ref: ca70040abf8d8ab2cb03575f65131ad8ef8f12a1
dir: /third_party/boringssl/src/tool/speed.cc/
/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <algorithm> #include <functional> #include <memory> #include <string> #include <vector> #include <assert.h> #include <errno.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include <openssl/aead.h> #include <openssl/aes.h> #include <openssl/base64.h> #include <openssl/bn.h> #include <openssl/curve25519.h> #include <openssl/crypto.h> #include <openssl/digest.h> #include <openssl/err.h> #include <openssl/ec.h> #include <openssl/ecdsa.h> #include <openssl/ec_key.h> #include <openssl/evp.h> #include <openssl/hrss.h> #include <openssl/mem.h> #include <openssl/nid.h> #include <openssl/rand.h> #include <openssl/rsa.h> #include <openssl/trust_token.h> #if defined(OPENSSL_WINDOWS) OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include <windows.h> OPENSSL_MSVC_PRAGMA(warning(pop)) #elif defined(OPENSSL_APPLE) #include <sys/time.h> #else #include <time.h> #endif #include "../crypto/ec_extra/internal.h" #include "../crypto/fipsmodule/ec/internal.h" #include "../crypto/internal.h" #include "../crypto/trust_token/internal.h" #include "internal.h" // g_print_json is true if printed output is JSON formatted. static bool g_print_json = false; // TimeResults represents the results of benchmarking a function. struct TimeResults { // num_calls is the number of function calls done in the time period. unsigned num_calls; // us is the number of microseconds that elapsed in the time period. unsigned us; void Print(const std::string &description) const { if (g_print_json) { PrintJSON(description); } else { printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls, description.c_str(), us, (static_cast<double>(num_calls) / us) * 1000000); } } void PrintWithBytes(const std::string &description, size_t bytes_per_call) const { if (g_print_json) { PrintJSON(description, bytes_per_call); } else { printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n", num_calls, description.c_str(), us, (static_cast<double>(num_calls) / us) * 1000000, static_cast<double>(bytes_per_call * num_calls) / us); } } private: void PrintJSON(const std::string &description, size_t bytes_per_call = 0) const { if (first_json_printed) { puts(","); } printf("{\"description\": \"%s\", \"numCalls\": %u, \"microseconds\": %u", description.c_str(), num_calls, us); if (bytes_per_call > 0) { printf(", \"bytesPerCall\": %zu", bytes_per_call); } printf("}"); first_json_printed = true; } // first_json_printed is true if |g_print_json| is true and the first item in // the JSON results has been printed already. This is used to handle the // commas between each item in the result list. static bool first_json_printed; }; bool TimeResults::first_json_printed = false; #if defined(OPENSSL_WINDOWS) static uint64_t time_now() { return GetTickCount64() * 1000; } #elif defined(OPENSSL_APPLE) static uint64_t time_now() { struct timeval tv; uint64_t ret; gettimeofday(&tv, NULL); ret = tv.tv_sec; ret *= 1000000; ret += tv.tv_usec; return ret; } #else static uint64_t time_now() { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); uint64_t ret = ts.tv_sec; ret *= 1000000; ret += ts.tv_nsec / 1000; return ret; } #endif static uint64_t g_timeout_seconds = 1; static std::vector<size_t> g_chunk_lengths = {16, 256, 1350, 8192, 16384}; static bool TimeFunction(TimeResults *results, std::function<bool()> func) { // total_us is the total amount of time that we'll aim to measure a function // for. const uint64_t total_us = g_timeout_seconds * 1000000; uint64_t start = time_now(), now, delta; unsigned done = 0, iterations_between_time_checks; if (!func()) { return false; } now = time_now(); delta = now - start; if (delta == 0) { iterations_between_time_checks = 250; } else { // Aim for about 100ms between time checks. iterations_between_time_checks = static_cast<double>(100000) / static_cast<double>(delta); if (iterations_between_time_checks > 1000) { iterations_between_time_checks = 1000; } else if (iterations_between_time_checks < 1) { iterations_between_time_checks = 1; } } for (;;) { for (unsigned i = 0; i < iterations_between_time_checks; i++) { if (!func()) { return false; } done++; } now = time_now(); if (now - start > total_us) { break; } } results->us = now - start; results->num_calls = done; return true; } static bool SpeedRSA(const std::string &selected) { if (!selected.empty() && selected.find("RSA") == std::string::npos) { return true; } static const struct { const char *name; const uint8_t *key; const size_t key_len; } kRSAKeys[] = { {"RSA 2048", kDERRSAPrivate2048, kDERRSAPrivate2048Len}, {"RSA 4096", kDERRSAPrivate4096, kDERRSAPrivate4096Len}, }; for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kRSAKeys); i++) { const std::string name = kRSAKeys[i].name; bssl::UniquePtr<RSA> key( RSA_private_key_from_bytes(kRSAKeys[i].key, kRSAKeys[i].key_len)); if (key == nullptr) { fprintf(stderr, "Failed to parse %s key.\n", name.c_str()); ERR_print_errors_fp(stderr); return false; } std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key.get())]); const uint8_t fake_sha256_hash[32] = {0}; unsigned sig_len; TimeResults results; if (!TimeFunction(&results, [&key, &sig, &fake_sha256_hash, &sig_len]() -> bool { // Usually during RSA signing we're using a long-lived |RSA| that has // already had all of its |BN_MONT_CTX|s constructed, so it makes // sense to use |key| directly here. return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), sig.get(), &sig_len, key.get()); })) { fprintf(stderr, "RSA_sign failed.\n"); ERR_print_errors_fp(stderr); return false; } results.Print(name + " signing"); if (!TimeFunction(&results, [&key, &fake_sha256_hash, &sig, sig_len]() -> bool { return RSA_verify( NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), sig.get(), sig_len, key.get()); })) { fprintf(stderr, "RSA_verify failed.\n"); ERR_print_errors_fp(stderr); return false; } results.Print(name + " verify (same key)"); if (!TimeFunction(&results, [&key, &fake_sha256_hash, &sig, sig_len]() -> bool { // Usually during RSA verification we have to parse an RSA key from a // certificate or similar, in which case we'd need to construct a new // RSA key, with a new |BN_MONT_CTX| for the public modulus. If we // were to use |key| directly instead, then these costs wouldn't be // accounted for. bssl::UniquePtr<RSA> verify_key(RSA_new()); if (!verify_key) { return false; } verify_key->n = BN_dup(key->n); verify_key->e = BN_dup(key->e); if (!verify_key->n || !verify_key->e) { return false; } return RSA_verify(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), sig.get(), sig_len, verify_key.get()); })) { fprintf(stderr, "RSA_verify failed.\n"); ERR_print_errors_fp(stderr); return false; } results.Print(name + " verify (fresh key)"); if (!TimeFunction(&results, [&]() -> bool { return bssl::UniquePtr<RSA>(RSA_private_key_from_bytes( kRSAKeys[i].key, kRSAKeys[i].key_len)) != nullptr; })) { fprintf(stderr, "Failed to parse %s key.\n", name.c_str()); ERR_print_errors_fp(stderr); return false; } results.Print(name + " private key parse"); } return true; } static bool SpeedRSAKeyGen(const std::string &selected) { // Don't run this by default because it's so slow. if (selected != "RSAKeyGen") { return true; } bssl::UniquePtr<BIGNUM> e(BN_new()); if (!BN_set_word(e.get(), 65537)) { return false; } const std::vector<int> kSizes = {2048, 3072, 4096}; for (int size : kSizes) { const uint64_t start = time_now(); unsigned num_calls = 0; unsigned us; std::vector<unsigned> durations; for (;;) { bssl::UniquePtr<RSA> rsa(RSA_new()); const uint64_t iteration_start = time_now(); if (!RSA_generate_key_ex(rsa.get(), size, e.get(), nullptr)) { fprintf(stderr, "RSA_generate_key_ex failed.\n"); ERR_print_errors_fp(stderr); return false; } const uint64_t iteration_end = time_now(); num_calls++; durations.push_back(iteration_end - iteration_start); us = iteration_end - start; if (us > 30 * 1000000 /* 30 secs */) { break; } } std::sort(durations.begin(), durations.end()); const std::string description = std::string("RSA ") + std::to_string(size) + std::string(" key-gen"); const TimeResults results = {num_calls, us}; results.Print(description); const size_t n = durations.size(); assert(n > 0); // Distribution information is useful, but doesn't fit into the standard // format used by |g_print_json|. if (!g_print_json) { // |min| and |max| must be stored in temporary variables to avoid an MSVC // bug on x86. There, size_t is a typedef for unsigned, but MSVC's printf // warning tries to retain the distinction and suggest %zu for size_t // instead of %u. It gets confused if std::vector<unsigned> and // std::vector<size_t> are both instantiated. Being typedefs, the two // instantiations are identical, which somehow breaks the size_t vs // unsigned metadata. unsigned min = durations[0]; unsigned median = n & 1 ? durations[n / 2] : (durations[n / 2 - 1] + durations[n / 2]) / 2; unsigned max = durations[n - 1]; printf(" min: %uus, median: %uus, max: %uus\n", min, median, max); } } return true; } static std::string ChunkLenSuffix(size_t chunk_len) { char buf[32]; snprintf(buf, sizeof(buf), " (%zu byte%s)", chunk_len, chunk_len != 1 ? "s" : ""); return buf; } static bool SpeedAEADChunk(const EVP_AEAD *aead, std::string name, size_t chunk_len, size_t ad_len, evp_aead_direction_t direction) { static const unsigned kAlignment = 16; name += ChunkLenSuffix(chunk_len); bssl::ScopedEVP_AEAD_CTX ctx; const size_t key_len = EVP_AEAD_key_length(aead); const size_t nonce_len = EVP_AEAD_nonce_length(aead); const size_t overhead_len = EVP_AEAD_max_overhead(aead); std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]); OPENSSL_memset(key.get(), 0, key_len); std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]); OPENSSL_memset(nonce.get(), 0, nonce_len); std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]); // N.B. for EVP_AEAD_CTX_seal_scatter the input and output buffers may be the // same size. However, in the direction == evp_aead_open case we still use // non-scattering seal, hence we add overhead_len to the size of this buffer. std::unique_ptr<uint8_t[]> out_storage( new uint8_t[chunk_len + overhead_len + kAlignment]); std::unique_ptr<uint8_t[]> in2_storage( new uint8_t[chunk_len + overhead_len + kAlignment]); std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]); OPENSSL_memset(ad.get(), 0, ad_len); std::unique_ptr<uint8_t[]> tag_storage( new uint8_t[overhead_len + kAlignment]); uint8_t *const in = static_cast<uint8_t *>(align_pointer(in_storage.get(), kAlignment)); OPENSSL_memset(in, 0, chunk_len); uint8_t *const out = static_cast<uint8_t *>(align_pointer(out_storage.get(), kAlignment)); OPENSSL_memset(out, 0, chunk_len + overhead_len); uint8_t *const tag = static_cast<uint8_t *>(align_pointer(tag_storage.get(), kAlignment)); OPENSSL_memset(tag, 0, overhead_len); uint8_t *const in2 = static_cast<uint8_t *>(align_pointer(in2_storage.get(), kAlignment)); if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, evp_aead_seal)) { fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); ERR_print_errors_fp(stderr); return false; } TimeResults results; if (direction == evp_aead_seal) { if (!TimeFunction(&results, [chunk_len, nonce_len, ad_len, overhead_len, in, out, tag, &ctx, &nonce, &ad]() -> bool { size_t tag_len; return EVP_AEAD_CTX_seal_scatter( ctx.get(), out, tag, &tag_len, overhead_len, nonce.get(), nonce_len, in, chunk_len, nullptr, 0, ad.get(), ad_len); })) { fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n"); ERR_print_errors_fp(stderr); return false; } } else { size_t out_len; EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len, nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len); ctx.Reset(); if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, evp_aead_open)) { fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); ERR_print_errors_fp(stderr); return false; } if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in2, out, out_len, &ctx, &nonce, &ad]() -> bool { size_t in2_len; // N.B. EVP_AEAD_CTX_open_gather is not implemented for // all AEADs. return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len, chunk_len + overhead_len, nonce.get(), nonce_len, out, out_len, ad.get(), ad_len); })) { fprintf(stderr, "EVP_AEAD_CTX_open failed.\n"); ERR_print_errors_fp(stderr); return false; } } results.PrintWithBytes( name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len); return true; } static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name, size_t ad_len, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } for (size_t chunk_len : g_chunk_lengths) { if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_seal)) { return false; } } return true; } static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name, size_t ad_len, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } for (size_t chunk_len : g_chunk_lengths) { if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_open)) { return false; } } return true; } static bool SpeedAESBlock(const std::string &name, unsigned bits, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } static const uint8_t kZero[32] = {0}; { TimeResults results; if (!TimeFunction(&results, [&]() -> bool { AES_KEY key; return AES_set_encrypt_key(kZero, bits, &key) == 0; })) { fprintf(stderr, "AES_set_encrypt_key failed.\n"); return false; } results.Print(name + " encrypt setup"); } { AES_KEY key; if (AES_set_encrypt_key(kZero, bits, &key) != 0) { return false; } uint8_t block[16] = {0}; TimeResults results; if (!TimeFunction(&results, [&]() -> bool { AES_encrypt(block, block, &key); return true; })) { fprintf(stderr, "AES_encrypt failed.\n"); return false; } results.Print(name + " encrypt"); } { TimeResults results; if (!TimeFunction(&results, [&]() -> bool { AES_KEY key; return AES_set_decrypt_key(kZero, bits, &key) == 0; })) { fprintf(stderr, "AES_set_decrypt_key failed.\n"); return false; } results.Print(name + " decrypt setup"); } { AES_KEY key; if (AES_set_decrypt_key(kZero, bits, &key) != 0) { return false; } uint8_t block[16] = {0}; TimeResults results; if (!TimeFunction(&results, [&]() -> bool { AES_decrypt(block, block, &key); return true; })) { fprintf(stderr, "AES_decrypt failed.\n"); return false; } results.Print(name + " decrypt"); } return true; } static bool SpeedHashChunk(const EVP_MD *md, std::string name, size_t chunk_len) { bssl::ScopedEVP_MD_CTX ctx; uint8_t scratch[16384]; if (chunk_len > sizeof(scratch)) { return false; } name += ChunkLenSuffix(chunk_len); TimeResults results; if (!TimeFunction(&results, [&ctx, md, chunk_len, &scratch]() -> bool { uint8_t digest[EVP_MAX_MD_SIZE]; unsigned int md_len; return EVP_DigestInit_ex(ctx.get(), md, NULL /* ENGINE */) && EVP_DigestUpdate(ctx.get(), scratch, chunk_len) && EVP_DigestFinal_ex(ctx.get(), digest, &md_len); })) { fprintf(stderr, "EVP_DigestInit_ex failed.\n"); ERR_print_errors_fp(stderr); return false; } results.PrintWithBytes(name, chunk_len); return true; } static bool SpeedHash(const EVP_MD *md, const std::string &name, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } for (size_t chunk_len : g_chunk_lengths) { if (!SpeedHashChunk(md, name, chunk_len)) { return false; } } return true; } static bool SpeedRandomChunk(std::string name, size_t chunk_len) { uint8_t scratch[16384]; if (chunk_len > sizeof(scratch)) { return false; } name += ChunkLenSuffix(chunk_len); TimeResults results; if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool { RAND_bytes(scratch, chunk_len); return true; })) { return false; } results.PrintWithBytes(name, chunk_len); return true; } static bool SpeedRandom(const std::string &selected) { if (!selected.empty() && selected != "RNG") { return true; } for (size_t chunk_len : g_chunk_lengths) { if (!SpeedRandomChunk("RNG", chunk_len)) { return false; } } return true; } static bool SpeedECDHCurve(const std::string &name, int nid, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } bssl::UniquePtr<EC_KEY> peer_key(EC_KEY_new_by_curve_name(nid)); if (!peer_key || !EC_KEY_generate_key(peer_key.get())) { return false; } size_t peer_value_len = EC_POINT_point2oct( EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()), POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr); if (peer_value_len == 0) { return false; } std::unique_ptr<uint8_t[]> peer_value(new uint8_t[peer_value_len]); peer_value_len = EC_POINT_point2oct( EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()), POINT_CONVERSION_UNCOMPRESSED, peer_value.get(), peer_value_len, nullptr); if (peer_value_len == 0) { return false; } TimeResults results; if (!TimeFunction(&results, [nid, peer_value_len, &peer_value]() -> bool { bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); if (!key || !EC_KEY_generate_key(key.get())) { return false; } const EC_GROUP *const group = EC_KEY_get0_group(key.get()); bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group)); bssl::UniquePtr<EC_POINT> peer_point(EC_POINT_new(group)); bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); bssl::UniquePtr<BIGNUM> x(BN_new()); if (!point || !peer_point || !ctx || !x || !EC_POINT_oct2point(group, peer_point.get(), peer_value.get(), peer_value_len, ctx.get()) || !EC_POINT_mul(group, point.get(), nullptr, peer_point.get(), EC_KEY_get0_private_key(key.get()), ctx.get()) || !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(), nullptr, ctx.get())) { return false; } return true; })) { return false; } results.Print(name); return true; } static bool SpeedECDSACurve(const std::string &name, int nid, const std::string &selected) { if (!selected.empty() && name.find(selected) == std::string::npos) { return true; } bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); if (!key || !EC_KEY_generate_key(key.get())) { return false; } uint8_t signature[256]; if (ECDSA_size(key.get()) > sizeof(signature)) { return false; } uint8_t digest[20]; OPENSSL_memset(digest, 42, sizeof(digest)); unsigned sig_len; TimeResults results; if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool { return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len, key.get()) == 1; })) { return false; } results.Print(name + " signing"); if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool { return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len, key.get()) == 1; })) { return false; } results.Print(name + " verify"); return true; } static bool SpeedECDH(const std::string &selected) { return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) && SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) && SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) && SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected); } static bool SpeedECDSA(const std::string &selected) { return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) && SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) && SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) && SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected); } static bool Speed25519(const std::string &selected) { if (!selected.empty() && selected.find("25519") == std::string::npos) { return true; } TimeResults results; uint8_t public_key[32], private_key[64]; if (!TimeFunction(&results, [&public_key, &private_key]() -> bool { ED25519_keypair(public_key, private_key); return true; })) { return false; } results.Print("Ed25519 key generation"); static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5}; uint8_t signature[64]; if (!TimeFunction(&results, [&private_key, &signature]() -> bool { return ED25519_sign(signature, kMessage, sizeof(kMessage), private_key) == 1; })) { return false; } results.Print("Ed25519 signing"); if (!TimeFunction(&results, [&public_key, &signature]() -> bool { return ED25519_verify(kMessage, sizeof(kMessage), signature, public_key) == 1; })) { fprintf(stderr, "Ed25519 verify failed.\n"); return false; } results.Print("Ed25519 verify"); if (!TimeFunction(&results, []() -> bool { uint8_t out[32], in[32]; OPENSSL_memset(in, 0, sizeof(in)); X25519_public_from_private(out, in); return true; })) { fprintf(stderr, "Curve25519 base-point multiplication failed.\n"); return false; } results.Print("Curve25519 base-point multiplication"); if (!TimeFunction(&results, []() -> bool { uint8_t out[32], in1[32], in2[32]; OPENSSL_memset(in1, 0, sizeof(in1)); OPENSSL_memset(in2, 0, sizeof(in2)); in1[0] = 1; in2[0] = 9; return X25519(out, in1, in2) == 1; })) { fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n"); return false; } results.Print("Curve25519 arbitrary point multiplication"); return true; } static bool SpeedSPAKE2(const std::string &selected) { if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) { return true; } TimeResults results; static const uint8_t kAliceName[] = {'A'}; static const uint8_t kBobName[] = {'B'}; static const uint8_t kPassword[] = "password"; bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice, kAliceName, sizeof(kAliceName), kBobName, sizeof(kBobName))); uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE]; size_t alice_msg_len; if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len, sizeof(alice_msg), kPassword, sizeof(kPassword))) { fprintf(stderr, "SPAKE2_generate_msg failed.\n"); return false; } if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool { bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob, kBobName, sizeof(kBobName), kAliceName, sizeof(kAliceName))); uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64]; size_t bob_msg_len, bob_key_len; if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len, sizeof(bob_msg), kPassword, sizeof(kPassword)) || !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len, sizeof(bob_key), alice_msg, alice_msg_len)) { return false; } return true; })) { fprintf(stderr, "SPAKE2 failed.\n"); } results.Print("SPAKE2 over Ed25519"); return true; } static bool SpeedScrypt(const std::string &selected) { if (!selected.empty() && selected.find("scrypt") == std::string::npos) { return true; } TimeResults results; static const char kPassword[] = "password"; static const uint8_t kSalt[] = "NaCl"; if (!TimeFunction(&results, [&]() -> bool { uint8_t out[64]; return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt, sizeof(kSalt) - 1, 1024, 8, 16, 0 /* max_mem */, out, sizeof(out)); })) { fprintf(stderr, "scrypt failed.\n"); return false; } results.Print("scrypt (N = 1024, r = 8, p = 16)"); if (!TimeFunction(&results, [&]() -> bool { uint8_t out[64]; return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt, sizeof(kSalt) - 1, 16384, 8, 1, 0 /* max_mem */, out, sizeof(out)); })) { fprintf(stderr, "scrypt failed.\n"); return false; } results.Print("scrypt (N = 16384, r = 8, p = 1)"); return true; } static bool SpeedHRSS(const std::string &selected) { if (!selected.empty() && selected != "HRSS") { return true; } TimeResults results; if (!TimeFunction(&results, []() -> bool { struct HRSS_public_key pub; struct HRSS_private_key priv; uint8_t entropy[HRSS_GENERATE_KEY_BYTES]; RAND_bytes(entropy, sizeof(entropy)); return HRSS_generate_key(&pub, &priv, entropy); })) { fprintf(stderr, "Failed to time HRSS_generate_key.\n"); return false; } results.Print("HRSS generate"); struct HRSS_public_key pub; struct HRSS_private_key priv; uint8_t key_entropy[HRSS_GENERATE_KEY_BYTES]; RAND_bytes(key_entropy, sizeof(key_entropy)); if (!HRSS_generate_key(&pub, &priv, key_entropy)) { return false; } uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES]; if (!TimeFunction(&results, [&pub, &ciphertext]() -> bool { uint8_t entropy[HRSS_ENCAP_BYTES]; uint8_t shared_key[HRSS_KEY_BYTES]; RAND_bytes(entropy, sizeof(entropy)); return HRSS_encap(ciphertext, shared_key, &pub, entropy); })) { fprintf(stderr, "Failed to time HRSS_encap.\n"); return false; } results.Print("HRSS encap"); if (!TimeFunction(&results, [&priv, &ciphertext]() -> bool { uint8_t shared_key[HRSS_KEY_BYTES]; return HRSS_decap(shared_key, &priv, ciphertext, sizeof(ciphertext)); })) { fprintf(stderr, "Failed to time HRSS_encap.\n"); return false; } results.Print("HRSS decap"); return true; } static bool SpeedHashToCurve(const std::string &selected) { if (!selected.empty() && selected.find("hashtocurve") == std::string::npos) { return true; } uint8_t input[64]; RAND_bytes(input, sizeof(input)); static const uint8_t kLabel[] = "label"; TimeResults results; { EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); if (group == NULL) { return false; } if (!TimeFunction(&results, [&]() -> bool { EC_RAW_POINT out; return ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( group, &out, kLabel, sizeof(kLabel), input, sizeof(input)); })) { fprintf(stderr, "hash-to-curve failed.\n"); return false; } results.Print("hash-to-curve P384_XMD:SHA-512_SSWU_RO_"); if (!TimeFunction(&results, [&]() -> bool { EC_SCALAR out; return ec_hash_to_scalar_p384_xmd_sha512_draft07( group, &out, kLabel, sizeof(kLabel), input, sizeof(input)); })) { fprintf(stderr, "hash-to-scalar failed.\n"); return false; } results.Print("hash-to-scalar P384_XMD:SHA-512"); } return true; } static bool SpeedBase64(const std::string &selected) { if (!selected.empty() && selected.find("base64") == std::string::npos) { return true; } static const char kInput[] = "MIIDtTCCAp2gAwIBAgIJALW2IrlaBKUhMA0GCSqGSIb3DQEBCwUAMEUxCzAJBgNV" "BAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBX" "aWRnaXRzIFB0eSBMdGQwHhcNMTYwNzA5MDQzODA5WhcNMTYwODA4MDQzODA5WjBF" "MQswCQYDVQQGEwJBVTETMBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50" "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIB" "CgKCAQEAugvahBkSAUF1fC49vb1bvlPrcl80kop1iLpiuYoz4Qptwy57+EWssZBc" "HprZ5BkWf6PeGZ7F5AX1PyJbGHZLqvMCvViP6pd4MFox/igESISEHEixoiXCzepB" "rhtp5UQSjHD4D4hKtgdMgVxX+LRtwgW3mnu/vBu7rzpr/DS8io99p3lqZ1Aky+aN" "lcMj6MYy8U+YFEevb/V0lRY9oqwmW7BHnXikm/vi6sjIS350U8zb/mRzYeIs2R65" "LUduTL50+UMgat9ocewI2dv8aO9Dph+8NdGtg8LFYyTTHcUxJoMr1PTOgnmET19W" "JH4PrFwk7ZE1QJQQ1L4iKmPeQistuQIDAQABo4GnMIGkMB0GA1UdDgQWBBT5m6Vv" "zYjVYHG30iBE+j2XDhUE8jB1BgNVHSMEbjBsgBT5m6VvzYjVYHG30iBE+j2XDhUE" "8qFJpEcwRTELMAkGA1UEBhMCQVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNV" "BAoTGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZIIJALW2IrlaBKUhMAwGA1UdEwQF" "MAMBAf8wDQYJKoZIhvcNAQELBQADggEBAD7Jg68SArYWlcoHfZAB90Pmyrt5H6D8" "LRi+W2Ri1fBNxREELnezWJ2scjl4UMcsKYp4Pi950gVN+62IgrImcCNvtb5I1Cfy" "/MNNur9ffas6X334D0hYVIQTePyFk3umI+2mJQrtZZyMPIKSY/sYGQHhGGX6wGK+" "GO/og0PQk/Vu6D+GU2XRnDV0YZg1lsAsHd21XryK6fDmNkEMwbIWrts4xc7scRrG" "HWy+iMf6/7p/Ak/SIicM4XSwmlQ8pPxAZPr+E2LoVd9pMpWUwpW2UbtO5wsGTrY5" "sO45tFNN/y+jtUheB1C2ijObG/tXELaiyCdM+S/waeuv0MXtI4xnn1A="; std::vector<uint8_t> out(strlen(kInput)); size_t len; TimeResults results; if (!TimeFunction(&results, [&]() -> bool { return EVP_DecodeBase64(out.data(), &len, out.size(), reinterpret_cast<const uint8_t *>(kInput), strlen(kInput)); })) { fprintf(stderr, "base64 decode failed.\n"); return false; } results.PrintWithBytes("base64 decode", strlen(kInput)); return true; } static TRUST_TOKEN_PRETOKEN *trust_token_pretoken_dup( TRUST_TOKEN_PRETOKEN *in) { TRUST_TOKEN_PRETOKEN *out = (TRUST_TOKEN_PRETOKEN *)OPENSSL_malloc(sizeof(TRUST_TOKEN_PRETOKEN)); if (out) { OPENSSL_memcpy(out, in, sizeof(TRUST_TOKEN_PRETOKEN)); } return out; } static bool SpeedTrustToken(std::string name, const TRUST_TOKEN_METHOD *method, size_t batchsize, const std::string &selected) { if (!selected.empty() && selected.find("trusttoken") == std::string::npos) { return true; } TimeResults results; if (!TimeFunction(&results, [&]() -> bool { uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE]; uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE]; size_t priv_key_len, pub_key_len; return TRUST_TOKEN_generate_key( method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0); })) { fprintf(stderr, "TRUST_TOKEN_generate_key failed.\n"); return false; } results.Print(name + " generate_key"); bssl::UniquePtr<TRUST_TOKEN_CLIENT> client( TRUST_TOKEN_CLIENT_new(method, batchsize)); bssl::UniquePtr<TRUST_TOKEN_ISSUER> issuer( TRUST_TOKEN_ISSUER_new(method, batchsize)); uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE]; uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE]; size_t priv_key_len, pub_key_len, key_index; if (!client || !issuer || !TRUST_TOKEN_generate_key( method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0) || !TRUST_TOKEN_CLIENT_add_key(client.get(), &key_index, pub_key, pub_key_len) || !TRUST_TOKEN_ISSUER_add_key(issuer.get(), priv_key, priv_key_len)) { fprintf(stderr, "failed to generate trust token key.\n"); return false; } uint8_t public_key[32], private_key[64]; ED25519_keypair(public_key, private_key); bssl::UniquePtr<EVP_PKEY> priv( EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, nullptr, private_key, 32)); bssl::UniquePtr<EVP_PKEY> pub( EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, public_key, 32)); if (!priv || !pub) { fprintf(stderr, "failed to generate trust token SRR key.\n"); return false; } TRUST_TOKEN_CLIENT_set_srr_key(client.get(), pub.get()); TRUST_TOKEN_ISSUER_set_srr_key(issuer.get(), priv.get()); uint8_t metadata_key[32]; RAND_bytes(metadata_key, sizeof(metadata_key)); if (!TRUST_TOKEN_ISSUER_set_metadata_key(issuer.get(), metadata_key, sizeof(metadata_key))) { fprintf(stderr, "failed to generate trust token metadata key.\n"); return false; } if (!TimeFunction(&results, [&]() -> bool { uint8_t *issue_msg = NULL; size_t msg_len; int ok = TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, batchsize); OPENSSL_free(issue_msg); // Clear pretokens. sk_TRUST_TOKEN_PRETOKEN_pop_free(client->pretokens, TRUST_TOKEN_PRETOKEN_free); client->pretokens = sk_TRUST_TOKEN_PRETOKEN_new_null(); return ok; })) { fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n"); return false; } results.Print(name + " begin_issuance"); uint8_t *issue_msg = NULL; size_t msg_len; if (!TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, batchsize)) { fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n"); return false; } bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg); bssl::UniquePtr<STACK_OF(TRUST_TOKEN_PRETOKEN)> pretokens( sk_TRUST_TOKEN_PRETOKEN_deep_copy(client->pretokens, trust_token_pretoken_dup, TRUST_TOKEN_PRETOKEN_free)); if (!TimeFunction(&results, [&]() -> bool { uint8_t *issue_resp = NULL; size_t resp_len, tokens_issued; int ok = TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, /*public_metadata=*/0, /*private_metadata=*/0, /*max_issuance=*/batchsize); OPENSSL_free(issue_resp); return ok; })) { fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n"); return false; } results.Print(name + " issue"); uint8_t *issue_resp = NULL; size_t resp_len, tokens_issued; if (!TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len, &tokens_issued, issue_msg, msg_len, /*public_metadata=*/0, /*private_metadata=*/0, /*max_issuance=*/batchsize)) { fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n"); return false; } bssl::UniquePtr<uint8_t> free_issue_resp(issue_resp); if (!TimeFunction(&results, [&]() -> bool { size_t key_index2; bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index2, issue_resp, resp_len)); // Reset pretokens. client->pretokens = sk_TRUST_TOKEN_PRETOKEN_deep_copy( pretokens.get(), trust_token_pretoken_dup, TRUST_TOKEN_PRETOKEN_free); return !!tokens; })) { fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n"); return false; } results.Print(name + " finish_issuance"); bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens( TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp, resp_len)); if (!tokens || sk_TRUST_TOKEN_num(tokens.get()) < 1) { fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n"); return false; } const TRUST_TOKEN *token = sk_TRUST_TOKEN_value(tokens.get(), 0); const uint8_t kClientData[] = "\x70TEST CLIENT DATA"; uint64_t kRedemptionTime = 13374242; if (!TimeFunction(&results, [&]() -> bool { uint8_t *redeem_msg = NULL; size_t redeem_msg_len; int ok = TRUST_TOKEN_CLIENT_begin_redemption( client.get(), &redeem_msg, &redeem_msg_len, token, kClientData, sizeof(kClientData) - 1, kRedemptionTime); OPENSSL_free(redeem_msg); return ok; })) { fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n"); return false; } results.Print(name + " begin_redemption"); uint8_t *redeem_msg = NULL; size_t redeem_msg_len; if (!TRUST_TOKEN_CLIENT_begin_redemption( client.get(), &redeem_msg, &redeem_msg_len, token, kClientData, sizeof(kClientData) - 1, kRedemptionTime)) { fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n"); return false; } bssl::UniquePtr<uint8_t> free_redeem_msg(redeem_msg); if (!TimeFunction(&results, [&]() -> bool { uint8_t *redeem_resp = NULL; size_t redeem_resp_len; TRUST_TOKEN *rtoken = NULL; uint8_t *client_data = NULL; size_t client_data_len; uint64_t redemption_time; int ok = TRUST_TOKEN_ISSUER_redeem( issuer.get(), &redeem_resp, &redeem_resp_len, &rtoken, &client_data, &client_data_len, &redemption_time, redeem_msg, redeem_msg_len, /*lifetime=*/600); OPENSSL_free(redeem_resp); OPENSSL_free(client_data); TRUST_TOKEN_free(rtoken); return ok; })) { fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n"); return false; } results.Print(name + " redeem"); uint8_t *redeem_resp = NULL; size_t redeem_resp_len; TRUST_TOKEN *rtoken = NULL; uint8_t *client_data = NULL; size_t client_data_len; uint64_t redemption_time; if (!TRUST_TOKEN_ISSUER_redeem(issuer.get(), &redeem_resp, &redeem_resp_len, &rtoken, &client_data, &client_data_len, &redemption_time, redeem_msg, redeem_msg_len, /*lifetime=*/600)) { fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n"); return false; } bssl::UniquePtr<uint8_t> free_redeem_resp(redeem_resp); bssl::UniquePtr<uint8_t> free_client_data(client_data); bssl::UniquePtr<TRUST_TOKEN> free_rtoken(rtoken); if (!TimeFunction(&results, [&]() -> bool { uint8_t *srr = NULL, *sig = NULL; size_t srr_len, sig_len; int ok = TRUST_TOKEN_CLIENT_finish_redemption( client.get(), &srr, &srr_len, &sig, &sig_len, redeem_resp, redeem_resp_len); OPENSSL_free(srr); OPENSSL_free(sig); return ok; })) { fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_redemption failed.\n"); return false; } results.Print(name + " finish_redemption"); return true; } #if defined(BORINGSSL_FIPS) static bool SpeedSelfTest(const std::string &selected) { if (!selected.empty() && selected.find("self-test") == std::string::npos) { return true; } TimeResults results; if (!TimeFunction(&results, []() -> bool { return BORINGSSL_self_test(); })) { fprintf(stderr, "BORINGSSL_self_test faileid.\n"); ERR_print_errors_fp(stderr); return false; } results.Print("self-test"); return true; } #endif static const struct argument kArguments[] = { { "-filter", kOptionalArgument, "A filter on the speed tests to run", }, { "-timeout", kOptionalArgument, "The number of seconds to run each test for (default is 1)", }, { "-chunks", kOptionalArgument, "A comma-separated list of input sizes to run tests at (default is " "16,256,1350,8192,16384)", }, { "-json", kBooleanArgument, "If this flag is set, speed will print the output of each benchmark in " "JSON format as follows: \"{\"description\": " "\"descriptionOfOperation\", \"numCalls\": 1234, " "\"timeInMicroseconds\": 1234567, \"bytesPerCall\": 1234}\". When " "there is no information about the bytes per call for an operation, " "the JSON field for bytesPerCall will be omitted.", }, { "", kOptionalArgument, "", }, }; bool Speed(const std::vector<std::string> &args) { std::map<std::string, std::string> args_map; if (!ParseKeyValueArguments(&args_map, args, kArguments)) { PrintUsage(kArguments); return false; } std::string selected; if (args_map.count("-filter") != 0) { selected = args_map["-filter"]; } if (args_map.count("-json") != 0) { g_print_json = true; } if (args_map.count("-timeout") != 0) { g_timeout_seconds = atoi(args_map["-timeout"].c_str()); } if (args_map.count("-chunks") != 0) { g_chunk_lengths.clear(); const char *start = args_map["-chunks"].data(); const char *end = start + args_map["-chunks"].size(); while (start != end) { errno = 0; char *ptr; unsigned long long val = strtoull(start, &ptr, 10); if (ptr == start /* no numeric characters found */ || errno == ERANGE /* overflow */ || static_cast<size_t>(val) != val) { fprintf(stderr, "Error parsing -chunks argument\n"); return false; } g_chunk_lengths.push_back(static_cast<size_t>(val)); start = ptr; if (start != end) { if (*start != ',') { fprintf(stderr, "Error parsing -chunks argument\n"); return false; } start++; } } } // kTLSADLen is the number of bytes of additional data that TLS passes to // AEADs. static const size_t kTLSADLen = 13; // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs. // These are AEADs that weren't originally defined as AEADs, but which we use // via the AEAD interface. In order for that to work, they have some TLS // knowledge in them and construct a couple of the AD bytes internally. static const size_t kLegacyADLen = kTLSADLen - 2; if (g_print_json) { puts("["); } if (!SpeedRSA(selected) || !SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEADOpen(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEADOpen(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", kLegacyADLen, selected) || !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, selected) || !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, selected) || !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, selected) || !SpeedAEAD(EVP_aead_aes_128_ccm_bluetooth(), "AES-128-CCM-Bluetooth", kTLSADLen, selected) || !SpeedAESBlock("AES-128", 128, selected) || !SpeedAESBlock("AES-256", 256, selected) || !SpeedHash(EVP_sha1(), "SHA-1", selected) || !SpeedHash(EVP_sha256(), "SHA-256", selected) || !SpeedHash(EVP_sha512(), "SHA-512", selected) || !SpeedHash(EVP_blake2b256(), "BLAKE2b-256", selected) || !SpeedRandom(selected) || !SpeedECDH(selected) || !SpeedECDSA(selected) || !Speed25519(selected) || !SpeedSPAKE2(selected) || !SpeedScrypt(selected) || !SpeedRSAKeyGen(selected) || !SpeedHRSS(selected) || !SpeedHashToCurve(selected) || !SpeedTrustToken("TrustToken-Exp1-Batch1", TRUST_TOKEN_experiment_v1(), 1, selected) || !SpeedTrustToken("TrustToken-Exp1-Batch10", TRUST_TOKEN_experiment_v1(), 10, selected) || !SpeedTrustToken("TrustToken-Exp2VOPRF-Batch1", TRUST_TOKEN_experiment_v2_voprf(), 1, selected) || !SpeedTrustToken("TrustToken-Exp2VOPRF-Batch10", TRUST_TOKEN_experiment_v2_voprf(), 10, selected) || !SpeedTrustToken("TrustToken-Exp2PMB-Batch1", TRUST_TOKEN_experiment_v2_pmb(), 1, selected) || !SpeedTrustToken("TrustToken-Exp2PMB-Batch10", TRUST_TOKEN_experiment_v2_pmb(), 10, selected) || !SpeedBase64(selected)) { return false; } #if defined(BORINGSSL_FIPS) if (!SpeedSelfTest(selected)) { return false; } #endif if (g_print_json) { puts("\n]"); } return true; }