ref: 14731c0a1dc7f4e0154a46e823dfca7c1ea2b522
dir: /src/asm/section.c/
#include <errno.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "asm/fstack.h" #include "asm/main.h" #include "asm/output.h" #include "asm/rpn.h" #include "asm/section.h" #include "asm/warning.h" #include "extern/err.h" struct SectionStackEntry { struct Section *pSection; struct sSymbol *pScope; /* Section's symbol scope */ struct SectionStackEntry *pNext; }; struct SectionStackEntry *pSectionStack; static struct Section *currentLoadSection = NULL; /* * A quick check to see if we have an initialized section */ static void checksection(void) { if (pCurrentSection == NULL) fatalerror("Code generation before SECTION directive"); } /* * A quick check to see if we have an initialized section that can contain * this much initialized data */ static void checkcodesection(void) { checksection(); if (!sect_HasData(pCurrentSection->nType)) fatalerror("Section '%s' cannot contain code or data (not ROM0 or ROMX)", pCurrentSection->pzName); else if (nUnionDepth > 0) fatalerror("UNIONs cannot contain code or data"); } /* * Check if the section has grown too much. */ static void checksectionoverflow(uint32_t delta_size) { uint32_t maxSize = maxsize[pCurrentSection->nType]; uint32_t newSize = pCurrentSection->nPC + delta_size; if (newSize > maxSize) { /* * This check is here to trap broken code that generates * sections that are too big and to prevent the assembler from * generating huge object files or trying to allocate too much * memory. * The real check must be done at the linking stage. */ fatalerror("Section '%s' is too big (max size = 0x%X bytes, reached 0x%X).", pCurrentSection->pzName, maxSize, newSize); } } struct Section *out_FindSectionByName(const char *pzName) { struct Section *pSect = pSectionList; while (pSect) { if (strcmp(pzName, pSect->pzName) == 0) return pSect; pSect = pSect->pNext; } return NULL; } /* * Find a section by name and type. If it doesn't exist, create it */ static struct Section *getSection(char const *pzName, enum SectionType type, int32_t org, int32_t bank, int32_t alignment) { if (bank != -1) { if (type != SECTTYPE_ROMX && type != SECTTYPE_VRAM && type != SECTTYPE_SRAM && type != SECTTYPE_WRAMX) yyerror("BANK only allowed for ROMX, WRAMX, SRAM, or VRAM sections"); else if (bank < bankranges[type][0] || bank > bankranges[type][1]) yyerror("%s bank value $%x out of range ($%x to $%x)", typeNames[type], bank, bankranges[type][0], bankranges[type][1]); } if (alignment != 1) { /* It doesn't make sense to have both set */ uint32_t mask = alignment - 1; if (org != -1) { if (org & mask) yyerror("Section \"%s\"'s fixed address doesn't match its alignment", pzName); else alignment = 1; /* Ignore it if it's satisfied */ } } if (org != -1) { if (org < startaddr[type] || org > endaddr(type)) yyerror("Section \"%s\"'s fixed address %#x is outside of range [%#x; %#x]", pzName, org, startaddr[type], endaddr(type)); } struct Section *pSect = out_FindSectionByName(pzName); if (pSect) { if (type == pSect->nType && ((uint32_t)org) == pSect->nOrg && ((uint32_t)bank) == pSect->nBank && ((uint32_t)alignment == pSect->nAlign)) { return pSect; } fatalerror("Section already exists but with a different type"); } pSect = malloc(sizeof(*pSect)); if (pSect == NULL) fatalerror("Not enough memory for section"); pSect->pzName = strdup(pzName); if (pSect->pzName == NULL) fatalerror("Not enough memory for sectionname"); if (nbbanks(type) == 1) bank = bankranges[type][0]; pSect->nType = type; pSect->nPC = 0; pSect->nOrg = org; pSect->nBank = bank; pSect->nAlign = alignment; pSect->pNext = pSectionList; pSect->pPatches = NULL; /* It is only needed to allocate memory for ROM sections. */ if (sect_HasData(type)) { uint32_t sectsize; sectsize = maxsize[type]; pSect->tData = malloc(sectsize); if (pSect->tData == NULL) fatalerror("Not enough memory for section"); } else { pSect->tData = NULL; } /* * Add the new section to the list * at the beginning because order doesn't matter */ pSectionList = pSect; return pSect; } /* * Set the current section */ static void setSection(struct Section *pSect) { if (nUnionDepth > 0) fatalerror("Cannot change the section within a UNION"); nPC = (pSect != NULL) ? pSect->nPC : 0; pPCSymbol->pSection = pSect; pPCSymbol->isConstant = pSect && pSect->nOrg != -1; } /* * Set the current section by name and type */ void out_NewSection(char const *pzName, uint32_t type, int32_t org, struct SectionSpec const *attributes) { if (currentLoadSection) fatalerror("Cannot change the section within a `LOAD` block"); struct Section *pSect = getSection(pzName, type, org, attributes->bank, 1 << attributes->alignment); nPC = pSect->nPC; setSection(pSect); pCurrentSection = pSect; } /* * Set the current section by name and type */ void out_SetLoadSection(char const *name, uint32_t type, int32_t org, struct SectionSpec const *attributes) { if (currentLoadSection) fatalerror("`LOAD` blocks cannot be nested"); struct Section *pSect = getSection(name, type, org, attributes->bank, 1 << attributes->alignment); nPC = pSect->nPC; setSection(pSect); currentLoadSection = pSect; } void out_EndLoadSection(void) { if (!currentLoadSection) yyerror("Found `ENDL` outside of a `LOAD` block"); currentLoadSection = NULL; sym_SetCurrentSymbolScope(NULL); nPC = pCurrentSection->nPC; setSection(pCurrentSection); } struct Section *sect_GetSymbolSection(void) { return currentLoadSection ? currentLoadSection : pCurrentSection; } /* * Output an absolute byte (bypassing ROM/union checks) */ static void absByteBypassCheck(uint8_t b) { pCurrentSection->tData[pCurrentSection->nPC++] = b; if (currentLoadSection) currentLoadSection->nPC++; nPC++; } /* * Output an absolute byte */ void out_AbsByte(uint8_t b) { checkcodesection(); checksectionoverflow(1); absByteBypassCheck(b); } void out_AbsByteGroup(uint8_t const *s, int32_t length) { checkcodesection(); checksectionoverflow(length); while (length--) absByteBypassCheck(*s++); } /* * Skip this many bytes */ void out_Skip(int32_t skip) { checksection(); checksectionoverflow(skip); if (!sect_HasData(pCurrentSection->nType)) { pCurrentSection->nPC += skip; if (currentLoadSection) currentLoadSection->nPC += skip; nPC += skip; } else if (nUnionDepth > 0) { while (skip--) absByteBypassCheck(CurrentOptions.fillchar); } else { checkcodesection(); while (skip--) absByteBypassCheck(CurrentOptions.fillchar); } } /* * Output a NULL terminated string (excluding the NULL-character) */ void out_String(char const *s) { checkcodesection(); checksectionoverflow(strlen(s)); while (*s) absByteBypassCheck(*s++); } /* * Output a relocatable byte. Checking will be done to see if it * is an absolute value in disguise. */ void out_RelByte(struct Expression *expr) { if (!rpn_isKnown(expr)) { out_CreatePatch(PATCHTYPE_BYTE, expr); out_AbsByte(0); } else { out_AbsByte(expr->nVal); } rpn_Free(expr); } /* * Output an absolute word */ static void absWord(uint16_t b) { checkcodesection(); checksectionoverflow(2); pCurrentSection->tData[pCurrentSection->nPC++] = b & 0xFF; pCurrentSection->tData[pCurrentSection->nPC++] = b >> 8; if (currentLoadSection) currentLoadSection->nPC += 2; nPC += 2; } /* * Output a relocatable word. Checking will be done to see if * it's an absolute value in disguise. */ void out_RelWord(struct Expression *expr) { if (!rpn_isKnown(expr)) { out_CreatePatch(PATCHTYPE_WORD, expr); absWord(0); } else { absWord(expr->nVal); } rpn_Free(expr); } /* * Output an absolute longword */ static void absLong(uint32_t b) { checkcodesection(); checksectionoverflow(4); pCurrentSection->tData[pCurrentSection->nPC++] = b & 0xFF; pCurrentSection->tData[pCurrentSection->nPC++] = b >> 8; pCurrentSection->tData[pCurrentSection->nPC++] = b >> 16; pCurrentSection->tData[pCurrentSection->nPC++] = b >> 24; if (currentLoadSection) currentLoadSection->nPC += 4; nPC += 4; } /* * Output a relocatable longword. Checking will be done to see if * is an absolute value in disguise. */ void out_RelLong(struct Expression *expr) { if (!rpn_isKnown(expr)) { out_CreatePatch(PATCHTYPE_LONG, expr); absLong(0); } else { absLong(expr->nVal); } rpn_Free(expr); } /* * Output a PC-relative relocatable byte. Checking will be done to see if it * is an absolute value in disguise. */ void out_PCRelByte(struct Expression *expr) { checkcodesection(); checksectionoverflow(1); if (!rpn_isKnown(expr) || pCurrentSection->nOrg == -1) { out_CreatePatch(PATCHTYPE_JR, expr); pCurrentSection->tData[pCurrentSection->nPC++] = 0; if (currentLoadSection) currentLoadSection->nPC++; nPC++; } else { /* Target is relative to the byte *after* the operand */ uint16_t address = pCurrentSection->nOrg + nPC + 1; /* The offset wraps (jump from ROM to HRAM, for loopexample) */ int16_t offset = expr->nVal - address; if (offset < -128 || offset > 127) { yyerror("jr target out of reach (expected -129 < %d < 128)", offset); out_AbsByte(0); } else { out_AbsByte(offset); } } rpn_Free(expr); } /* * Output a binary file */ void out_BinaryFile(char const *s) { FILE *f = fstk_FindFile(s, NULL); if (!f) { if (oGeneratedMissingIncludes) { oFailedOnMissingInclude = true; return; } fatalerror("Error opening INCBIN file '%s': %s", s, strerror(errno)); } int32_t fsize = -1; int byte; checkcodesection(); if (fseek(f, 0, SEEK_END) != -1) { fsize = ftell(f); rewind(f); checksectionoverflow(fsize); } else if (errno != ESPIPE) { yyerror("Error determining size of INCBIN file '%s': %s", s, strerror(errno)); } while ((byte = fgetc(f)) != EOF) { if (fsize == -1) checksectionoverflow(1); pCurrentSection->tData[pCurrentSection->nPC++] = byte; if (currentLoadSection) currentLoadSection->nPC++; nPC++; } if (ferror(f)) yyerror("Error reading INCBIN file '%s': %s", s, strerror(errno)); fclose(f); } void out_BinaryFileSlice(char const *s, int32_t start_pos, int32_t length) { if (start_pos < 0) { yyerror("Start position cannot be negative (%d)", start_pos); start_pos = 0; } if (length < 0) { yyerror("Number of bytes to read cannot be negative (%d)", length); length = 0; } if (length == 0) /* Don't even bother with 0-byte slices */ return; FILE *f = fstk_FindFile(s, NULL); if (!f) { if (oGeneratedMissingIncludes) { oFailedOnMissingInclude = true; return; } fatalerror("Error opening INCBIN file '%s': %s", s, strerror(errno)); } checkcodesection(); checksectionoverflow(length); int32_t fsize; if (fseek(f, 0, SEEK_END) != -1) { fsize = ftell(f); if (start_pos >= fsize) { yyerror("Specified start position is greater than length of file"); return; } if ((start_pos + length) > fsize) fatalerror("Specified range in INCBIN is out of bounds"); fseek(f, start_pos, SEEK_SET); } else { if (errno != ESPIPE) yyerror("Error determining size of INCBIN file '%s': %s", s, strerror(errno)); /* The file isn't seekable, so we'll just skip bytes */ while (start_pos--) (void)fgetc(f); } int32_t todo = length; while (todo--) { int byte = fgetc(f); if (byte != EOF) { pCurrentSection->tData[pCurrentSection->nPC++] = byte; if (currentLoadSection) currentLoadSection->nPC++; nPC++; } else if (ferror(f)) { yyerror("Error reading INCBIN file '%s': %s", s, strerror(errno)); } else { yyerror("Premature end of file (%d bytes left to read)", todo + 1); } } fclose(f); } /* * Section stack routines */ void out_PushSection(void) { struct SectionStackEntry *pSect; pSect = malloc(sizeof(struct SectionStackEntry)); if (pSect == NULL) fatalerror("No memory for section stack"); pSect->pSection = pCurrentSection; pSect->pScope = sym_GetCurrentSymbolScope(); pSect->pNext = pSectionStack; pSectionStack = pSect; } void out_PopSection(void) { if (pSectionStack == NULL) fatalerror("No entries in the section stack"); struct SectionStackEntry *pSect; pSect = pSectionStack; setSection(pSect->pSection); pCurrentSection = pSect->pSection; sym_SetCurrentSymbolScope(pSect->pScope); pSectionStack = pSect->pNext; free(pSect); }