ref: 0b8bf3cfe37a3d6e8ad01c0f6726430f53c0ad7e
dir: /opl/fmopl.c/
/* This file is derived from fmopl.cpp from ScummVM. * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * LGPL licensed version of MAMEs fmopl (V0.37a modified) by * Tatsuyuki Satoh. Included from LGPL'ed AdPlug. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdarg.h> #include <math.h> #include "fmopl.h" #define PI 3.1415926539 #define CLIP(value, min, max) \ ( (value) < (min) ? (min) : \ (value) > (max) ? (max) : (value) ) /* -------------------- preliminary define section --------------------- */ /* attack/decay rate time rate */ #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ #define FREQ_BITS 24 /* frequency turn */ /* counter bits = 20 , octerve 7 */ #define FREQ_RATE (1<<(FREQ_BITS-20)) #define TL_BITS (FREQ_BITS+2) /* final output shift , limit minimum and maximum */ #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) #define OPL_MINOUT (-0x8000<<OPL_OUTSB) /* -------------------- quality selection --------------------- */ /* sinwave entries */ /* used static memory = SIN_ENT * 4 (byte) */ #define SIN_ENT_SHIFT 11 #define SIN_ENT (1<<SIN_ENT_SHIFT) /* output level entries (envelope,sinwave) */ /* envelope counter lower bits */ static int ENV_BITS; /* envelope output entries */ static int EG_ENT; /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ /* used static memory = EG_ENT*4 (byte) */ static int EG_OFF; /* OFF */ static int EG_DED; static int EG_DST; /* DECAY START */ static int EG_AED; #define EG_AST 0 /* ATTACK START */ #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ /* LFO table entries */ #define VIB_ENT 512 #define VIB_SHIFT (32-9) #define AMS_ENT 512 #define AMS_SHIFT (32-9) #define VIB_RATE_SHIFT 8 #define VIB_RATE (1<<VIB_RATE_SHIFT) /* -------------------- local defines , macros --------------------- */ /* register number to channel number , slot offset */ #define SLOT1 0 #define SLOT2 1 /* envelope phase */ #define ENV_MOD_RR 0x00 #define ENV_MOD_DR 0x01 #define ENV_MOD_AR 0x02 /* -------------------- tables --------------------- */ static const int slot_array[32] = { 0, 2, 4, 1, 3, 5,-1,-1, 6, 8,10, 7, 9,11,-1,-1, 12,14,16,13,15,17,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1 }; static uint32_t KSL_TABLE[8 * 16]; static const double KSL_TABLE_SEED[8 * 16] = { /* OCT 0 */ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, /* OCT 1 */ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.750, 1.125, 1.500, 1.875, 2.250, 2.625, 3.000, /* OCT 2 */ 0.000, 0.000, 0.000, 0.000, 0.000, 1.125, 1.875, 2.625, 3.000, 3.750, 4.125, 4.500, 4.875, 5.250, 5.625, 6.000, /* OCT 3 */ 0.000, 0.000, 0.000, 1.875, 3.000, 4.125, 4.875, 5.625, 6.000, 6.750, 7.125, 7.500, 7.875, 8.250, 8.625, 9.000, /* OCT 4 */ 0.000, 0.000, 3.000, 4.875, 6.000, 7.125, 7.875, 8.625, 9.000, 9.750, 10.125, 10.500, 10.875, 11.250, 11.625, 12.000, /* OCT 5 */ 0.000, 3.000, 6.000, 7.875, 9.000, 10.125, 10.875, 11.625, 12.000, 12.750, 13.125, 13.500, 13.875, 14.250, 14.625, 15.000, /* OCT 6 */ 0.000, 6.000, 9.000, 10.875, 12.000, 13.125, 13.875, 14.625, 15.000, 15.750, 16.125, 16.500, 16.875, 17.250, 17.625, 18.000, /* OCT 7 */ 0.000, 9.000, 12.000, 13.875, 15.000, 16.125, 16.875, 17.625, 18.000, 18.750, 19.125, 19.500, 19.875, 20.250, 20.625, 21.000 }; /* sustain level table (3db per step) */ /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ static int SL_TABLE[16]; static const uint32_t SL_TABLE_SEED[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31 }; #define TL_MAX (EG_ENT * 2) /* limit(tl + ksr + envelope) + sinwave */ /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ /* TL_TABLE[ 0 to TL_MAX ] : plus section */ /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ static int *TL_TABLE; /* pointers to TL_TABLE with sinwave output offset */ static int **SIN_TABLE; /* LFO table */ static int *AMS_TABLE; static int *VIB_TABLE; /* envelope output curve table */ /* attack + decay + OFF */ //static int ENV_CURVE[2*EG_ENT+1]; //static int ENV_CURVE[2 * 4096 + 1]; // to keep it static ... static int *ENV_CURVE; /* multiple table */ #define ML(a) (int)(a * 2) static const uint32_t MUL_TABLE[16]= { /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00), ML(8.00), ML(9.00), ML(10.00), ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00) }; #undef ML /* dummy attack / decay rate ( when rate == 0 ) */ static int RATE_0[16]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /* -------------------- static state --------------------- */ /* lock level of common table */ static int num_lock = 0; /* work table */ static void *cur_chip = NULL; /* current chip point */ /* currenct chip state */ /* static OPLSAMPLE *bufL,*bufR; */ static OPL_CH *S_CH; static OPL_CH *E_CH; static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; static int outd[1]; static int ams; static int vib; static int *ams_table; static int *vib_table; static int amsIncr; static int vibIncr; static int feedback2; /* connect for SLOT 2 */ /* --------------------- rebuild tables ------------------- */ #define ARRAYSIZE(x) (sizeof(x) / sizeof(*x)) #define SC_KSL(mydb) ((uint32_t) (mydb / (EG_STEP / 2))) #define SC_SL(db) (int)(db * ((3 / EG_STEP) * (1 << ENV_BITS))) + EG_DST void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM) { int i; ENV_BITS = ENV_BITS_PARAM; EG_ENT = EG_ENT_PARAM; EG_OFF = ((2 * EG_ENT)<<ENV_BITS); /* OFF */ EG_DED = EG_OFF; EG_DST = (EG_ENT << ENV_BITS); /* DECAY START */ EG_AED = EG_DST; //EG_STEP = (96.0/EG_ENT); for (i = 0; i < ARRAYSIZE(KSL_TABLE_SEED); i++) KSL_TABLE[i] = SC_KSL(KSL_TABLE_SEED[i]); for (i = 0; i < ARRAYSIZE(SL_TABLE_SEED); i++) SL_TABLE[i] = SC_SL(SL_TABLE_SEED[i]); } #undef SC_KSL #undef SC_SL /* --------------------- subroutines --------------------- */ /* status set and IRQ handling */ static inline void OPL_STATUS_SET(FM_OPL *OPL, int flag) { /* set status flag */ OPL->status |= flag; if(!(OPL->status & 0x80)) { if(OPL->status & OPL->statusmask) { /* IRQ on */ OPL->status |= 0x80; /* callback user interrupt handler (IRQ is OFF to ON) */ if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); } } } /* status reset and IRQ handling */ static inline void OPL_STATUS_RESET(FM_OPL *OPL, int flag) { /* reset status flag */ OPL->status &= ~flag; if((OPL->status & 0x80)) { if (!(OPL->status & OPL->statusmask)) { OPL->status &= 0x7f; /* callback user interrupt handler (IRQ is ON to OFF) */ if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); } } } /* IRQ mask set */ static inline void OPL_STATUSMASK_SET(FM_OPL *OPL, int flag) { OPL->statusmask = flag; /* IRQ handling check */ OPL_STATUS_SET(OPL,0); OPL_STATUS_RESET(OPL,0); } /* ----- key on ----- */ static inline void OPL_KEYON(OPL_SLOT *SLOT) { /* sin wave restart */ SLOT->Cnt = 0; /* set attack */ SLOT->evm = ENV_MOD_AR; SLOT->evs = SLOT->evsa; SLOT->evc = EG_AST; SLOT->eve = EG_AED; } /* ----- key off ----- */ static inline void OPL_KEYOFF(OPL_SLOT *SLOT) { if( SLOT->evm > ENV_MOD_RR) { /* set envelope counter from envleope output */ // WORKAROUND: The Kyra engine does something very strange when // starting a new song. For each channel: // // * The release rate is set to "fastest". // * Any note is keyed off. // * A very low-frequency note is keyed on. // // Usually, what happens next is that the real notes is keyed // on immediately, in which case there's no problem. // // However, if the note is again keyed off (because the channel // begins on a rest rather than a note), the envelope counter // was moved from the very lowest point on the attack curve to // the very highest point on the release curve. // // Again, this might not be a problem, if the release rate is // still set to "fastest". But in many cases, it had already // been increased. And, possibly because of inaccuracies in the // envelope generator, that would cause the note to "fade out" // for quite a long time. // // What we really need is a way to find the correct starting // point for the envelope counter, and that may be what the // commented-out line below is meant to do. For now, simply // handle the pathological case. if (SLOT->evm == ENV_MOD_AR && SLOT->evc == EG_AST) SLOT->evc = EG_DED; else if( !(SLOT->evc & EG_DST) ) //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; SLOT->evc = EG_DST; SLOT->eve = EG_DED; SLOT->evs = SLOT->evsr; SLOT->evm = ENV_MOD_RR; } } /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ /* return : envelope output */ static inline uint32_t OPL_CALC_SLOT(OPL_SLOT *SLOT) { /* calcrate envelope generator */ if((SLOT->evc += SLOT->evs) >= SLOT->eve) { switch( SLOT->evm ) { case ENV_MOD_AR: /* ATTACK -> DECAY1 */ /* next DR */ SLOT->evm = ENV_MOD_DR; SLOT->evc = EG_DST; SLOT->eve = SLOT->SL; SLOT->evs = SLOT->evsd; break; case ENV_MOD_DR: /* DECAY -> SL or RR */ SLOT->evc = SLOT->SL; SLOT->eve = EG_DED; if(SLOT->eg_typ) { SLOT->evs = 0; } else { SLOT->evm = ENV_MOD_RR; SLOT->evs = SLOT->evsr; } break; case ENV_MOD_RR: /* RR -> OFF */ SLOT->evc = EG_OFF; SLOT->eve = EG_OFF + 1; SLOT->evs = 0; break; } } /* calcrate envelope */ return SLOT->TLL + ENV_CURVE[SLOT->evc>>ENV_BITS] + (SLOT->ams ? ams : 0); } /* set algorythm connection */ static void set_algorythm(OPL_CH *CH) { int *carrier = &outd[0]; CH->connect1 = CH->CON ? carrier : &feedback2; CH->connect2 = carrier; } /* ---------- frequency counter for operater update ---------- */ static inline void CALC_FCSLOT(OPL_CH *CH, OPL_SLOT *SLOT) { int ksr; /* frequency step counter */ SLOT->Incr = CH->fc * SLOT->mul; ksr = CH->kcode >> SLOT->KSR; if( SLOT->ksr != ksr ) { SLOT->ksr = ksr; /* attack , decay rate recalcration */ SLOT->evsa = SLOT->AR[ksr]; SLOT->evsd = SLOT->DR[ksr]; SLOT->evsr = SLOT->RR[ksr]; } SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } /* set multi,am,vib,EG-TYP,KSR,mul */ static inline void set_mul(FM_OPL *OPL, int slot, int v) { OPL_CH *CH = &OPL->P_CH[slot>>1]; OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; SLOT->mul = MUL_TABLE[v & 0x0f]; SLOT->KSR = (v & 0x10) ? 0 : 2; SLOT->eg_typ = (v & 0x20) >> 5; SLOT->vib = (v & 0x40); SLOT->ams = (v & 0x80); CALC_FCSLOT(CH, SLOT); } /* set ksl & tl */ static inline void set_ksl_tl(FM_OPL *OPL, int slot, int v) { OPL_CH *CH = &OPL->P_CH[slot>>1]; OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */ SLOT->ksl = ksl ? 3-ksl : 31; SLOT->TL = (int)((v & 0x3f) * (0.75 / EG_STEP)); /* 0.75db step */ if(!(OPL->mode & 0x80)) { /* not CSM latch total level */ SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl); } } /* set attack rate & decay rate */ static inline void set_ar_dr(FM_OPL *OPL, int slot, int v) { OPL_CH *CH = &OPL->P_CH[slot>>1]; OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; int ar = v >> 4; int dr = v & 0x0f; SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0; SLOT->evsa = SLOT->AR[SLOT->ksr]; if(SLOT->evm == ENV_MOD_AR) SLOT->evs = SLOT->evsa; SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; SLOT->evsd = SLOT->DR[SLOT->ksr]; if(SLOT->evm == ENV_MOD_DR) SLOT->evs = SLOT->evsd; } /* set sustain level & release rate */ static inline void set_sl_rr(FM_OPL *OPL, int slot, int v) { OPL_CH *CH = &OPL->P_CH[slot>>1]; OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; int sl = v >> 4; int rr = v & 0x0f; SLOT->SL = SL_TABLE[sl]; if(SLOT->evm == ENV_MOD_DR) SLOT->eve = SLOT->SL; SLOT->RR = &OPL->DR_TABLE[rr<<2]; SLOT->evsr = SLOT->RR[SLOT->ksr]; if(SLOT->evm == ENV_MOD_RR) SLOT->evs = SLOT->evsr; } /* operator output calcrator */ #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt + con)>>(24-SIN_ENT_SHIFT)) & (SIN_ENT-1)][env] /* ---------- calcrate one of channel ---------- */ static inline void OPL_CALC_CH(OPL_CH *CH) { uint32_t env_out; OPL_SLOT *SLOT; feedback2 = 0; /* SLOT 1 */ SLOT = &CH->SLOT[SLOT1]; env_out=OPL_CALC_SLOT(SLOT); if(env_out < (uint32_t)(EG_ENT - 1)) { /* PG */ if(SLOT->vib) SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT; else SLOT->Cnt += SLOT->Incr; /* connection */ if(CH->FB) { int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB; CH->op1_out[1] = CH->op1_out[0]; *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT, env_out, feedback1); } else { *CH->connect1 += OP_OUT(SLOT, env_out, 0); } } else { CH->op1_out[1] = CH->op1_out[0]; CH->op1_out[0] = 0; } /* SLOT 2 */ SLOT = &CH->SLOT[SLOT2]; env_out=OPL_CALC_SLOT(SLOT); if(env_out < (uint32_t)(EG_ENT - 1)) { /* PG */ if(SLOT->vib) SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT; else SLOT->Cnt += SLOT->Incr; /* connection */ outd[0] += OP_OUT(SLOT, env_out, feedback2); } } /* ---------- calcrate rythm block ---------- */ #define WHITE_NOISE_db 6.0 static inline void OPL_CALC_RH(FM_OPL *OPL, OPL_CH *CH) { uint32_t env_tam, env_sd, env_top, env_hh; // This code used to do int(OPL->rnd.getRandomBit() * (WHITE_NOISE_db / EG_STEP)), // but EG_STEP = 96.0/EG_ENT, and WHITE_NOISE_db=6.0. So, that's equivalent to // int(OPL->rnd.getRandomBit() * EG_ENT/16). We know that EG_ENT is 4096, or 1024, // or 128, so we can safely avoid any FP ops. int whitenoise = (rand() & 1) * (EG_ENT>>4); int tone8; OPL_SLOT *SLOT; int env_out; /* BD : same as FM serial mode and output level is large */ feedback2 = 0; /* SLOT 1 */ SLOT = &CH[6].SLOT[SLOT1]; env_out = OPL_CALC_SLOT(SLOT); if(env_out < EG_ENT-1) { /* PG */ if(SLOT->vib) SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT; else SLOT->Cnt += SLOT->Incr; /* connection */ if(CH[6].FB) { int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB; CH[6].op1_out[1] = CH[6].op1_out[0]; feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT, env_out, feedback1); } else { feedback2 = OP_OUT(SLOT, env_out, 0); } } else { feedback2 = 0; CH[6].op1_out[1] = CH[6].op1_out[0]; CH[6].op1_out[0] = 0; } /* SLOT 2 */ SLOT = &CH[6].SLOT[SLOT2]; env_out = OPL_CALC_SLOT(SLOT); if(env_out < EG_ENT-1) { /* PG */ if(SLOT->vib) SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT; else SLOT->Cnt += SLOT->Incr; /* connection */ outd[0] += OP_OUT(SLOT, env_out, feedback2) * 2; } // SD (17) = mul14[fnum7] + white noise // TAM (15) = mul15[fnum8] // TOP (18) = fnum6(mul18[fnum8]+whitenoise) // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise env_sd = OPL_CALC_SLOT(SLOT7_2) + whitenoise; env_tam =OPL_CALC_SLOT(SLOT8_1); env_top = OPL_CALC_SLOT(SLOT8_2); env_hh = OPL_CALC_SLOT(SLOT7_1) + whitenoise; /* PG */ if(SLOT7_1->vib) SLOT7_1->Cnt += (SLOT7_1->Incr * vib) >> (VIB_RATE_SHIFT-1); else SLOT7_1->Cnt += 2 * SLOT7_1->Incr; if(SLOT7_2->vib) SLOT7_2->Cnt += (CH[7].fc * vib) >> (VIB_RATE_SHIFT-3); else SLOT7_2->Cnt += (CH[7].fc * 8); if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr * vib) >> VIB_RATE_SHIFT; else SLOT8_1->Cnt += SLOT8_1->Incr; if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc * 3) * vib) >> (VIB_RATE_SHIFT-4); else SLOT8_2->Cnt += (CH[8].fc * 48); tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); /* SD */ if(env_sd < (uint32_t)(EG_ENT - 1)) outd[0] += OP_OUT(SLOT7_1, env_sd, 0) * 8; /* TAM */ if(env_tam < (uint32_t)(EG_ENT - 1)) outd[0] += OP_OUT(SLOT8_1, env_tam, 0) * 2; /* TOP-CY */ if(env_top < (uint32_t)(EG_ENT - 1)) outd[0] += OP_OUT(SLOT7_2, env_top, tone8) * 2; /* HH */ if(env_hh < (uint32_t)(EG_ENT-1)) outd[0] += OP_OUT(SLOT7_2, env_hh, tone8) * 2; } /* ----------- initialize time tabls ----------- */ static void init_timetables(FM_OPL *OPL, int ARRATE, int DRRATE) { int i; double rate; /* make attack rate & decay rate tables */ for (i = 0; i < 4; i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; for (i = 4; i <= 60; i++) { rate = OPL->freqbase; /* frequency rate */ if(i < 60) rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */ rate *= (double)(EG_ENT << ENV_BITS); OPL->AR_TABLE[i] = (int)(rate / ARRATE); OPL->DR_TABLE[i] = (int)(rate / DRRATE); } for (i = 60; i < 76; i++) { OPL->AR_TABLE[i] = EG_AED-1; OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; } } /* ---------- generic table initialize ---------- */ static int OPLOpenTable(void) { int s,t; double rate; int i,j; double pom; /* allocate dynamic tables */ if((TL_TABLE = (int *)malloc(TL_MAX * 2 * sizeof(int))) == NULL) return 0; if((SIN_TABLE = (int **)malloc(SIN_ENT * 4 * sizeof(int *))) == NULL) { free(TL_TABLE); return 0; } if((AMS_TABLE = (int *)malloc(AMS_ENT * 2 * sizeof(int))) == NULL) { free(TL_TABLE); free(SIN_TABLE); return 0; } if((VIB_TABLE = (int *)malloc(VIB_ENT * 2 * sizeof(int))) == NULL) { free(TL_TABLE); free(SIN_TABLE); free(AMS_TABLE); return 0; } /* make total level table */ for (t = 0; t < EG_ENT - 1 ; t++) { rate = ((1 << TL_BITS) - 1) / pow(10.0, EG_STEP * t / 20); /* dB -> voltage */ TL_TABLE[ t] = (int)rate; TL_TABLE[TL_MAX + t] = -TL_TABLE[t]; } /* fill volume off area */ for (t = EG_ENT - 1; t < TL_MAX; t++) { TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0; } /* make sinwave table (total level offet) */ /* degree 0 = degree 180 = off */ SIN_TABLE[0] = SIN_TABLE[SIN_ENT /2 ] = &TL_TABLE[EG_ENT - 1]; for (s = 1;s <= SIN_ENT / 4; s++) { pom = sin(2 * PI * s / SIN_ENT); /* sin */ pom = 20 * log10(1 / pom); /* decibel */ j = (int) (pom / EG_STEP); /* TL_TABLE steps */ /* degree 0 - 90 , degree 180 - 90 : plus section */ SIN_TABLE[ s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j]; /* degree 180 - 270 , degree 360 - 270 : minus section */ SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j]; } for (s = 0;s < SIN_ENT; s++) { SIN_TABLE[SIN_ENT * 1 + s] = s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)]; SIN_TABLE[SIN_ENT * 3 + s] = (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + s]; } ENV_CURVE = (int *)malloc(sizeof(int) * (2*EG_ENT+1)); /* envelope counter -> envelope output table */ for (i=0; i < EG_ENT; i++) { /* ATTACK curve */ pom = pow(((double)(EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT; /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ ENV_CURVE[i] = (int)pom; /* DECAY ,RELEASE curve */ ENV_CURVE[(EG_DST >> ENV_BITS) + i]= i; } /* off */ ENV_CURVE[EG_OFF >> ENV_BITS]= EG_ENT - 1; /* make LFO ams table */ for (i=0; i < AMS_ENT; i++) { pom = (1.0 + sin(2 * PI * i / AMS_ENT)) / 2; /* sin */ AMS_TABLE[i] = (int)((1.0 / EG_STEP) * pom); /* 1dB */ AMS_TABLE[AMS_ENT + i] = (int)((4.8 / EG_STEP) * pom); /* 4.8dB */ } /* make LFO vibrate table */ for (i=0; i < VIB_ENT; i++) { /* 100cent = 1seminote = 6% ?? */ pom = (double)VIB_RATE * 0.06 * sin(2 * PI * i / VIB_ENT); /* +-100sect step */ VIB_TABLE[i] = (int)(VIB_RATE + (pom * 0.07)); /* +- 7cent */ VIB_TABLE[VIB_ENT + i] = (int)(VIB_RATE + (pom * 0.14)); /* +-14cent */ } return 1; } static void OPLCloseTable(void) { free(TL_TABLE); free(SIN_TABLE); free(AMS_TABLE); free(VIB_TABLE); free(ENV_CURVE); } /* CSM Key Controll */ static inline void CSMKeyControll(OPL_CH *CH) { OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; /* all key off */ OPL_KEYOFF(slot1); OPL_KEYOFF(slot2); /* total level latch */ slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); /* key on */ CH->op1_out[0] = CH->op1_out[1] = 0; OPL_KEYON(slot1); OPL_KEYON(slot2); } /* ---------- opl initialize ---------- */ static void OPL_initalize(FM_OPL *OPL) { int fn; /* frequency base */ OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; /* Timer base time */ OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); /* make time tables */ init_timetables(OPL, OPL_ARRATE, OPL_DRRATE); /* make fnumber -> increment counter table */ for( fn=0; fn < 1024; fn++) { OPL->FN_TABLE[fn] = (uint32_t)(OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2); } /* LFO freq.table */ OPL->amsIncr = (int)(OPL->rate ? (double)AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0); OPL->vibIncr = (int)(OPL->rate ? (double)VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0); } /* ---------- write a OPL registers ---------- */ void OPLWriteReg(FM_OPL *OPL, int r, int v) { OPL_CH *CH; int slot; uint32_t block_fnum; switch(r & 0xe0) { case 0x00: /* 00-1f:controll */ switch(r & 0x1f) { case 0x01: /* wave selector enable */ if(OPL->type&OPL_TYPE_WAVESEL) { OPL->wavesel = v & 0x20; if(!OPL->wavesel) { /* preset compatible mode */ int c; for(c=0; c<OPL->max_ch; c++) { OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; } } } return; case 0x02: /* Timer 1 */ OPL->T[0] = (256-v) * 4; break; case 0x03: /* Timer 2 */ OPL->T[1] = (256-v) * 16; return; case 0x04: /* IRQ clear / mask and Timer enable */ if(v & 0x80) { /* IRQ flag clear */ OPL_STATUS_RESET(OPL, 0x7f); } else { /* set IRQ mask ,timer enable*/ uint8_t st1 = v & 1; uint8_t st2 = (v >> 1) & 1; /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ OPL_STATUS_RESET(OPL, v & 0x78); OPL_STATUSMASK_SET(OPL,((~v) & 0x78) | 0x01); /* timer 2 */ if(OPL->st[1] != st2) { double interval = st2 ? (double)OPL->T[1] * OPL->TimerBase : 0.0; OPL->st[1] = st2; if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 1, interval); } /* timer 1 */ if(OPL->st[0] != st1) { double interval = st1 ? (double)OPL->T[0] * OPL->TimerBase : 0.0; OPL->st[0] = st1; if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 0, interval); } } return; } break; case 0x20: /* am,vib,ksr,eg type,mul */ slot = slot_array[r&0x1f]; if(slot == -1) return; set_mul(OPL,slot,v); return; case 0x40: slot = slot_array[r&0x1f]; if(slot == -1) return; set_ksl_tl(OPL,slot,v); return; case 0x60: slot = slot_array[r&0x1f]; if(slot == -1) return; set_ar_dr(OPL,slot,v); return; case 0x80: slot = slot_array[r&0x1f]; if(slot == -1) return; set_sl_rr(OPL,slot,v); return; case 0xa0: switch(r) { case 0xbd: /* amsep,vibdep,r,bd,sd,tom,tc,hh */ { uint8_t rkey = OPL->rythm ^ v; OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0]; OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0]; OPL->rythm = v & 0x3f; if(OPL->rythm & 0x20) { /* BD key on/off */ if(rkey & 0x10) { if(v & 0x10) { OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); } else { OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); } } /* SD key on/off */ if(rkey & 0x08) { if(v & 0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); }/* TAM key on/off */ if(rkey & 0x04) { if(v & 0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); } /* TOP-CY key on/off */ if(rkey & 0x02) { if(v & 0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); } /* HH key on/off */ if(rkey & 0x01) { if(v & 0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); } } } return; default: break; } /* keyon,block,fnum */ if((r & 0x0f) > 8) return; CH = &OPL->P_CH[r & 0x0f]; if(!(r&0x10)) { /* a0-a8 */ block_fnum = (CH->block_fnum & 0x1f00) | v; } else { /* b0-b8 */ int keyon = (v >> 5) & 1; block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff); if(CH->keyon != keyon) { if((CH->keyon=keyon)) { CH->op1_out[0] = CH->op1_out[1] = 0; OPL_KEYON(&CH->SLOT[SLOT1]); OPL_KEYON(&CH->SLOT[SLOT2]); } else { OPL_KEYOFF(&CH->SLOT[SLOT1]); OPL_KEYOFF(&CH->SLOT[SLOT2]); } } } /* update */ if(CH->block_fnum != block_fnum) { int blockRv = 7 - (block_fnum >> 10); int fnum = block_fnum & 0x3ff; CH->block_fnum = block_fnum; CH->ksl_base = KSL_TABLE[block_fnum >> 6]; CH->fc = OPL->FN_TABLE[fnum] >> blockRv; CH->kcode = CH->block_fnum >> 9; if((OPL->mode & 0x40) && CH->block_fnum & 0x100) CH->kcode |=1; CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); } return; case 0xc0: /* FB,C */ if((r & 0x0f) > 8) return; CH = &OPL->P_CH[r&0x0f]; { int feedback = (v >> 1) & 7; CH->FB = feedback ? (8 + 1) - feedback : 0; CH->CON = v & 1; set_algorythm(CH); } return; case 0xe0: /* wave type */ slot = slot_array[r & 0x1f]; if(slot == -1) return; CH = &OPL->P_CH[slot>>1]; if(OPL->wavesel) { CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT]; } return; } } /* lock/unlock for common table */ static int OPL_LockTable(void) { num_lock++; if(num_lock>1) return 0; /* first time */ cur_chip = NULL; /* allocate total level table (128kb space) */ if(!OPLOpenTable()) { num_lock--; return -1; } return 0; } static void OPL_UnLockTable(void) { if(num_lock) num_lock--; if(num_lock) return; /* last time */ cur_chip = NULL; OPLCloseTable(); } /*******************************************************************************/ /* YM3812 local section */ /*******************************************************************************/ /* ---------- update one of chip ----------- */ void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length, int interleave) { int i; int data; int16_t *buf = buffer; uint32_t amsCnt = OPL->amsCnt; uint32_t vibCnt = OPL->vibCnt; uint8_t rythm = OPL->rythm & 0x20; OPL_CH *CH, *R_CH; if((void *)OPL != cur_chip) { cur_chip = (void *)OPL; /* channel pointers */ S_CH = OPL->P_CH; E_CH = &S_CH[9]; /* rythm slot */ SLOT7_1 = &S_CH[7].SLOT[SLOT1]; SLOT7_2 = &S_CH[7].SLOT[SLOT2]; SLOT8_1 = &S_CH[8].SLOT[SLOT1]; SLOT8_2 = &S_CH[8].SLOT[SLOT2]; /* LFO state */ amsIncr = OPL->amsIncr; vibIncr = OPL->vibIncr; ams_table = OPL->ams_table; vib_table = OPL->vib_table; } R_CH = rythm ? &S_CH[6] : E_CH; for(i = 0; i < length; i++) { /* channel A channel B channel C */ /* LFO */ ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT]; vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT]; outd[0] = 0; /* FM part */ for(CH=S_CH; CH < R_CH; CH++) OPL_CALC_CH(CH); /* Rythn part */ if(rythm) OPL_CALC_RH(OPL, S_CH); /* limit check */ data = CLIP(outd[0], OPL_MINOUT, OPL_MAXOUT); /* store to sound buffer */ buf[i << interleave] = data >> OPL_OUTSB; } OPL->amsCnt = amsCnt; OPL->vibCnt = vibCnt; } /* ---------- reset a chip ---------- */ void OPLResetChip(FM_OPL *OPL) { int c,s; int i; /* reset chip */ OPL->mode = 0; /* normal mode */ OPL_STATUS_RESET(OPL, 0x7f); /* reset with register write */ OPLWriteReg(OPL, 0x01,0); /* wabesel disable */ OPLWriteReg(OPL, 0x02,0); /* Timer1 */ OPLWriteReg(OPL, 0x03,0); /* Timer2 */ OPLWriteReg(OPL, 0x04,0); /* IRQ mask clear */ for(i = 0xff; i >= 0x20; i--) OPLWriteReg(OPL,i,0); /* reset OPerator parameter */ for(c = 0; c < OPL->max_ch ;c++ ) { OPL_CH *CH = &OPL->P_CH[c]; /* OPL->P_CH[c].PAN = OPN_CENTER; */ for(s = 0; s < 2; s++ ) { /* wave table */ CH->SLOT[s].wavetable = &SIN_TABLE[0]; /* CH->SLOT[s].evm = ENV_MOD_RR; */ CH->SLOT[s].evc = EG_OFF; CH->SLOT[s].eve = EG_OFF + 1; CH->SLOT[s].evs = 0; } } } /* ---------- Create a virtual YM3812 ---------- */ /* 'rate' is sampling rate and 'bufsiz' is the size of the */ FM_OPL *OPLCreate(int type, int clock, int rate) { char *ptr; FM_OPL *OPL; int state_size; int max_ch = 9; /* normaly 9 channels */ if( OPL_LockTable() == -1) return NULL; /* allocate OPL state space */ state_size = sizeof(FM_OPL); state_size += sizeof(OPL_CH) * max_ch; /* allocate memory block */ ptr = (char *)calloc(state_size, 1); if(ptr == NULL) return NULL; /* clear */ memset(ptr, 0, state_size); OPL = (FM_OPL *)ptr; ptr += sizeof(FM_OPL); OPL->P_CH = (OPL_CH *)ptr; ptr += sizeof(OPL_CH) * max_ch; /* set channel state pointer */ OPL->type = type; OPL->clock = clock; OPL->rate = rate; OPL->max_ch = max_ch; /* init grobal tables */ OPL_initalize(OPL); /* reset chip */ OPLResetChip(OPL); return OPL; } /* ---------- Destroy one of vietual YM3812 ---------- */ void OPLDestroy(FM_OPL *OPL) { OPL_UnLockTable(); free(OPL); } /* ---------- Option handlers ---------- */ void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,int channelOffset) { OPL->TimerHandler = TimerHandler; OPL->TimerParam = channelOffset; } void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param) { OPL->IRQHandler = IRQHandler; OPL->IRQParam = param; } void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler,int param) { OPL->UpdateHandler = UpdateHandler; OPL->UpdateParam = param; } /* ---------- YM3812 I/O interface ---------- */ int OPLWrite(FM_OPL *OPL,int a,int v) { if(!(a & 1)) { /* address port */ OPL->address = v & 0xff; } else { /* data port */ if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); OPLWriteReg(OPL, OPL->address,v); } return OPL->status >> 7; } unsigned char OPLRead(FM_OPL *OPL,int a) { if(!(a & 1)) { /* status port */ return OPL->status & (OPL->statusmask | 0x80); } return 0; } int OPLTimerOver(FM_OPL *OPL, int c) { if(c) { /* Timer B */ OPL_STATUS_SET(OPL, 0x20); } else { /* Timer A */ OPL_STATUS_SET(OPL, 0x40); /* CSM mode key,TL controll */ if(OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */ int ch; if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); for(ch = 0; ch < 9; ch++) CSMKeyControll(&OPL->P_CH[ch]); } } /* reload timer */ if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + c, (double)OPL->T[c] * OPL->TimerBase); return OPL->status >> 7; } FM_OPL *makeAdlibOPL(int rate) { // We need to emulate one YM3812 chip int env_bits = FMOPL_ENV_BITS_HQ; int eg_ent = FMOPL_EG_ENT_HQ; OPLBuildTables(env_bits, eg_ent); return OPLCreate(OPL_TYPE_YM3812, 3579545, rate); }