ref: f0df85ba2a573c6c5c602667e9f91ef3b00c1d20
dir: /src/renderer/ftgrays.c/
/***************************************************************************/ /* */ /* ftgrays.c */ /* */ /* A new `perfect' anti-aliasing renderer (body). */ /* */ /* Copyright 2000 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ /*************************************************************************/ /* */ /* This file can be compiled without the rest of the FreeType engine, */ /* by defining the _STANDALONE_ macro when compiling it. You also need */ /* to put the files `ftgrays.h' and `ftimage.h' into the current */ /* compilation directory. Typically, you could do something like */ /* */ /* - copy `src/base/ftgrays.c' to your current directory */ /* */ /* - copy `include/freetype/ftimage.h' and */ /* `include/freetype/ftgrays.h' to the same directory */ /* */ /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */ /* */ /* cc -c -D_STANDALONE_ ftgrays.c */ /* */ /* The renderer can be initialized with a call to */ /* `ft_grays_raster.grays_raster_new'; an anti-aliased bitmap can be */ /* generated with a call to `ft_grays_raster.grays_raster_render'. */ /* */ /* See the comments and documentation in the file `ftimage.h' for */ /* more details on how the raster works. */ /* */ /*************************************************************************/ /*************************************************************************/ /* */ /* This is a new anti-aliasing scan-converter for FreeType 2. The */ /* algorithm used here is _very_ different from the one in the standard */ /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */ /* coverage of the outline on each pixel cell. */ /* */ /* It is based on ideas that I initially found in Raph Levien's */ /* excellent LibArt graphics library (see http://www.levien.com/libart */ /* for more information, though the web pages do not tell anything */ /* about the renderer; you'll have to dive into the source code to */ /* understand how it works). */ /* */ /* Note, however, that this is a _very_ different implementation */ /* compared Raph's. Coverage information is stored in a very different */ /* way, and I don't use sorted vector paths. Also, it doesn't use */ /* floating point values. */ /* */ /* This renderer has the following advantages: */ /* */ /* - It doesn't need an intermediate bitmap. Instead, one can supply */ /* a callback function that will be called by the renderer to draw */ /* gray spans on any target surface. You can thus do direct */ /* composition on any kind of bitmap, provided that you give the */ /* renderer the right callback. */ /* */ /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */ /* each pixel cell */ /* */ /* - It performs a single pass on the outline (the `standard' FT2 */ /* renderer makes two passes). */ /* */ /* - It can easily be modified to render to _any_ number of gray levels */ /* cheaply. */ /* */ /* - For small (< 20) pixel sizes, it is faster than the standard */ /* renderer. */ /* */ /*************************************************************************/ #include <string.h> /* for memcpy() */ /*************************************************************************/ /* */ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ /* messages during execution. */ /* */ #undef FT_COMPONENT #define FT_COMPONENT trace_aaraster #define ErrRaster_Invalid_Outline -1 #ifdef _STANDALONE_ #include "ftimage.h" #include "ftgrays.h" /* This macro is used to indicate that a function parameter is unused. */ /* Its purpose is simply to reduce compiler warnings. Note also that */ /* simply defining it as `(void)x' doesn't avoid warnings with certain */ /* ANSI compilers (e.g. LCC). */ #define UNUSED( x ) (x) = (x) /* Disable the tracing mechanism for simplicity -- developers can */ /* activate it easily by redefining these two macros. */ #ifndef FT_ERROR #define FT_ERROR( x ) do ; while ( 0 ) /* nothing */ #endif #ifndef FT_TRACE #define FT_TRACE( x ) do ; while ( 0 ) /* nothing */ #endif #else /* _STANDALONE_ */ #include "ftgrays.h" #include <freetype/internal/ftobjs.h> /* for UNUSED() */ #include <freetype/internal/ftdebug.h> /* for FT_TRACE() and FT_ERROR() */ #include <freetype/freetype.h> /* for FT_Outline_Decompose() */ #endif /* _STANDALONE_ */ /* define this to dump debugging information */ #define xxxDEBUG_GRAYS /* as usual, for the speed hungry :-) */ #ifndef FT_STATIC_RASTER #define RAS_ARG PRaster raster #define RAS_ARG_ PRaster raster, #define RAS_VAR raster #define RAS_VAR_ raster, #define ras (*raster) #else /* FT_STATIC_RASTER */ #define RAS_ARG /* empty */ #define RAS_ARG_ /* empty */ #define RAS_VAR /* empty */ #define RAS_VAR_ /* empty */ static TRaster ras; #endif /* FT_STATIC_RASTER */ /* must be at least 6 bits! */ #define PIXEL_BITS 8 #define ONE_PIXEL ( 1L << PIXEL_BITS ) #define PIXEL_MASK ( -1L << PIXEL_BITS ) #define TRUNC( x ) ( (x) >> PIXEL_BITS ) #define SUBPIXELS( x ) ( (x) << PIXEL_BITS ) #define FLOOR( x ) ( (x) & -ONE_PIXEL ) #define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL ) #define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL ) #if PIXEL_BITS >= 6 #define UPSCALE( x ) ( (x) << ( PIXEL_BITS - 6 ) ) #define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) ) #else #define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) ) #define DOWNSCALE( x ) ( (x) << ( 6 - PIXEL_BITS ) ) #endif /* Define this if you want to use a more compact storage scheme. This */ /* increases the number of cells available in the render pool but slows */ /* down the rendering a bit. It is useful if you have a really tiny */ /* render pool. */ #define xxxGRAYS_COMPACT /*************************************************************************/ /* */ /* TYPE DEFINITIONS */ /* */ typedef int TScan; /* integer scanline/pixel coordinate */ typedef long TPos; /* sub-pixel coordinate */ /* maximal number of gray spans in a call to the span callback */ #define FT_MAX_GRAY_SPANS 32 #ifdef GRAYS_COMPACT typedef struct TCell_ { short x : 14; short y : 14; int cover : PIXEL_BITS + 2; int area : PIXEL_BITS * 2 + 2; } TCell, *PCell; #else /* GRAYS_COMPACT */ typedef struct TCell_ { TScan x; TScan y; int cover; int area; } TCell, *PCell; #endif /* GRAYS_COMPACT */ typedef struct TRaster_ { PCell cells; int max_cells; int num_cells; TScan min_ex, max_ex; TScan min_ey, max_ey; int area; int cover; int invalid; TScan ex, ey; TScan cx, cy; TPos x, y; TScan last_ey; FT_Vector bez_stack[32 * 3]; int lev_stack[32]; FT_Outline outline; FT_Bitmap target; FT_Span gray_spans[FT_MAX_GRAY_SPANS]; int num_gray_spans; FT_Raster_Span_Func render_span; void* render_span_data; int span_y; int band_size; int band_shoot; int conic_level; int cubic_level; void* memory; } TRaster, *PRaster; /*************************************************************************/ /* */ /* Initialize the cells table. */ /* */ static void init_cells( RAS_ARG_ void* buffer, long byte_size ) { ras.cells = (PCell)buffer; ras.max_cells = byte_size / sizeof ( TCell ); ras.num_cells = 0; ras.area = 0; ras.cover = 0; ras.invalid = 1; } /*************************************************************************/ /* */ /* Compute the outline bounding box. */ /* */ static void compute_cbox( RAS_ARG_ FT_Outline* outline ) { FT_Vector* vec = outline->points; FT_Vector* limit = vec + outline->n_points; if ( outline->n_points <= 0 ) { ras.min_ex = ras.max_ex = 0; ras.min_ey = ras.max_ey = 0; return; } ras.min_ex = ras.max_ex = vec->x; ras.min_ey = ras.max_ey = vec->y; vec++; for ( ; vec < limit; vec++ ) { TPos x = vec->x; TPos y = vec->y; if ( x < ras.min_ex ) ras.min_ex = x; if ( x > ras.max_ex ) ras.max_ex = x; if ( y < ras.min_ey ) ras.min_ey = y; if ( y > ras.max_ey ) ras.max_ey = y; } /* truncate the bounding box to integer pixels */ ras.min_ex = ras.min_ex >> 6; ras.min_ey = ras.min_ey >> 6; ras.max_ex = ( ras.max_ex + 63 ) >> 6; ras.max_ey = ( ras.max_ey + 63 ) >> 6; } /*************************************************************************/ /* */ /* Record the current cell in the table. */ /* */ static int record_cell( RAS_ARG ) { PCell cell; if ( !ras.invalid && ( ras.area | ras.cover ) ) { if ( ras.num_cells >= ras.max_cells ) return 1; cell = ras.cells + ras.num_cells++; cell->x = ras.ex - ras.min_ex; cell->y = ras.ey - ras.min_ey; cell->area = ras.area; cell->cover = ras.cover; } return 0; } /*************************************************************************/ /* */ /* Set the current cell to a new position. */ /* */ static int set_cell( RAS_ARG_ TScan ex, TScan ey ) { int invalid, record, clean; /* Move the cell pointer to a new position. We set the `invalid' */ /* flag to indicate that the cell isn't part of those we're interested */ /* in during the render phase. This means that: */ /* */ /* . the new vertical position must be within min_ey..max_ey - 1. */ /* . the new horizontal position must be strictly less than max_ex */ /* */ /* Note that if a cell is to the left of the clipping region, it is */ /* actually set to the (min_ex-1) horizontal position. */ record = 0; clean = 1; invalid = ( ey < ras.min_ey || ey >= ras.max_ey || ex >= ras.max_ex ); if ( !invalid ) { /* All cells that are on the left of the clipping region go to the */ /* min_ex - 1 horizontal position. */ if ( ex < ras.min_ex ) ex = ras.min_ex - 1; /* if our position is new, then record the previous cell */ if ( ex != ras.ex || ey != ras.ey ) record = 1; else clean = ras.invalid; /* do not clean if we didn't move from */ /* a valid cell */ } /* record the previous cell if needed (i.e., if we changed the cell */ /* position, of changed the `invalid' flag) */ if ( ( ras.invalid != invalid || record ) && record_cell( RAS_VAR ) ) return 1; if ( clean ) { ras.area = 0; ras.cover = 0; } ras.invalid = invalid; ras.ex = ex; ras.ey = ey; return 0; } /*************************************************************************/ /* */ /* Start a new contour at a given cell. */ /* */ static void start_cell( RAS_ARG_ TScan ex, TScan ey ) { if ( ex < ras.min_ex ) ex = ras.min_ex - 1; ras.area = 0; ras.cover = 0; ras.ex = ex; ras.ey = ey; ras.last_ey = SUBPIXELS( ey ); ras.invalid = 0; (void)set_cell( RAS_VAR_ ex, ey ); } /*************************************************************************/ /* */ /* Render a scanline as one or more cells. */ /* */ static int render_scanline( RAS_ARG_ TScan ey, TPos x1, TScan y1, TPos x2, TScan y2 ) { TScan ex1, ex2, fx1, fx2, delta; long p, first, dx; int incr, lift, mod, rem; dx = x2 - x1; ex1 = TRUNC( x1 ); /* if (ex1 >= ras.max_ex) ex1 = ras.max_ex-1; */ ex2 = TRUNC( x2 ); /* if (ex2 >= ras.max_ex) ex2 = ras.max_ex-1; */ fx1 = x1 - SUBPIXELS( ex1 ); fx2 = x2 - SUBPIXELS( ex2 ); /* trivial case. Happens often */ if ( y1 == y2 ) return set_cell( RAS_VAR_ ex2, ey ); /* everything is located in a single cell. That is easy! */ /* */ if ( ex1 == ex2 ) { delta = y2 - y1; ras.area += ( fx1 + fx2 ) * delta; ras.cover += delta; return 0; } /* ok, we'll have to render a run of adjacent cells on the same */ /* scanline... */ /* */ p = ( ONE_PIXEL - fx1 ) * ( y2 - y1 ); first = ONE_PIXEL; incr = 1; if ( dx < 0 ) { p = fx1 * ( y2 - y1 ); first = 0; incr = -1; dx = -dx; } delta = p / dx; mod = p % dx; if ( mod < 0 ) { delta--; mod += dx; } ras.area += ( fx1 + first ) * delta; ras.cover += delta; ex1 += incr; if ( set_cell( RAS_VAR_ ex1, ey ) ) goto Error; y1 += delta; if ( ex1 != ex2 ) { p = ONE_PIXEL * ( y2 - y1 ); lift = p / dx; rem = p % dx; if ( rem < 0 ) { lift--; rem += dx; } mod -= dx; while ( ex1 != ex2 ) { delta = lift; mod += rem; if ( mod >= 0 ) { mod -= dx; delta++; } ras.area += ONE_PIXEL * delta; ras.cover += delta; y1 += delta; ex1 += incr; if ( set_cell( RAS_VAR_ ex1, ey ) ) goto Error; } } delta = y2 - y1; ras.area += ( fx2 + ONE_PIXEL - first ) * delta; ras.cover += delta; return 0; Error: return 1; } /*************************************************************************/ /* */ /* Render a given line as a series of scanlines. */ /* */ static int render_line( RAS_ARG_ TPos to_x, TPos to_y ) { TScan ey1, ey2, fy1, fy2; TPos dx, dy, x, x2; int p, rem, mod, lift, delta, first, incr; ey1 = TRUNC( ras.last_ey ); ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ fy1 = ras.y - ras.last_ey; fy2 = to_y - SUBPIXELS( ey2 ); dx = to_x - ras.x; dy = to_y - ras.y; /* we should do something about the trivial case where dx == 0, */ /* as it happens very often! XXXXX */ /* perform vertical clipping */ { TScan min, max; min = ey1; max = ey2; if ( ey1 > ey2 ) { min = ey2; max = ey1; } if ( min >= ras.max_ey || max < ras.min_ey ) goto End; } /* everything is on a single scanline */ if ( ey1 == ey2 ) { if ( render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 ) ) goto Error; goto End; } /* ok, we'll have to render several scanlines */ p = ( ONE_PIXEL - fy1 ) * dx; first = ONE_PIXEL; incr = 1; if ( dy < 0 ) { p = fy1 * dx; first = 0; incr = -1; dy = -dy; } delta = p / dy; mod = p % dy; if ( mod < 0 ) { delta--; mod += dy; } x = ras.x + delta; if ( render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first ) ) goto Error; ey1 += incr; if ( set_cell( RAS_VAR_ TRUNC( x ), ey1 ) ) goto Error; if ( ey1 != ey2 ) { p = ONE_PIXEL * dx; lift = p / dy; rem = p % dy; if ( rem < 0 ) { lift--; rem += dy; } mod -= dy; while ( ey1 != ey2 ) { delta = lift; mod += rem; if ( mod >= 0 ) { mod -= dy; delta++; } x2 = x + delta; if ( render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL - first, x2, first ) ) goto Error; x = x2; ey1 += incr; if ( set_cell( RAS_VAR_ TRUNC( x ), ey1 ) ) goto Error; } } if ( render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL - first, to_x, fy2 ) ) goto Error; End: ras.x = to_x; ras.y = to_y; ras.last_ey = SUBPIXELS( ey2 ); return 0; Error: return 1; } static void split_conic( FT_Vector* base ) { TPos a, b; base[4].x = base[2].x; b = base[1].x; a = base[3].x = ( base[2].x + b ) / 2; b = base[1].x = ( base[0].x + b ) / 2; base[2].x = ( a + b ) / 2; base[4].y = base[2].y; b = base[1].y; a = base[3].y = ( base[2].y + b ) / 2; b = base[1].y = ( base[0].y + b ) / 2; base[2].y = ( a + b ) / 2; } static int render_conic( RAS_ARG_ FT_Vector* control, FT_Vector* to ) { TPos dx, dy; int top, level; int* levels; FT_Vector* arc; dx = DOWNSCALE( ras.x ) + to->x - ( control->x << 1 ); if ( dx < 0 ) dx = -dx; dy = DOWNSCALE( ras.y ) + to->y - ( control->y << 1 ); if ( dy < 0 ) dy = -dy; if ( dx < dy ) dx = dy; level = 1; dx = dx / ras.conic_level; while ( dx > 0 ) { dx >>= 1; level++; } /* a shortcut to speed things up */ if ( level <= 1 ) { /* we compute the mid-point directly in order to avoid */ /* calling split_conic() */ TPos to_x, to_y, mid_x, mid_y; to_x = UPSCALE( to->x ); to_y = UPSCALE( to->y ); mid_x = ( ras.x + to_x + 2 * UPSCALE( control->x ) ) / 4; mid_y = ( ras.y + to_y + 2 * UPSCALE( control->y ) ) / 4; return render_line( RAS_VAR_ mid_x, mid_y ) || render_line( RAS_VAR_ to_x, to_y ); } arc = ras.bez_stack; levels = ras.lev_stack; top = 0; levels[0] = level; arc[0].x = UPSCALE( to->x ); arc[0].y = UPSCALE( to->y ); arc[1].x = UPSCALE( control->x ); arc[1].y = UPSCALE( control->y ); arc[2].x = ras.x; arc[2].y = ras.y; while ( top >= 0 ) { level = levels[top]; if ( level > 1 ) { /* check that the arc crosses the current band */ TPos min, max, y; min = max = arc[0].y; y = arc[1].y; if ( y < min ) min = y; if ( y > max ) max = y; y = arc[2].y; if ( y < min ) min = y; if ( y > max ) max = y; if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 ) goto Draw; split_conic( arc ); arc += 2; top++; levels[top] = levels[top - 1] = level - 1; continue; } Draw: { TPos to_x, to_y, mid_x, mid_y; to_x = arc[0].x; to_y = arc[0].y; mid_x = ( ras.x + to_x + 2 * arc[1].x ) / 4; mid_y = ( ras.y + to_y + 2 * arc[1].y ) / 4; if ( render_line( RAS_VAR_ mid_x, mid_y ) || render_line( RAS_VAR_ to_x, to_y ) ) return 1; top--; arc -= 2; } } return 0; } static void split_cubic( FT_Vector* base ) { TPos a, b, c, d; base[6].x = base[3].x; c = base[1].x; d = base[2].x; base[1].x = a = ( base[0].x + c ) / 2; base[5].x = b = ( base[3].x + d ) / 2; c = ( c + d ) / 2; base[2].x = a = ( a + c ) / 2; base[4].x = b = ( b + c ) / 2; base[3].x = ( a + b ) / 2; base[6].y = base[3].y; c = base[1].y; d = base[2].y; base[1].y = a = ( base[0].y + c ) / 2; base[5].y = b = ( base[3].y + d ) / 2; c = ( c + d ) / 2; base[2].y = a = ( a + c ) / 2; base[4].y = b = ( b + c ) / 2; base[3].y = ( a + b ) / 2; } static int render_cubic( RAS_ARG_ FT_Vector* control1, FT_Vector* control2, FT_Vector* to ) { TPos dx, dy, da, db; int top, level; int* levels; FT_Vector* arc; dx = DOWNSCALE( ras.x ) + to->x - ( control1->x << 1 ); if ( dx < 0 ) dx = -dx; dy = DOWNSCALE( ras.y ) + to->y - ( control1->y << 1 ); if ( dy < 0 ) dy = -dy; if ( dx < dy ) dx = dy; da = dx; dx = DOWNSCALE( ras.x ) + to->x - 3 * ( control1->x + control2->x ); if ( dx < 0 ) dx = -dx; dy = DOWNSCALE( ras.y ) + to->y - 3 * ( control1->x + control2->y ); if ( dy < 0 ) dy = -dy; if ( dx < dy ) dx = dy; db = dx; level = 1; da = da / ras.cubic_level; db = db / ras.conic_level; while ( da > 0 || db > 0 ) { da >>= 1; db >>= 2; level++; } if ( level <= 1 ) { TPos to_x, to_y, mid_x, mid_y; to_x = UPSCALE( to->x ); to_y = UPSCALE( to->y ); mid_x = ( ras.x + to_x + 3 * UPSCALE( control1->x + control2->x ) ) / 8; mid_y = ( ras.y + to_y + 3 * UPSCALE( control1->y + control2->y ) ) / 8; return render_line( RAS_VAR_ mid_x, mid_y ) || render_line( RAS_VAR_ to_x, to_y ); } arc = ras.bez_stack; arc[0].x = UPSCALE( to->x ); arc[0].y = UPSCALE( to->y ); arc[1].x = UPSCALE( control2->x ); arc[1].y = UPSCALE( control2->y ); arc[2].x = UPSCALE( control1->x ); arc[2].y = UPSCALE( control1->y ); arc[3].x = ras.x; arc[3].y = ras.y; levels = ras.lev_stack; top = 0; levels[0] = level; while ( top >= 0 ) { level = levels[top]; if ( level > 1 ) { /* check that the arc crosses the current band */ TPos min, max, y; min = max = arc[0].y; y = arc[1].y; if ( y < min ) min = y; if ( y > max ) max = y; y = arc[2].y; if ( y < min ) min = y; if ( y > max ) max = y; y = arc[3].y; if ( y < min ) min = y; if ( y > max ) max = y; if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 ) goto Draw; split_cubic( arc ); arc += 3; top ++; levels[top] = levels[top - 1] = level - 1; continue; } Draw: { TPos to_x, to_y, mid_x, mid_y; to_x = arc[0].x; to_y = arc[0].y; mid_x = ( ras.x + to_x + 3 * ( arc[1].x + arc[2].x ) ) / 8; mid_y = ( ras.y + to_y + 3 * ( arc[1].y + arc[2].y ) ) / 8; if ( render_line( RAS_VAR_ mid_x, mid_y ) || render_line( RAS_VAR_ to_x, to_y ) ) return 1; top --; arc -= 3; } } return 0; } /* a macro comparing two cell pointers. Returns true if a <= b. */ #if 1 #define PACK( a ) ( ( (long)(a)->y << 16 ) + (a)->x ) #define LESS_THAN( a, b ) ( PACK( a ) < PACK( b ) ) #else /* 1 */ #define LESS_THAN( a, b ) ( (a)->y < (b)->y || \ ( (a)->y == (b)->y && (a)->x < (b)->x ) ) #endif /* 1 */ #define SWAP_CELLS( a, b, temp ) do \ { \ temp = *(a); \ *(a) = *(b); \ *(b) = temp; \ } while ( 0 ) #define DEBUG_SORT #define QUICK_SORT #ifdef SHELL_SORT /* A simple shell sort algorithm that works directly on our */ /* cells table.. */ static void shell_sort ( PCell cells, int count ) { PCell i, j, limit = cells + count; TCell temp; int gap; /* compute initial gap */ for ( gap = 0; ++gap < count; gap *= 3 ) ; while ( gap /= 3 ) { for ( i = cells + gap; i < limit; i++ ) { for ( j = i - gap; ; j -= gap ) { PCell k = j + gap; if ( LESS_THAN( j, k ) ) break; SWAP_CELLS( j, k, temp ); if ( j < cells + gap ) break; } } } } #endif /* SHELL_SORT */ #ifdef QUICK_SORT /* This is a non-recursive quicksort that directly process our cells */ /* array. It should be faster than calling the stdlib qsort(), and we */ /* can even tailor our insertion threshold... */ #define QSORT_THRESHOLD 9 /* below this size, a sub-array will be sorted */ /* through a normal insertion sort.. */ static void quick_sort( PCell cells, int count ) { PCell stack[40]; /* should be enough ;-) */ PCell* top; /* top of stack */ PCell base, limit; TCell temp; limit = cells + count; base = cells; top = stack; for (;;) { int len = limit - base; PCell i, j, pivot; if ( len > QSORT_THRESHOLD ) { /* we use base + len/2 as the pivot */ pivot = base + len / 2; SWAP_CELLS( base, pivot, temp ); i = base + 1; j = limit - 1; /* now ensure that *i <= *base <= *j */ if ( LESS_THAN( j, i ) ) SWAP_CELLS( i, j, temp ); if ( LESS_THAN( base, i ) ) SWAP_CELLS( base, i, temp ); if ( LESS_THAN( j, base ) ) SWAP_CELLS( base, j, temp ); for (;;) { do i++; while ( LESS_THAN( i, base ) ); do j--; while ( LESS_THAN( base, j ) ); if ( i > j ) break; SWAP_CELLS( i, j, temp ); } SWAP_CELLS( base, j, temp ); /* now, push the largest sub-array */ if ( j - base > limit - i ) { top[0] = base; top[1] = j; base = i; } else { top[0] = i; top[1] = limit; limit = j; } top += 2; } else { /* the sub-array is small, perform insertion sort */ j = base; i = j + 1; for ( ; i < limit; j = i, i++ ) { for ( ; LESS_THAN( j + 1, j ); j-- ) { SWAP_CELLS( j + 1, j, temp ); if ( j == base ) break; } } if ( top > stack ) { top -= 2; base = top[0]; limit = top[1]; } else break; } } } #endif /* QUICK_SORT */ #ifdef DEBUG_GRAYS #ifdef DEBUG_SORT static int check_sort( PCell cells, int count ) { PCell p, q; for ( p = cells + count - 2; p >= cells; p-- ) { q = p + 1; if ( !LESS_THAN( p, q ) ) return 0; } return 1; } #endif /* DEBUG_SORT */ #endif /* DEBUG_GRAYS */ static int Move_To( FT_Vector* to, FT_Raster raster ) { TPos x, y; /* record current cell, if any */ record_cell( (PRaster)raster ); /* start to a new position */ x = UPSCALE( to->x ); y = UPSCALE( to->y ); start_cell( (PRaster)raster, TRUNC( x ), TRUNC( y ) ); ((PRaster)raster)->x = x; ((PRaster)raster)->y = y; return 0; } static int Line_To( FT_Vector* to, FT_Raster raster ) { return render_line( (PRaster)raster, UPSCALE( to->x ), UPSCALE( to->y ) ); } static int Conic_To( FT_Vector* control, FT_Vector* to, FT_Raster raster ) { return render_conic( (PRaster)raster, control, to ); } static int Cubic_To( FT_Vector* control1, FT_Vector* control2, FT_Vector* to, FT_Raster raster ) { return render_cubic( (PRaster)raster, control1, control2, to ); } static void grays_render_span( int y, int count, FT_Span* spans, PRaster raster ) { unsigned char* p; FT_Bitmap* map = &raster->target; /* first of all, compute the scanline offset */ p = (unsigned char*)map->buffer - y * map->pitch; if ( map->pitch >= 0 ) p += ( map->rows - 1 ) * map->pitch; for ( ; count > 0; count--, spans++ ) { if ( spans->coverage ) #if 1 memset( p + spans->x, (unsigned char)spans->coverage, spans->len ); #else /* 1 */ { q = p + spans->x; limit = q + spans->len; for ( ; q < limit; q++ ) q[0] = (unsigned char)spans->coverage; } #endif /* 1 */ } } #ifdef DEBUG_GRAYS #include <stdio.h> static void dump_cells( RAS_ARG ) { PCell cell, limit; int y = -1; cell = ras.cells; limit = cell + ras.num_cells; for ( ; cell < limit; cell++ ) { if ( cell->y != y ) { fprintf( stderr, "\n%2d: ", cell->y ); y = cell->y; } fprintf( stderr, "[%d %d %d]", cell->x, cell->area, cell->cover ); } fprintf(stderr, "\n" ); } #endif /* DEBUG_GRAYS */ static void grays_hline( RAS_ARG_ TScan x, TScan y, TPos area, int acount ) { FT_Span* span; int count; int coverage; /* compute the coverage line's coverage, depending on the */ /* outline fill rule */ /* */ /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */ /* */ coverage = area >> ( PIXEL_BITS * 2 + 1 - 8); /* use range 0..256 */ if ( ras.outline.flags & ft_outline_even_odd_fill ) { if ( coverage < 0 ) coverage = -coverage; while ( coverage >= 512 ) coverage -= 512; if ( coverage > 256 ) coverage = 512 - coverage; else if ( coverage == 256 ) coverage = 255; } else { /* normal non-zero winding rule */ if ( coverage < 0 ) coverage = -coverage; if ( coverage >= 256 ) coverage = 255; } y += ras.min_ey; x += ras.min_ex; if ( coverage ) { /* see if we can add this span to the current list */ count = ras.num_gray_spans; span = ras.gray_spans + count - 1; if ( count > 0 && ras.span_y == y && (int)span->x + span->len == (int)x && span->coverage == coverage ) { span->len += acount; return; } if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS ) { if ( ras.render_span ) ras.render_span( ras.span_y, count, ras.gray_spans, ras.render_span_data ); /* ras.render_span( span->y, ras.gray_spans, count ); */ #ifdef DEBUG_GRAYS if ( ras.span_y >= 0 ) { int n; fprintf( stderr, "y=%3d ", ras.span_y ); span = ras.gray_spans; for ( n = 0; n < count; n++, span++ ) fprintf( stderr, "[%d..%d]:%02x ", span->x, span->x + span->len - 1, span->coverage ); fprintf( stderr, "\n" ); } #endif /* DEBUG_GRAYS */ ras.num_gray_spans = 0; ras.span_y = y; count = 0; span = ras.gray_spans; } else span++; /* add a gray span to the current list */ span->x = (short)x; span->len = (unsigned short)acount; span->coverage = (unsigned char)coverage; ras.num_gray_spans++; } } static void grays_sweep( RAS_ARG_ FT_Bitmap* target ) { TScan x, y, cover, area; PCell start, cur, limit; UNUSED( target ); cur = ras.cells; limit = cur + ras.num_cells; cover = 0; ras.span_y = -1; ras.num_gray_spans = 0; for (;;) { start = cur; y = start->y; x = start->x; area = start->area; cover += start->cover; /* accumulate all start cells */ for (;;) { ++cur; if ( cur >= limit || cur->y != start->y || cur->x != start->x ) break; area += cur->area; cover += cur->cover; } /* if the start cell has a non-null area, we must draw an */ /* individual gray pixel there */ if ( area && x >= 0 ) { grays_hline( RAS_VAR_ x, y, cover * ( ONE_PIXEL * 2 ) - area, 1 ); x++; } if ( x < 0 ) x = 0; if ( cur < limit && start->y == cur->y ) { /* draw a gray span between the start cell and the current one */ if ( cur->x > x ) grays_hline( RAS_VAR_ x, y, cover * ( ONE_PIXEL * 2 ), cur->x - x ); } else { /* draw a gray span until the end of the clipping region */ if ( cover && x < ras.max_ex - ras.min_ex ) grays_hline( RAS_VAR_ x, y, cover * ( ONE_PIXEL * 2 ), ras.max_ex - x - ras.min_ex ); cover = 0; } if ( cur >= limit ) break; } if ( ras.render_span && ras.num_gray_spans > 0 ) ras.render_span( ras.span_y, ras.num_gray_spans, ras.gray_spans, ras.render_span_data ); #ifdef DEBUG_GRAYS { int n; FT_Span* span; fprintf( stderr, "y=%3d ", ras.span_y ); span = ras.gray_spans; for ( n = 0; n < ras.num_gray_spans; n++, span++ ) fprintf( stderr, "[%d..%d]:%02x ", span->x, span->x + span->len - 1, span->coverage ); fprintf( stderr, "\n" ); } #endif /* DEBUG_GRAYS */ } #ifdef _STANDALONE_ /*************************************************************************/ /* */ /* The following function should only compile in stand_alone mode, */ /* i.e., when building this component without the rest of FreeType. */ /* */ /*************************************************************************/ /*************************************************************************/ /* */ /* <Function> */ /* FT_Outline_Decompose */ /* */ /* <Description> */ /* Walks over an outline's structure to decompose it into individual */ /* segments and Bezier arcs. This function is also able to emit */ /* `move to' and `close to' operations to indicate the start and end */ /* of new contours in the outline. */ /* */ /* <Input> */ /* outline :: A pointer to the source target. */ /* */ /* interface :: A table of `emitters', i.e,. function pointers called */ /* during decomposition to indicate path operations. */ /* */ /* user :: A typeless pointer which is passed to each emitter */ /* during the decomposition. It can be used to store */ /* the state during the decomposition. */ /* */ /* <Return> */ /* Error code. 0 means sucess. */ /* */ static int FT_Outline_Decompose( FT_Outline* outline, FT_Outline_Funcs* interface, void* user ) { #undef SCALED #define SCALED( x ) ( ( (x) << shift ) - delta ) FT_Vector v_last; FT_Vector v_control; FT_Vector v_start; FT_Vector* point; FT_Vector* limit; char* tags; int n; /* index of contour in outline */ int first; /* index of first point in contour */ int error; char tag; /* current point's state */ int shift = interface->shift; FT_Pos delta = interface->delta; first = 0; for ( n = 0; n < outline->n_contours; n++ ) { int last; /* index of last point in contour */ last = outline->contours[n]; limit = outline->points + last; v_start = outline->points[first]; v_last = outline->points[last]; v_start.x = SCALED( v_start.x ); v_start.y = SCALED( v_start.y ); v_last.x = SCALED( v_last.x ); v_last.y = SCALED( v_last.y ); v_control = v_start; point = outline->points + first; tags = outline->tags + first; tag = FT_CURVE_TAG( tags[0] ); /* A contour cannot start with a cubic control point! */ if ( tag == FT_Curve_Tag_Cubic ) goto Invalid_Outline; /* check first point to determine origin */ if ( tag == FT_Curve_Tag_Conic ) { /* first point is conic control. Yes, this happens. */ if ( FT_CURVE_TAG( outline->tags[last] ) == FT_Curve_Tag_On ) { /* start at last point if it is on the curve */ v_start = v_last; limit--; } else { /* if both first and last points are conic, */ /* start at their middle and record its position */ /* for closure */ v_start.x = ( v_start.x + v_last.x ) / 2; v_start.y = ( v_start.y + v_last.y ) / 2; v_last = v_start; } point--; tags--; } error = interface->move_to( &v_start, user ); if ( error ) goto Exit; while ( point < limit ) { point++; tags++; tag = FT_CURVE_TAG( tags[0] ); switch ( tag ) { case FT_Curve_Tag_On: /* emit a single line_to */ { FT_Vector vec; vec.x = SCALED( point->x ); vec.y = SCALED( point->y ); error = interface->line_to( &vec, user ); if ( error ) goto Exit; continue; } case FT_Curve_Tag_Conic: /* consume conic arcs */ { v_control.x = SCALED( point->x ); v_control.y = SCALED( point->y ); Do_Conic: if ( point < limit ) { FT_Vector vec; FT_Vector v_middle; point++; tags++; tag = FT_CURVE_TAG( tags[0] ); vec.x = SCALED( point->x ); vec.y = SCALED( point->y ); if ( tag == FT_Curve_Tag_On ) { error = interface->conic_to( &v_control, &vec, user ); if ( error ) goto Exit; continue; } if ( tag != FT_Curve_Tag_Conic ) goto Invalid_Outline; v_middle.x = ( v_control.x + vec.x ) / 2; v_middle.y = ( v_control.y + vec.y ) / 2; error = interface->conic_to( &v_control, &v_middle, user ); if ( error ) goto Exit; v_control = vec; goto Do_Conic; } error = interface->conic_to( &v_control, &v_start, user ); goto Close; } default: /* FT_Curve_Tag_Cubic */ { FT_Vector vec1, vec2; if ( point + 1 > limit || FT_CURVE_TAG( tags[1] ) != FT_Curve_Tag_Cubic ) goto Invalid_Outline; point += 2; tags += 2; vec1.x = SCALED( point[-2].x ); vec1.y = SCALED( point[-2].y ); vec2.x = SCALED( point[-1].x ); vec2.y = SCALED( point[-1].y ); if ( point <= limit ) { FT_Vector vec; vec.x = SCALED( point->x ); vec.y = SCALED( point->y ); error = interface->cubic_to( &vec1, &vec2, &vec, user ); if ( error ) goto Exit; continue; } error = interface->cubic_to( &vec1, &vec2, &v_start, user ); goto Close; } } } /* close the contour with a line segment */ error = interface->line_to( &v_start, user ); Close: if ( error ) goto Exit; first = last + 1; } return 0; Exit: return error; Invalid_Outline: return ErrRaster_Invalid_Outline; } #endif /* _STANDALONE_ */ typedef struct TBand_ { FT_Pos min, max; } TBand; static int grays_convert_glyph( RAS_ARG_ FT_Outline* outline ) { static FT_Outline_Funcs interface = { (FT_Outline_MoveTo_Func)Move_To, (FT_Outline_LineTo_Func)Line_To, (FT_Outline_ConicTo_Func)Conic_To, (FT_Outline_CubicTo_Func)Cubic_To, 0, 0 }; TBand bands[40], *band; int n, num_bands; TPos min, max, max_y; /* Set up state in the raster object */ compute_cbox( RAS_VAR_ outline ); /* clip to target bitmap, exit if nothing to do */ if ( ras.max_ex <= 0 || ras.min_ex >= ras.target.width || ras.max_ey <= 0 || ras.min_ey >= ras.target.rows ) return 0; if ( ras.min_ex < 0 ) ras.min_ex = 0; if ( ras.min_ey < 0 ) ras.min_ey = 0; if ( ras.max_ex > ras.target.width ) ras.max_ex = ras.target.width; if ( ras.max_ey > ras.target.rows ) ras.max_ey = ras.target.rows; /* simple heuristic used to speed-up the bezier decomposition */ /* see the code in render_conic and render_cubic for more details */ ras.conic_level = 32; ras.cubic_level = 16; { int level = 0; if ( ras.max_ex > 24 || ras.max_ey > 24 ) level++; if ( ras.max_ex > 120 || ras.max_ey > 120 ) level += 2; ras.conic_level <<= level; ras.cubic_level <<= level; } /* setup vertical bands */ num_bands = ( ras.max_ey - ras.min_ey ) / ras.band_size; if ( num_bands == 0 ) num_bands = 1; if ( num_bands >= 39 ) num_bands = 39; ras.band_shoot = 0; min = ras.min_ey; max_y = ras.max_ey; for ( n = 0; n < num_bands; n++, min = max ) { max = min + ras.band_size; if ( n == num_bands - 1 || max > max_y ) max = max_y; bands[0].min = min; bands[0].max = max; band = bands; while ( band >= bands ) { FT_Pos bottom, top, middle; int error; ras.num_cells = 0; ras.invalid = 1; ras.min_ey = band->min; ras.max_ey = band->max; error = FT_Outline_Decompose( outline, &interface, &ras ) || record_cell( RAS_VAR ); if ( !error ) { #ifdef SHELL_SORT shell_sort( ras.cells, ras.num_cells ); #else quick_sort( ras.cells, ras.num_cells ); #endif #ifdef DEBUG_GRAYS check_sort( ras.cells, ras.num_cells ); dump_cells( RAS_VAR ); #endif grays_sweep( RAS_VAR_ &ras.target ); band--; continue; } /* render pool overflow, we will reduce the render band by half */ bottom = band->min; top = band->max; middle = bottom + ( ( top - bottom ) >> 1 ); /* waoow! This is too complex for a single scanline, something */ /* must be really rotten here! */ if ( middle == bottom ) { #ifdef DEBUG_GRAYS fprintf( stderr, "Rotten glyph!\n" ); #endif return 1; } if ( bottom-top >= ras.band_size ) ras.band_shoot++; band[1].min = bottom; band[1].max = middle; band[0].min = middle; band[0].max = top; band++; } } if ( ras.band_shoot > 8 && ras.band_size > 16 ) ras.band_size = ras.band_size / 2; return 0; } extern int grays_raster_render( PRaster raster, FT_Raster_Params* params ) { FT_Outline* outline = (FT_Outline*)params->source; FT_Bitmap* target_map = params->target; if ( !raster || !raster->cells || !raster->max_cells ) return -1; /* return immediately if the outline is empty */ if ( outline->n_points == 0 || outline->n_contours <= 0 ) return 0; if ( !outline || !outline->contours || !outline->points ) return ErrRaster_Invalid_Outline; if ( outline->n_points != outline->contours[outline->n_contours - 1] + 1 ) return ErrRaster_Invalid_Outline; if ( !target_map || !target_map->buffer ) return -1; /* XXXX: this version does not support monochrome rendering yet! */ if ( !(params->flags & ft_raster_flag_aa) ) return -1; ras.outline = *outline; ras.target = *target_map; ras.num_cells = 0; ras.invalid = 1; ras.render_span = (FT_Raster_Span_Func)grays_render_span; ras.render_span_data = &ras; if ( params->flags & ft_raster_flag_direct ) { ras.render_span = (FT_Raster_Span_Func)params->gray_spans; ras.render_span_data = params->user; } return grays_convert_glyph( (PRaster)raster, outline ); } /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/ /**** a static object. *****/ #ifdef _STANDALONE_ static int grays_raster_new( void* memory, FT_Raster* araster ) { static TRaster the_raster; UNUSED( memory ); *araster = (FT_Raster)&the_raster; memset( &the_raster, 0, sizeof ( the_raster ) ); return 0; } static void grays_raster_done( FT_Raster raster ) { /* nothing */ UNUSED( raster ); } #else /* _STANDALONE_ */ static int grays_raster_new( FT_Memory memory, FT_Raster* araster ) { FT_Error error; PRaster raster; *araster = 0; if ( !ALLOC( raster, sizeof ( TRaster ) ) ) { raster->memory = memory; *araster = (FT_Raster)raster; } return error; } static void grays_raster_done( FT_Raster raster ) { FT_Memory memory = (FT_Memory)((PRaster)raster)->memory; FREE( raster ); } #endif /* _STANDALONE_ */ static void grays_raster_reset( FT_Raster raster, const char* pool_base, long pool_size ) { PRaster rast = (PRaster)raster; if ( raster && pool_base && pool_size >= 4096 ) init_cells( rast, (char*)pool_base, pool_size ); rast->band_size = ( pool_size / sizeof ( TCell ) ) / 8; } FT_Raster_Funcs ft_grays_raster = { ft_glyph_format_outline, (FT_Raster_New_Func) grays_raster_new, (FT_Raster_Reset_Func) grays_raster_reset, (FT_Raster_Set_Mode_Func)0, (FT_Raster_Render_Func) grays_raster_render, (FT_Raster_Done_Func) grays_raster_done }; /* END */