLineStart); } finish: lexerState->capturing = false; lexerState->atLineStart = false; return token; } static int yylex_SKIP_TO_ELIF(void) { return skipIfBlock(false); } static int yylex_SKIP_TO_ENDC(void) { return skipIfBlock(true); } int yylex(void) { restart: if (lexerState->atLineStart && lexerStateEOL) { lexer_SetState(lexerStateEOL); lexerStateEOL = NULL; } if (lexerState->atLineStart) { /* Newlines read within an expansion should not increase the line count */ if (!lexerState->expansions || lexerState->expansions->distance) { lexerState->lineNo++; lexerState->colNo = 0; } } static int (* const lexerModeFuncs[])(void) = { [LEXER_NORMAL] = yylex_NORMAL, [LEXER_RAW] = yylex_RAW, [LEXER_SKIP_TO_ELIF] = yylex_SKIP_TO_ELIF, [LEXER_SKIP_TO_ENDC] = yylex_SKIP_TO_ENDC }; int token = lexerModeFuncs[lexerState->mode](); /* Make sure to terminate files with a line feed */ if (token == 0) { if (lexerState->lastToken != '\n') { dbgPrint("Forcing EOL at EOF\n"); token = '\n'; } else { /* Try to switch to new buffer; if it succeeds, scan again */ dbgPrint("Reached EOF!\n"); /* Captures end at their buffer's boundary no matter what */ if (!lexerState->capturing) { if (!yywrap()) goto restart; dbgPrint("Reached end of input."); return 0; } } } lexerState->lastToken = token; lexerState->atLineStart = false; if (token == '\n') lexerState->atLineStart = true; return token; } static char *startCapture(void) { assert(!lexerState->expansions); lexerState->capturing = true; lexerState->captureSize = 0; if (lexerState->isMmapped) { return &lexerState->ptr[lexerState->offset]; } else { lexerState->captureCapacity = 128; /* The initial size will be twice that */ reallocCaptureBuf(); return lexerState->captureBuf; } } void lexer_CaptureRept(char **capture, size_t *size) { char *captureStart = startCapture(); unsigned int level = 0; int c; /* * Due to parser internals, it reads the EOL after the expression before calling this. * Thus, we don't need to keep one in the buffer afterwards. * The following assertion checks that. */ assert(lexerState->atLineStart); for (;;) { lexerState->lineNo++; /* We're at line start, so attempt to match a `REPT` or `ENDR` token */ do { /* Discard initial whitespace */ c = nextChar(); } while (isWhitespace(c)); /* Now, try to match either `REPT` or `ENDR` as a **whole** identifier */ if (startsIdentifier(c)) { switch (readIdentifier(c)) { case T_POP_REPT: level++; /* Ignore the rest of that line */ break; case T_POP_ENDR: if (!level) { /* Read (but don't capture) until EOL or EOF */ lexerState->capturing = false; do { c = nextChar(); } while (c != EOF && c != '\r' && c != '\n'); /* Handle Windows CRLF */ if (c == '\r' && peek(0) == '\n') shiftChars(1); goto finish; } level--; } } /* Just consume characters until EOL or EOF */ for (;;) { if (c == EOF) { error("Unterminated REPT block\n"); lexerState->capturing = false; goto finish; } else if (c == '\n') { break; } else if (c == '\r') { if (peek(0) == '\n') shiftChars(1); break; } c = nextChar(); } } finish: assert(!lexerState->capturing); *capture = captureStart; *size = lexerState->captureSize - strlen("ENDR"); lexerState->captureBuf = NULL; } void lexer_CaptureMacroBody(char **capture, size_t *size) { char *captureStart = startCapture(); unsigned int level = 0; int c = peek(0); /* * Due to parser internals, it does not read the EOL after the T_POP_MACRO before calling * this. Thus, we need to keep one in the buffer afterwards. * (Note that this also means the captured buffer begins with a newline and maybe comment) * The following assertion checks that. */ assert(!lexerState->atLineStart); for (;;) { /* Just consume characters until EOL or EOF */ for (;;) { if (c == EOF) { error("Unterminated macro definition\n"); lexerState->capturing = false; goto finish; } else if (c == '\n') { break; } else if (c == '\r') { if (peek(0) == '\n') shiftChars(1); break; } c = nextChar(); } /* We're at line start, attempt to match a `label: MACRO` line or `ENDM` token */ do { /* Discard initial whitespace */ c = nextChar(); } while (isWhitespace(c)); /* Now, try to match either `REPT` or `ENDR` as a **whole** identifier */ if (startsIdentifier(c)) { switch (readIdentifier(c)) { case T_ID: /* We have an initial label, look for a single colon */ do { c = nextChar(); } while (isWhitespace(c)); if (c != ':') /* If not a colon, give up */ break; /* And finally, a `MACRO` token */ do { c = nextChar(); } while (isWhitespace(c)); if (!startsIdentifier(c)) break; if (readIdentifier(c) != T_POP_MACRO) break; level++; break; case T_POP_ENDM: if (!level) { /* Read (but don't capture) until EOL or EOF */ lexerState->capturing = false; do { c = peek(0); if (c == EOF || c == '\r' || c == '\n') break; shiftChars(1); } while (c != EOF && c != '\r' && c != '\n'); /* Handle Windows CRLF */ if (c == '\r' && peek(1) == '\n') shiftChars(1); goto finish; } level--; } } lexerState->lineNo++; } finish: assert(!lexerState->capturing); *capture = captureStart; *size = lexerState->captureSize - strlen("ENDM"); lexerState->captureBuf = NULL; }