ref: e9e2e5d4601fe4474bd2cff70a2c8c6a7c7387c3
dir: /src/cff/cffparse.c/
/***************************************************************************/ /* */ /* cffparse.c */ /* */ /* CFF token stream parser (body) */ /* */ /* Copyright 1996-2017 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ #include <ft2build.h> #include "cffparse.h" #include FT_INTERNAL_STREAM_H #include FT_INTERNAL_DEBUG_H #include "cfferrs.h" #include "cffpic.h" #include "cffgload.h" #include "cffload.h" /*************************************************************************/ /* */ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ /* messages during execution. */ /* */ #undef FT_COMPONENT #define FT_COMPONENT trace_cffparse FT_LOCAL_DEF( FT_Error ) cff_parser_init( CFF_Parser parser, FT_UInt code, void* object, FT_Library library, FT_UInt stackSize, FT_UShort num_designs, FT_UShort num_axes ) { FT_Memory memory = library->memory; /* for FT_NEW_ARRAY */ FT_Error error; /* for FT_NEW_ARRAY */ FT_ZERO( parser ); #if 0 parser->top = parser->stack; #endif parser->object_code = code; parser->object = object; parser->library = library; parser->num_designs = num_designs; parser->num_axes = num_axes; /* allocate the stack buffer */ if ( FT_NEW_ARRAY( parser->stack, stackSize ) ) { FT_FREE( parser->stack ); goto Exit; } parser->stackSize = stackSize; parser->top = parser->stack; /* empty stack */ Exit: return error; } FT_LOCAL_DEF( void ) cff_parser_done( CFF_Parser parser ) { FT_Memory memory = parser->library->memory; /* for FT_FREE */ FT_FREE( parser->stack ); } /* read an integer */ static FT_Long cff_parse_integer( FT_Byte* start, FT_Byte* limit ) { FT_Byte* p = start; FT_Int v = *p++; FT_Long val = 0; if ( v == 28 ) { if ( p + 2 > limit ) goto Bad; val = (FT_Short)( ( (FT_UShort)p[0] << 8 ) | p[1] ); } else if ( v == 29 ) { if ( p + 4 > limit ) goto Bad; val = (FT_Long)( ( (FT_ULong)p[0] << 24 ) | ( (FT_ULong)p[1] << 16 ) | ( (FT_ULong)p[2] << 8 ) | (FT_ULong)p[3] ); } else if ( v < 247 ) { val = v - 139; } else if ( v < 251 ) { if ( p + 1 > limit ) goto Bad; val = ( v - 247 ) * 256 + p[0] + 108; } else { if ( p + 1 > limit ) goto Bad; val = -( v - 251 ) * 256 - p[0] - 108; } Exit: return val; Bad: val = 0; FT_TRACE4(( "!!!END OF DATA:!!!" )); goto Exit; } static const FT_Long power_tens[] = { 1L, 10L, 100L, 1000L, 10000L, 100000L, 1000000L, 10000000L, 100000000L, 1000000000L }; /* read a real */ static FT_Fixed cff_parse_real( FT_Byte* start, FT_Byte* limit, FT_Long power_ten, FT_Long* scaling ) { FT_Byte* p = start; FT_Int nib; FT_UInt phase; FT_Long result, number, exponent; FT_Int sign = 0, exponent_sign = 0, have_overflow = 0; FT_Long exponent_add, integer_length, fraction_length; if ( scaling ) *scaling = 0; result = 0; number = 0; exponent = 0; exponent_add = 0; integer_length = 0; fraction_length = 0; /* First of all, read the integer part. */ phase = 4; for (;;) { /* If we entered this iteration with phase == 4, we need to */ /* read a new byte. This also skips past the initial 0x1E. */ if ( phase ) { p++; /* Make sure we don't read past the end. */ if ( p >= limit ) goto Bad; } /* Get the nibble. */ nib = (FT_Int)( p[0] >> phase ) & 0xF; phase = 4 - phase; if ( nib == 0xE ) sign = 1; else if ( nib > 9 ) break; else { /* Increase exponent if we can't add the digit. */ if ( number >= 0xCCCCCCCL ) exponent_add++; /* Skip leading zeros. */ else if ( nib || number ) { integer_length++; number = number * 10 + nib; } } } /* Read fraction part, if any. */ if ( nib == 0xA ) for (;;) { /* If we entered this iteration with phase == 4, we need */ /* to read a new byte. */ if ( phase ) { p++; /* Make sure we don't read past the end. */ if ( p >= limit ) goto Bad; } /* Get the nibble. */ nib = ( p[0] >> phase ) & 0xF; phase = 4 - phase; if ( nib >= 10 ) break; /* Skip leading zeros if possible. */ if ( !nib && !number ) exponent_add--; /* Only add digit if we don't overflow. */ else if ( number < 0xCCCCCCCL && fraction_length < 9 ) { fraction_length++; number = number * 10 + nib; } } /* Read exponent, if any. */ if ( nib == 12 ) { exponent_sign = 1; nib = 11; } if ( nib == 11 ) { for (;;) { /* If we entered this iteration with phase == 4, */ /* we need to read a new byte. */ if ( phase ) { p++; /* Make sure we don't read past the end. */ if ( p >= limit ) goto Bad; } /* Get the nibble. */ nib = ( p[0] >> phase ) & 0xF; phase = 4 - phase; if ( nib >= 10 ) break; /* Arbitrarily limit exponent. */ if ( exponent > 1000 ) have_overflow = 1; else exponent = exponent * 10 + nib; } if ( exponent_sign ) exponent = -exponent; } if ( !number ) goto Exit; if ( have_overflow ) { if ( exponent_sign ) goto Underflow; else goto Overflow; } /* We don't check `power_ten' and `exponent_add'. */ exponent += power_ten + exponent_add; if ( scaling ) { /* Only use `fraction_length'. */ fraction_length += integer_length; exponent += integer_length; if ( fraction_length <= 5 ) { if ( number > 0x7FFFL ) { result = FT_DivFix( number, 10 ); *scaling = exponent - fraction_length + 1; } else { if ( exponent > 0 ) { FT_Long new_fraction_length, shift; /* Make `scaling' as small as possible. */ new_fraction_length = FT_MIN( exponent, 5 ); shift = new_fraction_length - fraction_length; if ( shift > 0 ) { exponent -= new_fraction_length; number *= power_tens[shift]; if ( number > 0x7FFFL ) { number /= 10; exponent += 1; } } else exponent -= fraction_length; } else exponent -= fraction_length; result = (FT_Long)( (FT_ULong)number << 16 ); *scaling = exponent; } } else { if ( ( number / power_tens[fraction_length - 5] ) > 0x7FFFL ) { result = FT_DivFix( number, power_tens[fraction_length - 4] ); *scaling = exponent - 4; } else { result = FT_DivFix( number, power_tens[fraction_length - 5] ); *scaling = exponent - 5; } } } else { integer_length += exponent; fraction_length -= exponent; if ( integer_length > 5 ) goto Overflow; if ( integer_length < -5 ) goto Underflow; /* Remove non-significant digits. */ if ( integer_length < 0 ) { number /= power_tens[-integer_length]; fraction_length += integer_length; } /* this can only happen if exponent was non-zero */ if ( fraction_length == 10 ) { number /= 10; fraction_length -= 1; } /* Convert into 16.16 format. */ if ( fraction_length > 0 ) { if ( ( number / power_tens[fraction_length] ) > 0x7FFFL ) goto Exit; result = FT_DivFix( number, power_tens[fraction_length] ); } else { number *= power_tens[-fraction_length]; if ( number > 0x7FFFL ) goto Overflow; result = (FT_Long)( (FT_ULong)number << 16 ); } } Exit: if ( sign ) result = -result; return result; Overflow: result = 0x7FFFFFFFL; FT_TRACE4(( "!!!OVERFLOW:!!!" )); goto Exit; Underflow: result = 0; FT_TRACE4(( "!!!UNDERFLOW:!!!" )); goto Exit; Bad: result = 0; FT_TRACE4(( "!!!END OF DATA:!!!" )); goto Exit; } /* read a number, either integer or real */ FT_LOCAL_DEF( FT_Long ) cff_parse_num( CFF_Parser parser, FT_Byte** d ) { if ( **d == 30 ) { /* binary-coded decimal is truncated to integer */ return cff_parse_real( *d, parser->limit, 0, NULL ) >> 16; } else if ( **d == 255 ) { /* 16.16 fixed point is used internally for CFF2 blend results. */ /* Since these are trusted values, a limit check is not needed. */ /* After the 255, 4 bytes give the number. */ /* The blend value is converted to integer, with rounding; */ /* due to the right-shift we don't need the lowest byte. */ #if 0 return (FT_Short)( ( ( ( (FT_UInt32)*( d[0] + 1 ) << 24 ) | ( (FT_UInt32)*( d[0] + 2 ) << 16 ) | ( (FT_UInt32)*( d[0] + 3 ) << 8 ) | (FT_UInt32)*( d[0] + 4 ) ) + 0x8000U ) >> 16 ); #else return (FT_Short)( ( ( ( (FT_UInt32)*( d[0] + 1 ) << 16 ) | ( (FT_UInt32)*( d[0] + 2 ) << 8 ) | (FT_UInt32)*( d[0] + 3 ) ) + 0x80U ) >> 8 ); #endif } else return cff_parse_integer( *d, parser->limit ); } /* read a floating point number, either integer or real */ static FT_Fixed do_fixed( CFF_Parser parser, FT_Byte** d, FT_Long scaling ) { if ( **d == 30 ) return cff_parse_real( *d, parser->limit, scaling, NULL ); else { FT_Long val = cff_parse_integer( *d, parser->limit ); if ( scaling ) val *= power_tens[scaling]; if ( val > 0x7FFF ) { val = 0x7FFFFFFFL; goto Overflow; } else if ( val < -0x7FFF ) { val = -0x7FFFFFFFL; goto Overflow; } return (FT_Long)( (FT_ULong)val << 16 ); Overflow: FT_TRACE4(( "!!!OVERFLOW:!!!" )); return val; } } /* read a floating point number, either integer or real */ static FT_Fixed cff_parse_fixed( CFF_Parser parser, FT_Byte** d ) { return do_fixed( parser, d, 0 ); } /* read a floating point number, either integer or real, */ /* but return `10^scaling' times the number read in */ static FT_Fixed cff_parse_fixed_scaled( CFF_Parser parser, FT_Byte** d, FT_Long scaling ) { return do_fixed( parser, d, scaling ); } /* read a floating point number, either integer or real, */ /* and return it as precise as possible -- `scaling' returns */ /* the scaling factor (as a power of 10) */ static FT_Fixed cff_parse_fixed_dynamic( CFF_Parser parser, FT_Byte** d, FT_Long* scaling ) { FT_ASSERT( scaling ); if ( **d == 30 ) return cff_parse_real( *d, parser->limit, 0, scaling ); else { FT_Long number; FT_Int integer_length; number = cff_parse_integer( d[0], d[1] ); if ( number > 0x7FFFL ) { for ( integer_length = 5; integer_length < 10; integer_length++ ) if ( number < power_tens[integer_length] ) break; if ( ( number / power_tens[integer_length - 5] ) > 0x7FFFL ) { *scaling = integer_length - 4; return FT_DivFix( number, power_tens[integer_length - 4] ); } else { *scaling = integer_length - 5; return FT_DivFix( number, power_tens[integer_length - 5] ); } } else { *scaling = 0; return (FT_Long)( (FT_ULong)number << 16 ); } } } static FT_Error cff_parse_font_matrix( CFF_Parser parser ) { CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; FT_Matrix* matrix = &dict->font_matrix; FT_Vector* offset = &dict->font_offset; FT_ULong* upm = &dict->units_per_em; FT_Byte** data = parser->stack; FT_Error error = FT_ERR( Stack_Underflow ); if ( parser->top >= parser->stack + 6 ) { FT_Fixed values[6]; FT_Long scalings[6]; FT_Long min_scaling, max_scaling; int i; error = FT_Err_Ok; dict->has_font_matrix = TRUE; /* We expect a well-formed font matrix, this is, the matrix elements */ /* `xx' and `yy' are of approximately the same magnitude. To avoid */ /* loss of precision, we use the magnitude of the largest matrix */ /* element to scale all other elements. The scaling factor is then */ /* contained in the `units_per_em' value. */ max_scaling = FT_LONG_MIN; min_scaling = FT_LONG_MAX; for ( i = 0; i < 6; i++ ) { values[i] = cff_parse_fixed_dynamic( parser, data++, &scalings[i] ); if ( values[i] ) { if ( scalings[i] > max_scaling ) max_scaling = scalings[i]; if ( scalings[i] < min_scaling ) min_scaling = scalings[i]; } } if ( max_scaling < -9 || max_scaling > 0 || ( max_scaling - min_scaling ) < 0 || ( max_scaling - min_scaling ) > 9 ) { /* Return default matrix in case of unlikely values. */ FT_TRACE1(( "cff_parse_font_matrix:" " strange scaling values (minimum %d, maximum %d),\n" " " " using default matrix\n", min_scaling, max_scaling )); matrix->xx = 0x10000L; matrix->yx = 0; matrix->xy = 0; matrix->yy = 0x10000L; offset->x = 0; offset->y = 0; *upm = 1; goto Exit; } for ( i = 0; i < 6; i++ ) { FT_Fixed value = values[i]; FT_Long divisor, half_divisor; if ( !value ) continue; divisor = power_tens[max_scaling - scalings[i]]; half_divisor = divisor >> 1; if ( value < 0 ) { if ( FT_LONG_MIN + half_divisor < value ) values[i] = ( value - half_divisor ) / divisor; else values[i] = FT_LONG_MIN / divisor; } else { if ( FT_LONG_MAX - half_divisor > value ) values[i] = ( value + half_divisor ) / divisor; else values[i] = FT_LONG_MAX / divisor; } } matrix->xx = values[0]; matrix->yx = values[1]; matrix->xy = values[2]; matrix->yy = values[3]; offset->x = values[4]; offset->y = values[5]; *upm = (FT_ULong)power_tens[-max_scaling]; FT_TRACE4(( " [%f %f %f %f %f %f]\n", (double)matrix->xx / *upm / 65536, (double)matrix->xy / *upm / 65536, (double)matrix->yx / *upm / 65536, (double)matrix->yy / *upm / 65536, (double)offset->x / *upm / 65536, (double)offset->y / *upm / 65536 )); } Exit: return error; } static FT_Error cff_parse_font_bbox( CFF_Parser parser ) { CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; FT_BBox* bbox = &dict->font_bbox; FT_Byte** data = parser->stack; FT_Error error; error = FT_ERR( Stack_Underflow ); if ( parser->top >= parser->stack + 4 ) { bbox->xMin = FT_RoundFix( cff_parse_fixed( parser, data++ ) ); bbox->yMin = FT_RoundFix( cff_parse_fixed( parser, data++ ) ); bbox->xMax = FT_RoundFix( cff_parse_fixed( parser, data++ ) ); bbox->yMax = FT_RoundFix( cff_parse_fixed( parser, data ) ); error = FT_Err_Ok; FT_TRACE4(( " [%d %d %d %d]\n", bbox->xMin / 65536, bbox->yMin / 65536, bbox->xMax / 65536, bbox->yMax / 65536 )); } return error; } static FT_Error cff_parse_private_dict( CFF_Parser parser ) { CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; FT_Byte** data = parser->stack; FT_Error error; error = FT_ERR( Stack_Underflow ); if ( parser->top >= parser->stack + 2 ) { FT_Long tmp; tmp = cff_parse_num( parser, data++ ); if ( tmp < 0 ) { FT_ERROR(( "cff_parse_private_dict: Invalid dictionary size\n" )); error = FT_THROW( Invalid_File_Format ); goto Fail; } dict->private_size = (FT_ULong)tmp; tmp = cff_parse_num( parser, data ); if ( tmp < 0 ) { FT_ERROR(( "cff_parse_private_dict: Invalid dictionary offset\n" )); error = FT_THROW( Invalid_File_Format ); goto Fail; } dict->private_offset = (FT_ULong)tmp; FT_TRACE4(( " %lu %lu\n", dict->private_size, dict->private_offset )); error = FT_Err_Ok; } Fail: return error; } /* The `MultipleMaster' operator comes before any */ /* top DICT operators that contain T2 charstrings. */ static FT_Error cff_parse_multiple_master( CFF_Parser parser ) { CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; FT_Error error; #ifdef FT_DEBUG_LEVEL_TRACE /* beautify tracing message */ if ( ft_trace_levels[FT_COMPONENT] < 4 ) FT_TRACE1(( "Multiple Master CFFs not supported yet," " handling first master design only\n" )); else FT_TRACE1(( " (not supported yet," " handling first master design only)\n" )); #endif error = FT_ERR( Stack_Underflow ); /* currently, we handle only the first argument */ if ( parser->top >= parser->stack + 5 ) { FT_Long num_designs = cff_parse_num( parser, parser->stack ); if ( num_designs > 16 || num_designs < 2 ) { FT_ERROR(( "cff_parse_multiple_master:" " Invalid number of designs\n" )); error = FT_THROW( Invalid_File_Format ); } else { dict->num_designs = (FT_UShort)num_designs; dict->num_axes = (FT_UShort)( parser->top - parser->stack - 4 ); parser->num_designs = dict->num_designs; parser->num_axes = dict->num_axes; error = FT_Err_Ok; } } return error; } static FT_Error cff_parse_cid_ros( CFF_Parser parser ) { CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; FT_Byte** data = parser->stack; FT_Error error; error = FT_ERR( Stack_Underflow ); if ( parser->top >= parser->stack + 3 ) { dict->cid_registry = (FT_UInt)cff_parse_num( parser, data++ ); dict->cid_ordering = (FT_UInt)cff_parse_num( parser, data++ ); if ( **data == 30 ) FT_TRACE1(( "cff_parse_cid_ros: real supplement is rounded\n" )); dict->cid_supplement = cff_parse_num( parser, data ); if ( dict->cid_supplement < 0 ) FT_TRACE1(( "cff_parse_cid_ros: negative supplement %d is found\n", dict->cid_supplement )); error = FT_Err_Ok; FT_TRACE4(( " %d %d %d\n", dict->cid_registry, dict->cid_ordering, dict->cid_supplement )); } return error; } static FT_Error cff_parse_vsindex( CFF_Parser parser ) { /* vsindex operator can only be used in a Private DICT */ CFF_Private priv = (CFF_Private)parser->object; FT_Byte** data = parser->stack; CFF_Blend blend; FT_Error error; if ( !priv || !priv->subfont ) { error = FT_THROW( Invalid_File_Format ); goto Exit; } blend = &priv->subfont->blend; if ( blend->usedBV ) { FT_ERROR(( " cff_parse_vsindex: vsindex not allowed after blend\n" )); error = FT_THROW( Syntax_Error ); goto Exit; } priv->vsindex = (FT_UInt)cff_parse_num( parser, data++ ); FT_TRACE4(( " %d\n", priv->vsindex )); error = FT_Err_Ok; Exit: return error; } static FT_Error cff_parse_blend( CFF_Parser parser ) { /* blend operator can only be used in a Private DICT */ CFF_Private priv = (CFF_Private)parser->object; CFF_SubFont subFont; CFF_Blend blend; FT_UInt numBlends; FT_Error error; if ( !priv || !priv->subfont ) { error = FT_THROW( Invalid_File_Format ); goto Exit; } subFont = priv->subfont; blend = &subFont->blend; if ( cff_blend_check_vector( blend, priv->vsindex, subFont->lenNDV, subFont->NDV ) ) { error = cff_blend_build_vector( blend, priv->vsindex, subFont->lenNDV, subFont->NDV ); if ( error ) goto Exit; } numBlends = (FT_UInt)cff_parse_num( parser, parser->top - 1 ); if ( numBlends > parser->stackSize ) { FT_ERROR(( "cff_parse_blend: Invalid number of blends\n" )); error = FT_THROW( Invalid_File_Format ); goto Exit; } FT_TRACE4(( " %d values blended\n", numBlends )); error = cff_blend_doBlend( subFont, parser, numBlends ); blend->usedBV = TRUE; Exit: return error; } /* maxstack operator increases parser and operand stacks for CFF2 */ static FT_Error cff_parse_maxstack( CFF_Parser parser ) { /* maxstack operator can only be used in a Top DICT */ CFF_FontRecDict dict = (CFF_FontRecDict)parser->object; FT_Byte** data = parser->stack; FT_Error error = FT_Err_Ok; if ( !dict ) { error = FT_THROW( Invalid_File_Format ); goto Exit; } dict->maxstack = (FT_UInt)cff_parse_num( parser, data++ ); if ( dict->maxstack > CFF2_MAX_STACK ) dict->maxstack = CFF2_MAX_STACK; if ( dict->maxstack < CFF2_DEFAULT_STACK ) dict->maxstack = CFF2_DEFAULT_STACK; FT_TRACE4(( " %d\n", dict->maxstack )); Exit: return error; } #define CFF_FIELD_NUM( code, name, id ) \ CFF_FIELD( code, name, id, cff_kind_num ) #define CFF_FIELD_FIXED( code, name, id ) \ CFF_FIELD( code, name, id, cff_kind_fixed ) #define CFF_FIELD_FIXED_1000( code, name, id ) \ CFF_FIELD( code, name, id, cff_kind_fixed_thousand ) #define CFF_FIELD_STRING( code, name, id ) \ CFF_FIELD( code, name, id, cff_kind_string ) #define CFF_FIELD_BOOL( code, name, id ) \ CFF_FIELD( code, name, id, cff_kind_bool ) #ifndef FT_CONFIG_OPTION_PIC #undef CFF_FIELD #undef CFF_FIELD_DELTA #ifndef FT_DEBUG_LEVEL_TRACE #define CFF_FIELD_CALLBACK( code, name, id ) \ { \ cff_kind_callback, \ code | CFFCODE, \ 0, 0, \ cff_parse_ ## name, \ 0, 0 \ }, #define CFF_FIELD_BLEND( code, id ) \ { \ cff_kind_blend, \ code | CFFCODE, \ 0, 0, \ cff_parse_blend, \ 0, 0 \ }, #define CFF_FIELD( code, name, id, kind ) \ { \ kind, \ code | CFFCODE, \ FT_FIELD_OFFSET( name ), \ FT_FIELD_SIZE( name ), \ 0, 0, 0 \ }, #define CFF_FIELD_DELTA( code, name, max, id ) \ { \ cff_kind_delta, \ code | CFFCODE, \ FT_FIELD_OFFSET( name ), \ FT_FIELD_SIZE_DELTA( name ), \ 0, \ max, \ FT_FIELD_OFFSET( num_ ## name ) \ }, static const CFF_Field_Handler cff_field_handlers[] = { #include "cfftoken.h" { 0, 0, 0, 0, 0, 0, 0 } }; #else /* FT_DEBUG_LEVEL_TRACE */ #define CFF_FIELD_CALLBACK( code, name, id ) \ { \ cff_kind_callback, \ code | CFFCODE, \ 0, 0, \ cff_parse_ ## name, \ 0, 0, \ id \ }, #define CFF_FIELD_BLEND( code, id ) \ { \ cff_kind_blend, \ code | CFFCODE, \ 0, 0, \ cff_parse_blend, \ 0, 0, \ id \ }, #define CFF_FIELD( code, name, id, kind ) \ { \ kind, \ code | CFFCODE, \ FT_FIELD_OFFSET( name ), \ FT_FIELD_SIZE( name ), \ 0, 0, 0, \ id \ }, #define CFF_FIELD_DELTA( code, name, max, id ) \ { \ cff_kind_delta, \ code | CFFCODE, \ FT_FIELD_OFFSET( name ), \ FT_FIELD_SIZE_DELTA( name ), \ 0, \ max, \ FT_FIELD_OFFSET( num_ ## name ), \ id \ }, static const CFF_Field_Handler cff_field_handlers[] = { #include "cfftoken.h" { 0, 0, 0, 0, 0, 0, 0, 0 } }; #endif /* FT_DEBUG_LEVEL_TRACE */ #else /* FT_CONFIG_OPTION_PIC */ void FT_Destroy_Class_cff_field_handlers( FT_Library library, CFF_Field_Handler* clazz ) { FT_Memory memory = library->memory; if ( clazz ) FT_FREE( clazz ); } FT_Error FT_Create_Class_cff_field_handlers( FT_Library library, CFF_Field_Handler** output_class ) { CFF_Field_Handler* clazz = NULL; FT_Error error; FT_Memory memory = library->memory; int i = 0; #undef CFF_FIELD #define CFF_FIELD( code, name, id, kind ) i++; #undef CFF_FIELD_DELTA #define CFF_FIELD_DELTA( code, name, max, id ) i++; #undef CFF_FIELD_CALLBACK #define CFF_FIELD_CALLBACK( code, name, id ) i++; #undef CFF_FIELD_BLEND #define CFF_FIELD_BLEND( code, id ) i++; #include "cfftoken.h" i++; /* { 0, 0, 0, 0, 0, 0, 0 } */ if ( FT_ALLOC( clazz, sizeof ( CFF_Field_Handler ) * i ) ) return error; i = 0; #ifndef FT_DEBUG_LEVEL_TRACE #undef CFF_FIELD_CALLBACK #define CFF_FIELD_CALLBACK( code_, name_, id_ ) \ clazz[i].kind = cff_kind_callback; \ clazz[i].code = code_ | CFFCODE; \ clazz[i].offset = 0; \ clazz[i].size = 0; \ clazz[i].reader = cff_parse_ ## name_; \ clazz[i].array_max = 0; \ clazz[i].count_offset = 0; \ i++; #undef CFF_FIELD #define CFF_FIELD( code_, name_, id_, kind_ ) \ clazz[i].kind = kind_; \ clazz[i].code = code_ | CFFCODE; \ clazz[i].offset = FT_FIELD_OFFSET( name_ ); \ clazz[i].size = FT_FIELD_SIZE( name_ ); \ clazz[i].reader = 0; \ clazz[i].array_max = 0; \ clazz[i].count_offset = 0; \ i++; \ #undef CFF_FIELD_DELTA #define CFF_FIELD_DELTA( code_, name_, max_, id_ ) \ clazz[i].kind = cff_kind_delta; \ clazz[i].code = code_ | CFFCODE; \ clazz[i].offset = FT_FIELD_OFFSET( name_ ); \ clazz[i].size = FT_FIELD_SIZE_DELTA( name_ ); \ clazz[i].reader = 0; \ clazz[i].array_max = max_; \ clazz[i].count_offset = FT_FIELD_OFFSET( num_ ## name_ ); \ i++; #undef CFF_FIELD_BLEND #define CFF_FIELD_BLEND( code_, id_ ) \ clazz[i].kind = cff_kind_blend; \ clazz[i].code = code_ | CFFCODE; \ clazz[i].offset = 0; \ clazz[i].size = 0; \ clazz[i].reader = cff_parse_blend; \ clazz[i].array_max = 0; \ clazz[i].count_offset = 0; \ i++; #include "cfftoken.h" clazz[i].kind = 0; clazz[i].code = 0; clazz[i].offset = 0; clazz[i].size = 0; clazz[i].reader = 0; clazz[i].array_max = 0; clazz[i].count_offset = 0; #else /* FT_DEBUG_LEVEL_TRACE */ #undef CFF_FIELD_CALLBACK #define CFF_FIELD_CALLBACK( code_, name_, id_ ) \ clazz[i].kind = cff_kind_callback; \ clazz[i].code = code_ | CFFCODE; \ clazz[i].offset = 0; \ clazz[i].size = 0; \ clazz[i].reader = cff_parse_ ## name_; \ clazz[i].array_max = 0; \ clazz[i].count_offset = 0; \ clazz[i].id = id_; \ i++; #undef CFF_FIELD #define CFF_FIELD( code_, name_, id_, kind_ ) \ clazz[i].kind = kind_; \ clazz[i].code = code_ | CFFCODE; \ clazz[i].offset = FT_FIELD_OFFSET( name_ ); \ clazz[i].size = FT_FIELD_SIZE( name_ ); \ clazz[i].reader = 0; \ clazz[i].array_max = 0; \ clazz[i].count_offset = 0; \ clazz[i].id = id_; \ i++; \ #undef CFF_FIELD_DELTA #define CFF_FIELD_DELTA( code_, name_, max_, id_ ) \ clazz[i].kind = cff_kind_delta; \ clazz[i].code = code_ | CFFCODE; \ clazz[i].offset = FT_FIELD_OFFSET( name_ ); \ clazz[i].size = FT_FIELD_SIZE_DELTA( name_ ); \ clazz[i].reader = 0; \ clazz[i].array_max = max_; \ clazz[i].count_offset = FT_FIELD_OFFSET( num_ ## name_ ); \ clazz[i].id = id_; \ i++; #undef CFF_FIELD_BLEND #define CFF_FIELD_BLEND( code_, id_ ) \ clazz[i].kind = cff_kind_blend; \ clazz[i].code = code_ | CFFCODE; \ clazz[i].offset = 0; \ clazz[i].size = 0; \ clazz[i].reader = cff_parse_blend; \ clazz[i].array_max = 0; \ clazz[i].count_offset = 0; \ clazz[i].id = id_; \ i++; #include "cfftoken.h" clazz[i].kind = 0; clazz[i].code = 0; clazz[i].offset = 0; clazz[i].size = 0; clazz[i].reader = 0; clazz[i].array_max = 0; clazz[i].count_offset = 0; clazz[i].id = 0; #endif /* FT_DEBUG_LEVEL_TRACE */ *output_class = clazz; return FT_Err_Ok; } #endif /* FT_CONFIG_OPTION_PIC */ FT_LOCAL_DEF( FT_Error ) cff_parser_run( CFF_Parser parser, FT_Byte* start, FT_Byte* limit ) { FT_Byte* p = start; FT_Error error = FT_Err_Ok; FT_Library library = parser->library; FT_UNUSED( library ); parser->top = parser->stack; parser->start = start; parser->limit = limit; parser->cursor = start; while ( p < limit ) { FT_UInt v = *p; /* Opcode 31 is legacy MM T2 operator, not a number. */ /* Opcode 255 is reserved and should not appear in fonts; */ /* it is used internally for CFF2 blends. */ if ( v >= 27 && v != 31 && v != 255 ) { /* it's a number; we will push its position on the stack */ if ( (FT_UInt)( parser->top - parser->stack ) >= parser->stackSize ) goto Stack_Overflow; *parser->top++ = p; /* now, skip it */ if ( v == 30 ) { /* skip real number */ p++; for (;;) { /* An unterminated floating point number at the */ /* end of a dictionary is invalid but harmless. */ if ( p >= limit ) goto Exit; v = p[0] >> 4; if ( v == 15 ) break; v = p[0] & 0xF; if ( v == 15 ) break; p++; } } else if ( v == 28 ) p += 2; else if ( v == 29 ) p += 4; else if ( v > 246 ) p += 1; } #ifdef CFF_CONFIG_OPTION_OLD_ENGINE else if ( v == 31 ) { /* a Type 2 charstring */ CFF_Decoder decoder; CFF_FontRec cff_rec; FT_Byte* charstring_base; FT_ULong charstring_len; FT_Fixed* stack; FT_Byte* q; charstring_base = ++p; /* search `endchar' operator */ for (;;) { if ( p >= limit ) goto Exit; if ( *p == 14 ) break; p++; } charstring_len = (FT_ULong)( p - charstring_base ) + 1; /* construct CFF_Decoder object */ FT_ZERO( &decoder ); FT_ZERO( &cff_rec ); cff_rec.top_font.font_dict.num_designs = parser->num_designs; cff_rec.top_font.font_dict.num_axes = parser->num_axes; decoder.cff = &cff_rec; error = cff_decoder_parse_charstrings( &decoder, charstring_base, charstring_len, 1 ); /* Now copy the stack data in the temporary decoder object, */ /* converting it back to charstring number representations */ /* (this is ugly, I know). */ /* */ /* We overwrite the original top DICT charstring under the */ /* assumption that the charstring representation of the result */ /* of `cff_decoder_parse_charstrings' is shorter, which should */ /* be always true. */ q = charstring_base - 1; stack = decoder.stack; while ( stack < decoder.top ) { FT_ULong num; FT_Bool neg; if ( (FT_UInt)( parser->top - parser->stack ) >= parser->stackSize ) goto Stack_Overflow; *parser->top++ = q; if ( *stack < 0 ) { num = (FT_ULong)-*stack; neg = 1; } else { num = (FT_ULong)*stack; neg = 0; } if ( num & 0xFFFFU ) { if ( neg ) num = (FT_ULong)-num; *q++ = 255; *q++ = ( num & 0xFF000000U ) >> 24; *q++ = ( num & 0x00FF0000U ) >> 16; *q++ = ( num & 0x0000FF00U ) >> 8; *q++ = num & 0x000000FFU; } else { num >>= 16; if ( neg ) { if ( num <= 107 ) *q++ = (FT_Byte)( 139 - num ); else if ( num <= 1131 ) { *q++ = (FT_Byte)( ( ( num - 108 ) >> 8 ) + 251 ); *q++ = (FT_Byte)( ( num - 108 ) & 0xFF ); } else { num = (FT_ULong)-num; *q++ = 28; *q++ = (FT_Byte)( num >> 8 ); *q++ = (FT_Byte)( num & 0xFF ); } } else { if ( num <= 107 ) *q++ = (FT_Byte)( num + 139 ); else if ( num <= 1131 ) { *q++ = (FT_Byte)( ( ( num - 108 ) >> 8 ) + 247 ); *q++ = (FT_Byte)( ( num - 108 ) & 0xFF ); } else { *q++ = 28; *q++ = (FT_Byte)( num >> 8 ); *q++ = (FT_Byte)( num & 0xFF ); } } } stack++; } } #endif /* CFF_CONFIG_OPTION_OLD_ENGINE */ else { /* This is not a number, hence it's an operator. Compute its code */ /* and look for it in our current list. */ FT_UInt code; FT_UInt num_args; const CFF_Field_Handler* field; if ( (FT_UInt)( parser->top - parser->stack ) >= parser->stackSize ) goto Stack_Overflow; num_args = (FT_UInt)( parser->top - parser->stack ); *parser->top = p; code = v; if ( v == 12 ) { /* two byte operator */ p++; if ( p >= limit ) goto Syntax_Error; code = 0x100 | p[0]; } code = code | parser->object_code; for ( field = CFF_FIELD_HANDLERS_GET; field->kind; field++ ) { if ( field->code == (FT_Int)code ) { /* we found our field's handler; read it */ FT_Long val; FT_Byte* q = (FT_Byte*)parser->object + field->offset; #ifdef FT_DEBUG_LEVEL_TRACE FT_TRACE4(( " %s", field->id )); #endif /* check that we have enough arguments -- except for */ /* delta encoded arrays, which can be empty */ if ( field->kind != cff_kind_delta && num_args < 1 ) goto Stack_Underflow; switch ( field->kind ) { case cff_kind_bool: case cff_kind_string: case cff_kind_num: val = cff_parse_num( parser, parser->stack ); goto Store_Number; case cff_kind_fixed: val = cff_parse_fixed( parser, parser->stack ); goto Store_Number; case cff_kind_fixed_thousand: val = cff_parse_fixed_scaled( parser, parser->stack, 3 ); Store_Number: switch ( field->size ) { case (8 / FT_CHAR_BIT): *(FT_Byte*)q = (FT_Byte)val; break; case (16 / FT_CHAR_BIT): *(FT_Short*)q = (FT_Short)val; break; case (32 / FT_CHAR_BIT): *(FT_Int32*)q = (FT_Int)val; break; default: /* for 64-bit systems */ *(FT_Long*)q = val; } #ifdef FT_DEBUG_LEVEL_TRACE switch ( field->kind ) { case cff_kind_bool: FT_TRACE4(( " %s\n", val ? "true" : "false" )); break; case cff_kind_string: FT_TRACE4(( " %ld (SID)\n", val )); break; case cff_kind_num: FT_TRACE4(( " %ld\n", val )); break; case cff_kind_fixed: FT_TRACE4(( " %f\n", (double)val / 65536 )); break; case cff_kind_fixed_thousand: FT_TRACE4(( " %f\n", (double)val / 65536 / 1000 )); default: ; /* never reached */ } #endif break; case cff_kind_delta: { FT_Byte* qcount = (FT_Byte*)parser->object + field->count_offset; FT_Byte** data = parser->stack; if ( num_args > field->array_max ) num_args = field->array_max; FT_TRACE4(( " [" )); /* store count */ *qcount = (FT_Byte)num_args; val = 0; while ( num_args > 0 ) { val += cff_parse_num( parser, data++ ); switch ( field->size ) { case (8 / FT_CHAR_BIT): *(FT_Byte*)q = (FT_Byte)val; break; case (16 / FT_CHAR_BIT): *(FT_Short*)q = (FT_Short)val; break; case (32 / FT_CHAR_BIT): *(FT_Int32*)q = (FT_Int)val; break; default: /* for 64-bit systems */ *(FT_Long*)q = val; } FT_TRACE4(( " %ld", val )); q += field->size; num_args--; } FT_TRACE4(( "]\n" )); } break; default: /* callback or blend */ error = field->reader( parser ); if ( error ) goto Exit; } goto Found; } } /* this is an unknown operator, or it is unsupported; */ /* we will ignore it for now. */ Found: /* clear stack */ /* TODO: could clear blend stack here, */ /* but we don't have access to subFont */ if ( field->kind != cff_kind_blend ) parser->top = parser->stack; } p++; } Exit: return error; Stack_Overflow: error = FT_THROW( Invalid_Argument ); goto Exit; Stack_Underflow: error = FT_THROW( Invalid_Argument ); goto Exit; Syntax_Error: error = FT_THROW( Invalid_Argument ); goto Exit; } /* END */