ref: 94f2907dc40a6415a10c252cb9ba3971f1f7e838
dir: /third_party/boringssl/src/crypto/dh_extra/dh_test.cc/
/* Copyright (C) 1995-1998 Eric Young ([email protected]) * All rights reserved. * * This package is an SSL implementation written * by Eric Young ([email protected]). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson ([email protected]). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young ([email protected])" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson ([email protected])" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include <openssl/dh.h> #include <stdio.h> #include <string.h> #include <vector> #include <gtest/gtest.h> #include <openssl/bn.h> #include <openssl/bytestring.h> #include <openssl/crypto.h> #include <openssl/dh.h> #include <openssl/err.h> #include <openssl/mem.h> #include "../fipsmodule/dh/internal.h" #include "../test/test_util.h" TEST(DHTest, Basic) { bssl::UniquePtr<DH> a(DH_new()); ASSERT_TRUE(a); ASSERT_TRUE(DH_generate_parameters_ex(a.get(), 64, DH_GENERATOR_5, nullptr)); int check_result; ASSERT_TRUE(DH_check(a.get(), &check_result)); EXPECT_FALSE(check_result & DH_CHECK_P_NOT_PRIME); EXPECT_FALSE(check_result & DH_CHECK_P_NOT_SAFE_PRIME); EXPECT_FALSE(check_result & DH_CHECK_UNABLE_TO_CHECK_GENERATOR); EXPECT_FALSE(check_result & DH_CHECK_NOT_SUITABLE_GENERATOR); bssl::UniquePtr<DH> b(DHparams_dup(a.get())); ASSERT_TRUE(b); ASSERT_TRUE(DH_generate_key(a.get())); ASSERT_TRUE(DH_generate_key(b.get())); std::vector<uint8_t> key1(DH_size(a.get())); int ret = DH_compute_key(key1.data(), DH_get0_pub_key(b.get()), a.get()); ASSERT_GE(ret, 0); key1.resize(ret); std::vector<uint8_t> key2(DH_size(b.get())); ret = DH_compute_key(key2.data(), DH_get0_pub_key(a.get()), b.get()); ASSERT_GE(ret, 0); key2.resize(ret); EXPECT_EQ(Bytes(key1), Bytes(key2)); // |DH_compute_key|, unlike |DH_compute_key_padded|, removes leading zeros // from the output, so the key will not have a fixed length. This test uses a // small, 64-bit prime, so check for at least 32 bits of output after removing // leading zeros. EXPECT_GE(key1.size(), 4u); } // The following parameters are taken from RFC 5114, section 2.2. This is not a // safe prime. Do not use these parameters. static const uint8_t kRFC5114_2048_224P[] = { 0xad, 0x10, 0x7e, 0x1e, 0x91, 0x23, 0xa9, 0xd0, 0xd6, 0x60, 0xfa, 0xa7, 0x95, 0x59, 0xc5, 0x1f, 0xa2, 0x0d, 0x64, 0xe5, 0x68, 0x3b, 0x9f, 0xd1, 0xb5, 0x4b, 0x15, 0x97, 0xb6, 0x1d, 0x0a, 0x75, 0xe6, 0xfa, 0x14, 0x1d, 0xf9, 0x5a, 0x56, 0xdb, 0xaf, 0x9a, 0x3c, 0x40, 0x7b, 0xa1, 0xdf, 0x15, 0xeb, 0x3d, 0x68, 0x8a, 0x30, 0x9c, 0x18, 0x0e, 0x1d, 0xe6, 0xb8, 0x5a, 0x12, 0x74, 0xa0, 0xa6, 0x6d, 0x3f, 0x81, 0x52, 0xad, 0x6a, 0xc2, 0x12, 0x90, 0x37, 0xc9, 0xed, 0xef, 0xda, 0x4d, 0xf8, 0xd9, 0x1e, 0x8f, 0xef, 0x55, 0xb7, 0x39, 0x4b, 0x7a, 0xd5, 0xb7, 0xd0, 0xb6, 0xc1, 0x22, 0x07, 0xc9, 0xf9, 0x8d, 0x11, 0xed, 0x34, 0xdb, 0xf6, 0xc6, 0xba, 0x0b, 0x2c, 0x8b, 0xbc, 0x27, 0xbe, 0x6a, 0x00, 0xe0, 0xa0, 0xb9, 0xc4, 0x97, 0x08, 0xb3, 0xbf, 0x8a, 0x31, 0x70, 0x91, 0x88, 0x36, 0x81, 0x28, 0x61, 0x30, 0xbc, 0x89, 0x85, 0xdb, 0x16, 0x02, 0xe7, 0x14, 0x41, 0x5d, 0x93, 0x30, 0x27, 0x82, 0x73, 0xc7, 0xde, 0x31, 0xef, 0xdc, 0x73, 0x10, 0xf7, 0x12, 0x1f, 0xd5, 0xa0, 0x74, 0x15, 0x98, 0x7d, 0x9a, 0xdc, 0x0a, 0x48, 0x6d, 0xcd, 0xf9, 0x3a, 0xcc, 0x44, 0x32, 0x83, 0x87, 0x31, 0x5d, 0x75, 0xe1, 0x98, 0xc6, 0x41, 0xa4, 0x80, 0xcd, 0x86, 0xa1, 0xb9, 0xe5, 0x87, 0xe8, 0xbe, 0x60, 0xe6, 0x9c, 0xc9, 0x28, 0xb2, 0xb9, 0xc5, 0x21, 0x72, 0xe4, 0x13, 0x04, 0x2e, 0x9b, 0x23, 0xf1, 0x0b, 0x0e, 0x16, 0xe7, 0x97, 0x63, 0xc9, 0xb5, 0x3d, 0xcf, 0x4b, 0xa8, 0x0a, 0x29, 0xe3, 0xfb, 0x73, 0xc1, 0x6b, 0x8e, 0x75, 0xb9, 0x7e, 0xf3, 0x63, 0xe2, 0xff, 0xa3, 0x1f, 0x71, 0xcf, 0x9d, 0xe5, 0x38, 0x4e, 0x71, 0xb8, 0x1c, 0x0a, 0xc4, 0xdf, 0xfe, 0x0c, 0x10, 0xe6, 0x4f, }; static const uint8_t kRFC5114_2048_224G[] = { 0xac, 0x40, 0x32, 0xef, 0x4f, 0x2d, 0x9a, 0xe3, 0x9d, 0xf3, 0x0b, 0x5c, 0x8f, 0xfd, 0xac, 0x50, 0x6c, 0xde, 0xbe, 0x7b, 0x89, 0x99, 0x8c, 0xaf, 0x74, 0x86, 0x6a, 0x08, 0xcf, 0xe4, 0xff, 0xe3, 0xa6, 0x82, 0x4a, 0x4e, 0x10, 0xb9, 0xa6, 0xf0, 0xdd, 0x92, 0x1f, 0x01, 0xa7, 0x0c, 0x4a, 0xfa, 0xab, 0x73, 0x9d, 0x77, 0x00, 0xc2, 0x9f, 0x52, 0xc5, 0x7d, 0xb1, 0x7c, 0x62, 0x0a, 0x86, 0x52, 0xbe, 0x5e, 0x90, 0x01, 0xa8, 0xd6, 0x6a, 0xd7, 0xc1, 0x76, 0x69, 0x10, 0x19, 0x99, 0x02, 0x4a, 0xf4, 0xd0, 0x27, 0x27, 0x5a, 0xc1, 0x34, 0x8b, 0xb8, 0xa7, 0x62, 0xd0, 0x52, 0x1b, 0xc9, 0x8a, 0xe2, 0x47, 0x15, 0x04, 0x22, 0xea, 0x1e, 0xd4, 0x09, 0x93, 0x9d, 0x54, 0xda, 0x74, 0x60, 0xcd, 0xb5, 0xf6, 0xc6, 0xb2, 0x50, 0x71, 0x7c, 0xbe, 0xf1, 0x80, 0xeb, 0x34, 0x11, 0x8e, 0x98, 0xd1, 0x19, 0x52, 0x9a, 0x45, 0xd6, 0xf8, 0x34, 0x56, 0x6e, 0x30, 0x25, 0xe3, 0x16, 0xa3, 0x30, 0xef, 0xbb, 0x77, 0xa8, 0x6f, 0x0c, 0x1a, 0xb1, 0x5b, 0x05, 0x1a, 0xe3, 0xd4, 0x28, 0xc8, 0xf8, 0xac, 0xb7, 0x0a, 0x81, 0x37, 0x15, 0x0b, 0x8e, 0xeb, 0x10, 0xe1, 0x83, 0xed, 0xd1, 0x99, 0x63, 0xdd, 0xd9, 0xe2, 0x63, 0xe4, 0x77, 0x05, 0x89, 0xef, 0x6a, 0xa2, 0x1e, 0x7f, 0x5f, 0x2f, 0xf3, 0x81, 0xb5, 0x39, 0xcc, 0xe3, 0x40, 0x9d, 0x13, 0xcd, 0x56, 0x6a, 0xfb, 0xb4, 0x8d, 0x6c, 0x01, 0x91, 0x81, 0xe1, 0xbc, 0xfe, 0x94, 0xb3, 0x02, 0x69, 0xed, 0xfe, 0x72, 0xfe, 0x9b, 0x6a, 0xa4, 0xbd, 0x7b, 0x5a, 0x0f, 0x1c, 0x71, 0xcf, 0xff, 0x4c, 0x19, 0xc4, 0x18, 0xe1, 0xf6, 0xec, 0x01, 0x79, 0x81, 0xbc, 0x08, 0x7f, 0x2a, 0x70, 0x65, 0xb3, 0x84, 0xb8, 0x90, 0xd3, 0x19, 0x1f, 0x2b, 0xfa, }; static const uint8_t kRFC5114_2048_224Q[] = { 0x80, 0x1c, 0x0d, 0x34, 0xc5, 0x8d, 0x93, 0xfe, 0x99, 0x71, 0x77, 0x10, 0x1f, 0x80, 0x53, 0x5a, 0x47, 0x38, 0xce, 0xbc, 0xbf, 0x38, 0x9a, 0x99, 0xb3, 0x63, 0x71, 0xeb, }; // kRFC5114_2048_224BadY is a bad y-coordinate for RFC 5114's 2048-bit MODP // Group with 224-bit Prime Order Subgroup (section 2.2). static const uint8_t kRFC5114_2048_224BadY[] = { 0x45, 0x32, 0x5f, 0x51, 0x07, 0xe5, 0xdf, 0x1c, 0xd6, 0x02, 0x82, 0xb3, 0x32, 0x8f, 0xa4, 0x0f, 0x87, 0xb8, 0x41, 0xfe, 0xb9, 0x35, 0xde, 0xad, 0xc6, 0x26, 0x85, 0xb4, 0xff, 0x94, 0x8c, 0x12, 0x4c, 0xbf, 0x5b, 0x20, 0xc4, 0x46, 0xa3, 0x26, 0xeb, 0xa4, 0x25, 0xb7, 0x68, 0x8e, 0xcc, 0x67, 0xba, 0xea, 0x58, 0xd0, 0xf2, 0xe9, 0xd2, 0x24, 0x72, 0x60, 0xda, 0x88, 0x18, 0x9c, 0xe0, 0x31, 0x6a, 0xad, 0x50, 0x6d, 0x94, 0x35, 0x8b, 0x83, 0x4a, 0x6e, 0xfa, 0x48, 0x73, 0x0f, 0x83, 0x87, 0xff, 0x6b, 0x66, 0x1f, 0xa8, 0x82, 0xc6, 0x01, 0xe5, 0x80, 0xb5, 0xb0, 0x52, 0xd0, 0xe9, 0xd8, 0x72, 0xf9, 0x7d, 0x5b, 0x8b, 0xa5, 0x4c, 0xa5, 0x25, 0x95, 0x74, 0xe2, 0x7a, 0x61, 0x4e, 0xa7, 0x8f, 0x12, 0xe2, 0xd2, 0x9d, 0x8c, 0x02, 0x70, 0x34, 0x44, 0x32, 0xc7, 0xb2, 0xf3, 0xb9, 0xfe, 0x17, 0x2b, 0xd6, 0x1f, 0x8b, 0x7e, 0x4a, 0xfa, 0xa3, 0xb5, 0x3e, 0x7a, 0x81, 0x9a, 0x33, 0x66, 0x62, 0xa4, 0x50, 0x18, 0x3e, 0xa2, 0x5f, 0x00, 0x07, 0xd8, 0x9b, 0x22, 0xe4, 0xec, 0x84, 0xd5, 0xeb, 0x5a, 0xf3, 0x2a, 0x31, 0x23, 0xd8, 0x44, 0x22, 0x2a, 0x8b, 0x37, 0x44, 0xcc, 0xc6, 0x87, 0x4b, 0xbe, 0x50, 0x9d, 0x4a, 0xc4, 0x8e, 0x45, 0xcf, 0x72, 0x4d, 0xc0, 0x89, 0xb3, 0x72, 0xed, 0x33, 0x2c, 0xbc, 0x7f, 0x16, 0x39, 0x3b, 0xeb, 0xd2, 0xdd, 0xa8, 0x01, 0x73, 0x84, 0x62, 0xb9, 0x29, 0xd2, 0xc9, 0x51, 0x32, 0x9e, 0x7a, 0x6a, 0xcf, 0xc1, 0x0a, 0xdb, 0x0e, 0xe0, 0x62, 0x77, 0x6f, 0x59, 0x62, 0x72, 0x5a, 0x69, 0xa6, 0x5b, 0x70, 0xca, 0x65, 0xc4, 0x95, 0x6f, 0x9a, 0xc2, 0xdf, 0x72, 0x6d, 0xb1, 0x1e, 0x54, 0x7b, 0x51, 0xb4, 0xef, 0x7f, 0x89, 0x93, 0x74, 0x89, 0x59, }; static bssl::UniquePtr<DH> NewDHGroup(const BIGNUM *p, const BIGNUM *q, const BIGNUM *g) { bssl::UniquePtr<BIGNUM> p_copy(BN_dup(p)); bssl::UniquePtr<BIGNUM> q_copy(q != nullptr ? BN_dup(q) : nullptr); bssl::UniquePtr<BIGNUM> g_copy(BN_dup(g)); bssl::UniquePtr<DH> dh(DH_new()); if (p_copy == nullptr || (q != nullptr && q_copy == nullptr) || g_copy == nullptr || dh == nullptr || !DH_set0_pqg(dh.get(), p_copy.get(), q_copy.get(), g_copy.get())) { return nullptr; } p_copy.release(); q_copy.release(); g_copy.release(); return dh; } TEST(DHTest, BadY) { bssl::UniquePtr<BIGNUM> p( BN_bin2bn(kRFC5114_2048_224P, sizeof(kRFC5114_2048_224P), nullptr)); bssl::UniquePtr<BIGNUM> q( BN_bin2bn(kRFC5114_2048_224Q, sizeof(kRFC5114_2048_224Q), nullptr)); bssl::UniquePtr<BIGNUM> g( BN_bin2bn(kRFC5114_2048_224G, sizeof(kRFC5114_2048_224G), nullptr)); ASSERT_TRUE(p); ASSERT_TRUE(q); ASSERT_TRUE(g); bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), q.get(), g.get()); ASSERT_TRUE(dh); bssl::UniquePtr<BIGNUM> pub_key( BN_bin2bn(kRFC5114_2048_224BadY, sizeof(kRFC5114_2048_224BadY), nullptr)); ASSERT_TRUE(pub_key); ASSERT_TRUE(DH_generate_key(dh.get())); int flags; ASSERT_TRUE(DH_check_pub_key(dh.get(), pub_key.get(), &flags)); EXPECT_TRUE(flags & DH_CHECK_PUBKEY_INVALID) << "DH_check_pub_key did not reject the key"; std::vector<uint8_t> result(DH_size(dh.get())); EXPECT_LT(DH_compute_key(result.data(), pub_key.get(), dh.get()), 0) << "DH_compute_key unexpectedly succeeded"; ERR_clear_error(); } static bool BIGNUMEqualsHex(const BIGNUM *bn, const char *hex) { BIGNUM *hex_bn = NULL; if (!BN_hex2bn(&hex_bn, hex)) { return false; } bssl::UniquePtr<BIGNUM> free_hex_bn(hex_bn); return BN_cmp(bn, hex_bn) == 0; } TEST(DHTest, ASN1) { // kParams are a set of Diffie-Hellman parameters generated with // openssl dhparam 256 static const uint8_t kParams[] = { 0x30, 0x26, 0x02, 0x21, 0x00, 0xd7, 0x20, 0x34, 0xa3, 0x27, 0x4f, 0xdf, 0xbf, 0x04, 0xfd, 0x24, 0x68, 0x25, 0xb6, 0x56, 0xd8, 0xab, 0x2a, 0x41, 0x2d, 0x74, 0x0a, 0x52, 0x08, 0x7c, 0x40, 0x71, 0x4e, 0xd2, 0x57, 0x93, 0x13, 0x02, 0x01, 0x02, }; CBS cbs; CBS_init(&cbs, kParams, sizeof(kParams)); bssl::UniquePtr<DH> dh(DH_parse_parameters(&cbs)); ASSERT_TRUE(dh); EXPECT_EQ(CBS_len(&cbs), 0u); EXPECT_TRUE(BIGNUMEqualsHex( DH_get0_p(dh.get()), "d72034a3274fdfbf04fd246825b656d8ab2a412d740a52087c40714ed2579313")); EXPECT_TRUE(BIGNUMEqualsHex(DH_get0_g(dh.get()), "2")); EXPECT_EQ(dh->priv_length, 0u); bssl::ScopedCBB cbb; uint8_t *der; size_t der_len; ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(DH_marshal_parameters(cbb.get(), dh.get())); ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len)); bssl::UniquePtr<uint8_t> free_der(der); EXPECT_EQ(Bytes(kParams), Bytes(der, der_len)); // kParamsDSA are a set of Diffie-Hellman parameters generated with // openssl dhparam 256 -dsaparam static const uint8_t kParamsDSA[] = { 0x30, 0x81, 0x89, 0x02, 0x41, 0x00, 0x93, 0xf3, 0xc1, 0x18, 0x01, 0xe6, 0x62, 0xb6, 0xd1, 0x46, 0x9a, 0x2c, 0x72, 0xea, 0x31, 0xd9, 0x18, 0x10, 0x30, 0x28, 0x63, 0xe2, 0x34, 0x7d, 0x80, 0xca, 0xee, 0x82, 0x2b, 0x19, 0x3c, 0x19, 0xbb, 0x42, 0x83, 0x02, 0x70, 0xdd, 0xdb, 0x8c, 0x03, 0xab, 0xe9, 0x9c, 0xc4, 0x00, 0x4d, 0x70, 0x5f, 0x52, 0x03, 0x31, 0x2c, 0xa4, 0x67, 0x34, 0x51, 0x95, 0x2a, 0xac, 0x11, 0xe2, 0x6a, 0x55, 0x02, 0x40, 0x44, 0xc8, 0x10, 0x53, 0x44, 0x32, 0x31, 0x63, 0xd8, 0xd1, 0x8c, 0x75, 0xc8, 0x98, 0x53, 0x3b, 0x5b, 0x4a, 0x2a, 0x0a, 0x09, 0xe7, 0xd0, 0x3c, 0x53, 0x72, 0xa8, 0x6b, 0x70, 0x41, 0x9c, 0x26, 0x71, 0x44, 0xfc, 0x7f, 0x08, 0x75, 0xe1, 0x02, 0xab, 0x74, 0x41, 0xe8, 0x2a, 0x3d, 0x3c, 0x26, 0x33, 0x09, 0xe4, 0x8b, 0xb4, 0x41, 0xec, 0xa6, 0xa8, 0xba, 0x1a, 0x07, 0x8a, 0x77, 0xf5, 0x5f, 0x02, 0x02, 0x00, 0xa0, }; CBS_init(&cbs, kParamsDSA, sizeof(kParamsDSA)); dh.reset(DH_parse_parameters(&cbs)); ASSERT_TRUE(dh); EXPECT_EQ(CBS_len(&cbs), 0u); EXPECT_TRUE( BIGNUMEqualsHex(DH_get0_p(dh.get()), "93f3c11801e662b6d1469a2c72ea31d91810302863e2347d80caee8" "22b193c19bb42830270dddb8c03abe99cc4004d705f5203312ca467" "3451952aac11e26a55")); EXPECT_TRUE( BIGNUMEqualsHex(DH_get0_g(dh.get()), "44c8105344323163d8d18c75c898533b5b4a2a0a09e7d03c5372a86" "b70419c267144fc7f0875e102ab7441e82a3d3c263309e48bb441ec" "a6a8ba1a078a77f55f")); EXPECT_EQ(dh->priv_length, 160u); ASSERT_TRUE(CBB_init(cbb.get(), 0)); ASSERT_TRUE(DH_marshal_parameters(cbb.get(), dh.get())); ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len)); bssl::UniquePtr<uint8_t> free_der2(der); EXPECT_EQ(Bytes(kParamsDSA), Bytes(der, der_len)); } TEST(DHTest, RFC3526) { bssl::UniquePtr<BIGNUM> bn(BN_get_rfc3526_prime_1536(nullptr)); ASSERT_TRUE(bn); static const uint8_t kPrime1536[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f, 0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b, 0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67, 0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, 0x3b, 0x13, 0x9b, 0x22, 0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, 0xef, 0x95, 0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d, 0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51, 0xc2, 0x45, 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6, 0xf4, 0x4c, 0x42, 0xe9, 0xa6, 0x37, 0xed, 0x6b, 0x0b, 0xff, 0x5c, 0xb6, 0xf4, 0x06, 0xb7, 0xed, 0xee, 0x38, 0x6b, 0xfb, 0x5a, 0x89, 0x9f, 0xa5, 0xae, 0x9f, 0x24, 0x11, 0x7c, 0x4b, 0x1f, 0xe6, 0x49, 0x28, 0x66, 0x51, 0xec, 0xe4, 0x5b, 0x3d, 0xc2, 0x00, 0x7c, 0xb8, 0xa1, 0x63, 0xbf, 0x05, 0x98, 0xda, 0x48, 0x36, 0x1c, 0x55, 0xd3, 0x9a, 0x69, 0x16, 0x3f, 0xa8, 0xfd, 0x24, 0xcf, 0x5f, 0x83, 0x65, 0x5d, 0x23, 0xdc, 0xa3, 0xad, 0x96, 0x1c, 0x62, 0xf3, 0x56, 0x20, 0x85, 0x52, 0xbb, 0x9e, 0xd5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6d, 0x67, 0x0c, 0x35, 0x4e, 0x4a, 0xbc, 0x98, 0x04, 0xf1, 0x74, 0x6c, 0x08, 0xca, 0x23, 0x73, 0x27, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; uint8_t buffer[sizeof(kPrime1536)]; ASSERT_EQ(BN_num_bytes(bn.get()), sizeof(kPrime1536)); ASSERT_EQ(BN_bn2bin(bn.get(), buffer), sizeof(kPrime1536)); EXPECT_EQ(Bytes(buffer), Bytes(kPrime1536)); } TEST(DHTest, LeadingZeros) { bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_1536(nullptr)); ASSERT_TRUE(p); bssl::UniquePtr<BIGNUM> g(BN_new()); ASSERT_TRUE(g); ASSERT_TRUE(BN_set_word(g.get(), 2)); bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(dh); // These values are far too small to be reasonable Diffie-Hellman keys, but // they are an easy way to get a shared secret with leading zeros. bssl::UniquePtr<BIGNUM> priv_key(BN_new()), peer_key(BN_new()); ASSERT_TRUE(priv_key); ASSERT_TRUE(BN_set_word(priv_key.get(), 2)); ASSERT_TRUE(peer_key); ASSERT_TRUE(BN_set_word(peer_key.get(), 3)); ASSERT_TRUE(DH_set0_key(dh.get(), /*pub_key=*/nullptr, priv_key.get())); priv_key.release(); uint8_t padded[192] = {0}; padded[191] = 9; static const uint8_t kTruncated[] = {9}; EXPECT_EQ(int(sizeof(padded)), DH_size(dh.get())); std::vector<uint8_t> buf(DH_size(dh.get())); int len = DH_compute_key(buf.data(), peer_key.get(), dh.get()); ASSERT_GT(len, 0); EXPECT_EQ(Bytes(buf.data(), len), Bytes(kTruncated)); len = DH_compute_key_padded(buf.data(), peer_key.get(), dh.get()); ASSERT_GT(len, 0); EXPECT_EQ(Bytes(buf.data(), len), Bytes(padded)); } TEST(DHTest, Overwrite) { // Generate a DH key with the 1536-bit MODP group. bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_1536(nullptr)); ASSERT_TRUE(p); bssl::UniquePtr<BIGNUM> g(BN_new()); ASSERT_TRUE(g); ASSERT_TRUE(BN_set_word(g.get(), 2)); bssl::UniquePtr<DH> key1 = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(key1); ASSERT_TRUE(DH_generate_key(key1.get())); bssl::UniquePtr<BIGNUM> peer_key(BN_new()); ASSERT_TRUE(peer_key); ASSERT_TRUE(BN_set_word(peer_key.get(), 42)); // Use the key to fill in cached values. std::vector<uint8_t> buf1(DH_size(key1.get())); ASSERT_GT(DH_compute_key_padded(buf1.data(), peer_key.get(), key1.get()), 0); // Generate a different key with a different group. p.reset(BN_get_rfc3526_prime_2048(nullptr)); ASSERT_TRUE(p); bssl::UniquePtr<DH> key2 = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(key2); ASSERT_TRUE(DH_generate_key(key2.get())); // Overwrite |key1|'s contents with |key2|. p.reset(BN_dup(DH_get0_p(key2.get()))); ASSERT_TRUE(p); g.reset(BN_dup(DH_get0_g(key2.get()))); ASSERT_TRUE(g); bssl::UniquePtr<BIGNUM> pub(BN_dup(DH_get0_pub_key(key2.get()))); ASSERT_TRUE(pub); bssl::UniquePtr<BIGNUM> priv(BN_dup(DH_get0_priv_key(key2.get()))); ASSERT_TRUE(priv); ASSERT_TRUE(DH_set0_pqg(key1.get(), p.get(), /*q=*/nullptr, g.get())); p.release(); g.release(); ASSERT_TRUE(DH_set0_key(key1.get(), pub.get(), priv.get())); pub.release(); priv.release(); // Verify that |key1| and |key2| behave equivalently. buf1.resize(DH_size(key1.get())); ASSERT_GT(DH_compute_key_padded(buf1.data(), peer_key.get(), key1.get()), 0); std::vector<uint8_t> buf2(DH_size(key2.get())); ASSERT_GT(DH_compute_key_padded(buf2.data(), peer_key.get(), key2.get()), 0); EXPECT_EQ(Bytes(buf1), Bytes(buf2)); } TEST(DHTest, GenerateKeyTwice) { bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_2048(nullptr)); ASSERT_TRUE(p); bssl::UniquePtr<BIGNUM> g(BN_new()); ASSERT_TRUE(g); ASSERT_TRUE(BN_set_word(g.get(), 2)); bssl::UniquePtr<DH> key1 = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(key1); ASSERT_TRUE(DH_generate_key(key1.get())); // Copy the parameters and private key to a new DH object. bssl::UniquePtr<DH> key2(DHparams_dup(key1.get())); ASSERT_TRUE(key2); bssl::UniquePtr<BIGNUM> priv_key(BN_dup(DH_get0_priv_key(key1.get()))); ASSERT_TRUE(DH_set0_key(key2.get(), /*pub_key=*/NULL, priv_key.get())); priv_key.release(); // This time, calling |DH_generate_key| preserves the old key and recomputes // the public key. ASSERT_TRUE(DH_generate_key(key2.get())); EXPECT_EQ(BN_cmp(DH_get0_priv_key(key1.get()), DH_get0_priv_key(key2.get())), 0); EXPECT_EQ(BN_cmp(DH_get0_pub_key(key1.get()), DH_get0_pub_key(key2.get())), 0); } // Bad parameters should be rejected, rather than cause a DoS risk in the // event that an application uses Diffie-Hellman incorrectly, with untrusted // domain parameters. TEST(DHTest, InvalidParameters) { auto check_invalid_group = [](DH *dh) { // All operations on egregiously invalid groups should fail. EXPECT_FALSE(DH_generate_key(dh)); int check_result; EXPECT_FALSE(DH_check(dh, &check_result)); bssl::UniquePtr<BIGNUM> pub_key(BN_new()); ASSERT_TRUE(pub_key); ASSERT_TRUE(BN_set_u64(pub_key.get(), 42)); EXPECT_FALSE(DH_check_pub_key(dh, pub_key.get(), &check_result)); uint8_t buf[1024]; EXPECT_EQ(DH_compute_key(buf, pub_key.get(), dh), -1); EXPECT_EQ(DH_compute_key_padded(buf, pub_key.get(), dh), -1); }; bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_2048(nullptr)); ASSERT_TRUE(p); bssl::UniquePtr<BIGNUM> g(BN_new()); ASSERT_TRUE(g); ASSERT_TRUE(BN_set_word(g.get(), 2)); // p is negative. BN_set_negative(p.get(), 1); bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(dh); BN_set_negative(p.get(), 0); check_invalid_group(dh.get()); // g is negative. BN_set_negative(g.get(), 1); dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(dh); BN_set_negative(g.get(), 0); check_invalid_group(dh.get()); // g is not reduced mod p. dh = NewDHGroup(p.get(), /*q=*/nullptr, p.get()); ASSERT_TRUE(dh); BN_set_negative(g.get(), 0); check_invalid_group(dh.get()); // p is too large. bssl::UniquePtr<BIGNUM> large(BN_new()); ASSERT_TRUE(BN_set_bit(large.get(), 0)); ASSERT_TRUE(BN_set_bit(large.get(), 10000000)); dh = NewDHGroup(large.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(dh); check_invalid_group(dh.get()); // q is too large. dh = NewDHGroup(p.get(), large.get(), g.get()); ASSERT_TRUE(dh); check_invalid_group(dh.get()); // Attempting to generate too large of a Diffie-Hellman group should fail. EXPECT_FALSE( DH_generate_parameters_ex(dh.get(), 20000, DH_GENERATOR_5, nullptr)); } TEST(DHTest, PrivateKeyLength) { // Use a custom P, rather than one of the MODP primes, to pick one which does // not begin with all ones. Otherwise some of the tests for boundary // conditions below will not notice mistakes. static const uint8_t kP[] = { 0xb6, 0xfa, 0x00, 0x07, 0x0a, 0x1f, 0xfb, 0x28, 0x7e, 0x6e, 0x6a, 0x97, 0xca, 0xa4, 0x6d, 0xf5, 0x25, 0x84, 0x76, 0xc6, 0xc4, 0xa5, 0x47, 0xb6, 0xb2, 0x7d, 0x76, 0x46, 0xf2, 0xb5, 0x7c, 0xc6, 0xc6, 0xb4, 0xb4, 0x82, 0xc5, 0xed, 0x7b, 0xd9, 0x30, 0x6e, 0x41, 0xdb, 0x7f, 0x93, 0x2f, 0xb5, 0x85, 0xa7, 0x38, 0x9e, 0x08, 0xc4, 0x25, 0x92, 0x7d, 0x5d, 0x2b, 0x77, 0x09, 0xe0, 0x2f, 0x4e, 0x14, 0x36, 0x8a, 0x08, 0x0b, 0xfd, 0x89, 0x22, 0x47, 0xb4, 0xbd, 0xff, 0x79, 0x4e, 0x78, 0x66, 0x2a, 0x77, 0x74, 0xbd, 0x85, 0xb6, 0xce, 0x5a, 0x89, 0xb7, 0x60, 0xc3, 0x8d, 0x2a, 0x1f, 0xb7, 0x30, 0x33, 0x1a, 0xc4, 0x51, 0xa8, 0x18, 0x62, 0x40, 0xb6, 0x5a, 0xb5, 0x6c, 0xf5, 0xf9, 0xbc, 0x94, 0x50, 0xba, 0xeb, 0xa2, 0xe9, 0xb3, 0x99, 0xde, 0xf8, 0x55, 0xfd, 0xed, 0x46, 0x1b, 0x69, 0xa5, 0x6a, 0x04, 0xe3, 0xa9, 0x2c, 0x0c, 0x89, 0x41, 0xfe, 0xe4, 0xa0, 0x85, 0x85, 0x2c, 0x45, 0xf1, 0xcb, 0x96, 0x04, 0x23, 0x4a, 0x7d, 0x56, 0x38, 0xd8, 0x86, 0x9d, 0xfc, 0xe0, 0x33, 0x65, 0x1a, 0xff, 0x07, 0xf0, 0xfb, 0xc6, 0x5d, 0x26, 0xa2, 0x96, 0xd4, 0xb5, 0xe8, 0xcd, 0x48, 0xd7, 0x8e, 0x53, 0xfe, 0xcb, 0x4b, 0xf2, 0x3a, 0x8b, 0x35, 0x87, 0x0a, 0x79, 0xbe, 0x8d, 0x36, 0x45, 0x12, 0x6e, 0x1b, 0xd4, 0xa5, 0x57, 0xe0, 0x98, 0xb7, 0x59, 0xba, 0xc2, 0xd8, 0x2e, 0x05, 0x0f, 0xe1, 0x70, 0x39, 0x5b, 0xe6, 0x4e, 0xdb, 0xb0, 0xdd, 0x7e, 0xe6, 0x66, 0x13, 0x85, 0x26, 0x32, 0x27, 0xa1, 0x00, 0x7f, 0x6a, 0xa9, 0xda, 0x2e, 0x50, 0x25, 0x87, 0x73, 0xab, 0x71, 0xfb, 0xa0, 0x92, 0xba, 0x8e, 0x9c, 0x4e, 0xea, 0x18, 0x32, 0xc4, 0x02, 0x8f, 0xe8, 0x95, 0x9e, 0xcb, 0x9f}; bssl::UniquePtr<BIGNUM> p(BN_bin2bn(kP, sizeof(kP), nullptr)); ASSERT_TRUE(p); bssl::UniquePtr<BIGNUM> g(BN_new()); ASSERT_TRUE(g); ASSERT_TRUE(BN_set_word(g.get(), 2)); bssl::UniquePtr<BIGNUM> q(BN_new()); ASSERT_TRUE(q); ASSERT_TRUE(BN_rshift1(q.get(), p.get())); // (p-1)/2 EXPECT_EQ(BN_num_bits(p.get()), 2048u); EXPECT_EQ(BN_num_bits(q.get()), 2047u); // This test will only probabilistically notice some kinds of failures, so we // repeat it for several iterations. constexpr unsigned kIterations = 100; // If the private key was chosen from the range [1, M), num_bits(priv_key) // should be very close to num_bits(M), but may be a few bits short. Allow 128 // leading zeros, which should fail with negligible probability. constexpr unsigned kMaxLeadingZeros = 128; for (unsigned i = 0; i < kIterations; i++) { // If unspecified, the private key is bounded by q = (p-1)/2. bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(dh); ASSERT_TRUE(DH_generate_key(dh.get())); EXPECT_LT(BN_cmp(DH_get0_priv_key(dh.get()), q.get()), 0); EXPECT_LE(BN_num_bits(q.get()) - kMaxLeadingZeros, BN_num_bits(DH_get0_priv_key(dh.get()))); // Setting too large of a private key length should not be a DoS vector. The // key is clamped to q = (p-1)/2. dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(dh); DH_set_length(dh.get(), 10000000); ASSERT_TRUE(DH_generate_key(dh.get())); EXPECT_LT(BN_cmp(DH_get0_priv_key(dh.get()), q.get()), 0); EXPECT_LE(BN_num_bits(q.get()) - kMaxLeadingZeros, BN_num_bits(DH_get0_priv_key(dh.get()))); // A small private key size should bound the private key. dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(dh); unsigned bits = 1024; DH_set_length(dh.get(), bits); ASSERT_TRUE(DH_generate_key(dh.get())); EXPECT_LE(BN_num_bits(DH_get0_priv_key(dh.get())), bits); EXPECT_LE(bits - kMaxLeadingZeros, BN_num_bits(DH_get0_priv_key(dh.get()))); // If the private key length is num_bits(q) - 1, the length should be the // limiting factor. dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(dh); bits = BN_num_bits(q.get()) - 1; DH_set_length(dh.get(), bits); ASSERT_TRUE(DH_generate_key(dh.get())); EXPECT_LE(BN_num_bits(DH_get0_priv_key(dh.get())), bits); EXPECT_LE(bits - kMaxLeadingZeros, BN_num_bits(DH_get0_priv_key(dh.get()))); // If the private key length is num_bits(q), q should be the limiting // factor. dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); ASSERT_TRUE(dh); DH_set_length(dh.get(), BN_num_bits(q.get())); ASSERT_TRUE(DH_generate_key(dh.get())); EXPECT_LT(BN_cmp(DH_get0_priv_key(dh.get()), q.get()), 0); EXPECT_LE(BN_num_bits(q.get()) - kMaxLeadingZeros, BN_num_bits(DH_get0_priv_key(dh.get()))); } }