ref: e72c9fec173186df4871617a767c0bf8ddfdde84
dir: /src/type1z/z1load.c/
/***************************************************************************/ /* */ /* z1load.c */ /* */ /* Experimental Type 1 font loader (body). */ /* */ /* Copyright 1996-2000 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ /*************************************************************************/ /* */ /* This is the new and improved Type 1 data loader for FreeType 2. The */ /* old loader has several problems: it is slow, complex, difficult to */ /* maintain, and contains incredible hacks to make it accept some */ /* ill-formed Type 1 fonts without hiccup-ing. Moreover, about 5% of */ /* the Type 1 fonts on my machine still aren't loaded correctly by it. */ /* */ /* This version is much simpler, much faster and also easier to read and */ /* maintain by a great order of magnitude. The idea behind it is to */ /* _not_ try to read the Type 1 token stream with a state machine (i.e. */ /* a Postscript-like interpreter) but rather to perform simple pattern */ /* matching. */ /* */ /* Indeed, nearly all data definitions follow a simple pattern like */ /* */ /* ... /Field <data> ... */ /* */ /* where <data> can be a number, a boolean, a string, or an array of */ /* numbers. There are a few exceptions, namely the encoding, font name, */ /* charstrings, and subrs; they are handled with a special pattern */ /* matching routine. */ /* */ /* All other common cases are handled very simply. The matching rules */ /* are defined in the file `t1tokens.h' through the use of several */ /* macros calls PARSE_XXX. */ /* */ /* This file is included twice here; the first time to generate parsing */ /* callback functions, the second to generate a table of keywords (with */ /* pointers to the associated callback). */ /* */ /* The function `parse_dict' simply scans *linearly* a given dictionary */ /* (either the top-level or private one) and calls the appropriate */ /* callback when it encounters an immediate keyword. */ /* */ /* This is by far the fastest way one can find to parse and read all */ /* data. */ /* */ /* This led to tremendous code size reduction. Note that later, the */ /* glyph loader will also be _greatly_ simplified, and the automatic */ /* hinter will replace the clumsy `t1hinter'. */ /* */ /*************************************************************************/ #include <freetype/internal/ftdebug.h> #include <freetype/config/ftconfig.h> #include <freetype/ftmm.h> #include <freetype/internal/t1types.h> #include <freetype/internal/t1errors.h> #ifdef FT_FLAT_COMPILE #include "z1load.h" #else #include <type1z/z1load.h> #endif #include <string.h> /* for strncmp(), strcmp() */ #include <ctype.h> /* for isalnum() */ /*************************************************************************/ /* */ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ /* messages during execution. */ /* */ #undef FT_COMPONENT #define FT_COMPONENT trace_z1load #ifndef Z1_CONFIG_OPTION_NO_MM_SUPPORT /*************************************************************************/ /*************************************************************************/ /***** *****/ /***** MULTIPLE MASTERS SUPPORT *****/ /***** *****/ /*************************************************************************/ /*************************************************************************/ static FT_Error t1_allocate_blend( T1_Face face, FT_UInt num_designs, FT_UInt num_axis ) { T1_Blend* blend; FT_Memory memory = face->root.memory; FT_Error error = 0; blend = face->blend; if ( !blend ) { if ( ALLOC( blend, sizeof ( *blend ) ) ) goto Exit; face->blend = blend; } /* allocate design data if needed */ if ( num_designs > 0 ) { if ( blend->num_designs == 0 ) { FT_UInt nn; /* allocate the blend `private' and `font_info' dictionaries */ if ( ALLOC_ARRAY( blend->font_infos[1], num_designs, T1_FontInfo ) || ALLOC_ARRAY( blend->privates[1], num_designs, T1_Private ) || ALLOC_ARRAY( blend->weight_vector, num_designs * 2, FT_Fixed ) ) goto Exit; blend->default_weight_vector = blend->weight_vector + num_designs; blend->font_infos[0] = &face->type1.font_info; blend->privates [0] = &face->type1.private_dict; for ( nn = 2; nn <= num_designs; nn++ ) { blend->privates[nn] = blend->privates [nn - 1] + 1; blend->font_infos[nn] = blend->font_infos[nn - 1] + 1; } blend->num_designs = num_designs; } else if ( blend->num_designs != num_designs ) goto Fail; } /* allocate axis data if needed */ if ( num_axis > 0 ) { if ( blend->num_axis != 0 && blend->num_axis != num_axis ) goto Fail; blend->num_axis = num_axis; } /* allocate the blend design pos table if needed */ num_designs = blend->num_designs; num_axis = blend->num_axis; if ( num_designs && num_axis && blend->design_pos[0] == 0 ) { FT_UInt n; if ( ALLOC_ARRAY( blend->design_pos[0], num_designs * num_axis, FT_Fixed ) ) goto Exit; for ( n = 1; n < num_designs; n++ ) blend->design_pos[n] = blend->design_pos[0] + num_axis * n; } Exit: return error; Fail: error = -1; goto Exit; } LOCAL_FUNC FT_Error Z1_Get_Multi_Master( T1_Face face, FT_Multi_Master* master ) { T1_Blend* blend = face->blend; FT_UInt n; FT_Error error; error = T1_Err_Invalid_Argument; if ( blend ) { master->num_axis = blend->num_axis; master->num_designs = blend->num_designs; for ( n = 0; n < blend->num_axis; n++ ) { FT_MM_Axis* axis = master->axis + n; T1_DesignMap* map = blend->design_map + n; axis->name = blend->axis_names[n]; axis->minimum = map->design_points[0]; axis->maximum = map->design_points[map->num_points - 1]; } error = 0; } return error; } LOCAL_FUNC FT_Error Z1_Set_MM_Blend( T1_Face face, FT_UInt num_coords, FT_Fixed* coords ) { T1_Blend* blend = face->blend; FT_Error error; FT_UInt n, m; error = T1_Err_Invalid_Argument; if ( blend && blend->num_axis == num_coords ) { /* recompute the weight vector from the blend coordinates */ error = FT_Err_Ok; for ( n = 0; n < blend->num_designs; n++ ) { FT_Fixed result = 0x10000L; /* 1.0 fixed */ for ( m = 0; m < blend->num_axis; m++ ) { FT_Fixed factor; /* get current blend axis position */ factor = coords[m]; if ( factor < 0 ) factor = 0; if ( factor > 0x10000L ) factor = 0x10000L; if ( ( n & ( 1 << m ) ) == 0 ) factor = 0x10000L - factor; result = FT_MulFix( result, factor ); } blend->weight_vector[n] = result; } error = FT_Err_Ok; } return error; } LOCAL_FUNC FT_Error Z1_Set_MM_Design( T1_Face face, FT_UInt num_coords, FT_Long* coords ) { T1_Blend* blend = face->blend; FT_Error error; FT_UInt n, p; error = T1_Err_Invalid_Argument; if ( blend && blend->num_axis == num_coords ) { /* compute the blend coordinates through the blend design map */ FT_Fixed final_blends[T1_MAX_MM_DESIGNS]; for ( n = 0; n < blend->num_axis; n++ ) { FT_Long design = coords[n]; FT_Fixed the_blend; T1_DesignMap* map = blend->design_map + n; FT_Fixed* designs = map->design_points; FT_Fixed* blends = map->blend_points; FT_Int before = -1, after = -1; for ( p = 0; p < map->num_points; p++ ) { FT_Fixed p_design = designs[p]; /* exact match ? */ if ( design == p_design ) { the_blend = blends[p]; goto Found; } if ( design < p_design ) { after = p; break; } before = p; } /* now, interpolate if needed */ if ( before < 0 ) the_blend = blends[0]; else if ( after < 0 ) the_blend = blends[map->num_points - 1]; else the_blend = FT_MulDiv( design - designs[before], blends [after] - blends [before], designs[after] - designs[before] ); Found: final_blends[n] = the_blend; } error = Z1_Set_MM_Blend( face, num_coords, final_blends ); } return error; } LOCAL_FUNC void Z1_Done_Blend( T1_Face face ) { FT_Memory memory = face->root.memory; T1_Blend* blend = face->blend; if ( blend ) { FT_UInt num_designs = blend->num_designs; FT_UInt num_axis = blend->num_axis; FT_UInt n; /* release design pos table */ FREE( blend->design_pos[0] ); for ( n = 1; n < num_designs; n++ ) blend->design_pos[n] = 0; /* release blend `private' and `font info' dictionaries */ FREE( blend->privates[1] ); FREE( blend->font_infos[1] ); for ( n = 0; n < num_designs; n++ ) { blend->privates [n] = 0; blend->font_infos[n] = 0; } /* release weight vectors */ FREE( blend->weight_vector ); blend->default_weight_vector = 0; /* release axis names */ for ( n = 0; n < num_axis; n++ ) FREE( blend->axis_names[n] ); /* release design map */ for ( n = 0; n < num_axis; n++ ) { T1_DesignMap* dmap = blend->design_map + n; FREE( dmap->design_points ); dmap->num_points = 0; } FREE( face->blend ); } } static void parse_blend_axis_types( T1_Face face, Z1_Loader* loader ) { Z1_Token_Rec axis_tokens[ T1_MAX_MM_AXIS ]; FT_Int n, num_axis; FT_Error error = 0; T1_Blend* blend; FT_Memory memory; /* take an array of objects */ Z1_ToTokenArray( &loader->parser, axis_tokens, T1_MAX_MM_AXIS, &num_axis ); if ( num_axis <= 0 || num_axis > T1_MAX_MM_AXIS ) { FT_ERROR(( "parse_blend_axis_types: incorrect number of axes: %d\n", num_axis )); error = T1_Err_Invalid_File_Format; goto Exit; } /* allocate blend if necessary */ error = t1_allocate_blend( face, 0, (FT_UInt)num_axis ); if ( error ) goto Exit; blend = face->blend; memory = face->root.memory; /* each token is an immediate containing the name of the axis */ for ( n = 0; n < num_axis; n++ ) { Z1_Token_Rec* token = axis_tokens + n; FT_Byte* name; FT_Int len; /* skip first slash, if any */ if (token->start[0] == '/') token->start++; len = token->limit - token->start; if ( len <= 0 ) { error = T1_Err_Invalid_File_Format; goto Exit; } if ( ALLOC( blend->axis_names[n], len + 1 ) ) goto Exit; name = (FT_Byte*)blend->axis_names[n]; MEM_Copy( name, token->start, len ); name[len] = 0; } Exit: loader->parser.error = error; } static void parse_blend_design_positions( T1_Face face, Z1_Loader* loader ) { Z1_Token_Rec design_tokens[ T1_MAX_MM_DESIGNS ]; FT_Int num_designs; FT_Int num_axis; Z1_Parser* parser = &loader->parser; FT_Error error = 0; T1_Blend* blend; /* get the array of design tokens - compute number of designs */ Z1_ToTokenArray( parser, design_tokens, T1_MAX_MM_DESIGNS, &num_designs ); if ( num_designs <= 0 || num_designs > T1_MAX_MM_DESIGNS ) { FT_ERROR(( "parse_blend_design_positions:" )); FT_ERROR(( " incorrect number of designs: %d\n", num_designs )); error = T1_Err_Invalid_File_Format; goto Exit; } { FT_Byte* old_cursor = parser->cursor; FT_Byte* old_limit = parser->limit; FT_UInt n; blend = face->blend; num_axis = 0; /* make compiler happy */ for ( n = 0; n < (FT_UInt)num_designs; n++ ) { Z1_Token_Rec axis_tokens[ T1_MAX_MM_DESIGNS ]; Z1_Token_Rec* token; FT_Int axis, n_axis; /* read axis/coordinates tokens */ token = design_tokens + n; parser->cursor = token->start - 1; parser->limit = token->limit + 1; Z1_ToTokenArray( parser, axis_tokens, T1_MAX_MM_AXIS, &n_axis ); if ( n == 0 ) { num_axis = n_axis; error = t1_allocate_blend( face, num_designs, num_axis ); if ( error ) goto Exit; blend = face->blend; } else if ( n_axis != num_axis ) { FT_ERROR(( "parse_blend_design_positions: incorrect table\n" )); error = T1_Err_Invalid_File_Format; goto Exit; } /* now, read each axis token into the design position */ for ( axis = 0; axis < n_axis; axis++ ) { Z1_Token_Rec* token2 = axis_tokens + axis; parser->cursor = token2->start; parser->limit = token2->limit; blend->design_pos[n][axis] = Z1_ToFixed( parser, 0 ); } } loader->parser.cursor = old_cursor; loader->parser.limit = old_limit; } Exit: loader->parser.error = error; } static void parse_blend_design_map( T1_Face face, Z1_Loader* loader ) { FT_Error error = 0; Z1_Parser* parser = &loader->parser; T1_Blend* blend; Z1_Token_Rec axis_tokens[ T1_MAX_MM_AXIS ]; FT_Int n, num_axis; FT_Byte* old_cursor; FT_Byte* old_limit; FT_Memory memory = face->root.memory; Z1_ToTokenArray( parser, axis_tokens, T1_MAX_MM_AXIS, &num_axis ); if ( num_axis <= 0 || num_axis > T1_MAX_MM_AXIS ) { FT_ERROR(( "parse_blend_design_map: incorrect number of axes: %d\n", num_axis )); error = T1_Err_Invalid_File_Format; goto Exit; } old_cursor = parser->cursor; old_limit = parser->limit; error = t1_allocate_blend( face, 0, num_axis ); if ( error ) goto Exit; blend = face->blend; /* now, read each axis design map */ for ( n = 0; n < num_axis; n++ ) { T1_DesignMap* map = blend->design_map + n; Z1_Token_Rec* token; FT_Int p, num_points; token = axis_tokens + n; parser->cursor = token->start; parser->limit = token->limit; /* count the number of map points */ { FT_Byte* p = token->start; FT_Byte* limit = token->limit; num_points = 0; for ( ; p < limit; p++ ) if ( p[0] == '[' ) num_points++; } if ( num_points <= 0 || num_points > T1_MAX_MM_MAP_POINTS ) { FT_ERROR(( "parse_blend_design_map: incorrect table\n" )); error = T1_Err_Invalid_File_Format; goto Exit; } /* allocate design map data */ if ( ALLOC_ARRAY( map->design_points, num_points * 2, FT_Fixed ) ) goto Exit; map->blend_points = map->design_points + num_points; map->num_points = (FT_Byte)num_points; for ( p = 0; p < num_points; p++ ) { map->design_points[p] = Z1_ToInt( parser ); map->blend_points [p] = Z1_ToFixed( parser, 0 ); } } parser->cursor = old_cursor; parser->limit = old_limit; Exit: parser->error = error; } static void parse_weight_vector( T1_Face face, Z1_Loader* loader ) { FT_Error error = 0; Z1_Parser* parser = &loader->parser; T1_Blend* blend = face->blend; Z1_Token_Rec master; FT_UInt n; FT_Byte* old_cursor; FT_Byte* old_limit; if ( !blend || blend->num_designs == 0 ) { FT_ERROR(( "parse_weight_vector: too early!\n" )); error = T1_Err_Invalid_File_Format; goto Exit; } Z1_ToToken( parser, &master ); if ( master.type != t1_token_array ) { FT_ERROR(( "parse_weight_vector: incorrect format!\n" )); error = T1_Err_Invalid_File_Format; goto Exit; } old_cursor = parser->cursor; old_limit = parser->limit; parser->cursor = master.start; parser->limit = master.limit; for ( n = 0; n < blend->num_designs; n++ ) { blend->default_weight_vector[n] = blend->weight_vector[n] = Z1_ToFixed( parser, 0 ); } parser->cursor = old_cursor; parser->limit = old_limit; Exit: parser->error = error; } /* the keyword `/shareddict' appears in some multiple master fonts */ /* with a lot of Postscript garbage behind it (that's completely out */ /* of spec!); we detect it and terminate the parsing */ /* */ static void parse_shared_dict( T1_Face face, Z1_Loader* loader ) { Z1_Parser* parser = &loader->parser; FT_UNUSED( face ); parser->cursor = parser->limit; parser->error = 0; } #endif /* Z1_CONFIG_OPTION_NO_MM_SUPPORT */ /*************************************************************************/ /*************************************************************************/ /***** *****/ /***** TYPE 1 SYMBOL PARSING *****/ /***** *****/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /* */ /* First of all, define the token field static variables. This is a set */ /* of Z1_Field_Rec variables used later. */ /* */ /*************************************************************************/ #define Z1_NEW_STRING( _name, _field ) \ static \ const Z1_Field_Rec t1_field_ ## _field = \ Z1_FIELD_STRING( _field ); #define Z1_NEW_BOOL( _name, _field ) \ static \ const Z1_Field_Rec t1_field_ ## _field = \ Z1_FIELD_BOOL( _field ); #define Z1_NEW_NUM( _name, _field ) \ static \ const Z1_Field_Rec t1_field_ ## _field = \ Z1_FIELD_NUM( _field ); #define Z1_NEW_FIXED( _name, _field ) \ static \ const Z1_Field_Rec t1_field_ ## _field = \ Z1_FIELD_FIXED( _field, _power ); #define Z1_NEW_NUM_TABLE( _name, _field, _max, _count ) \ static \ const Z1_Field_Rec t1_field_ ## _field = \ Z1_FIELD_NUM_ARRAY( _field, _count, _max ); #define Z1_NEW_FIXED_TABLE( _name, _field, _max, _count ) \ static \ const Z1_Field_Rec t1_field_ ## _field = \ Z1_FIELD_FIXED_ARRAY( _field, _count, _max ); #define Z1_NEW_NUM_TABLE2( _name, _field, _max ) \ static \ const Z1_Field_Rec t1_field_ ## _field = \ Z1_FIELD_NUM_ARRAY2( _field, _max ); #define Z1_NEW_FIXED_TABLE2( _name, _field, _max ) \ static \ const Z1_Field_Rec t1_field_ ## _field = \ Z1_FIELD_FIXED_ARRAY2( _field, _max ); #define Z1_FONTINFO_STRING( n, f ) Z1_NEW_STRING( n, f ) #define Z1_FONTINFO_NUM( n, f ) Z1_NEW_NUM( n, f ) #define Z1_FONTINFO_BOOL( n, f ) Z1_NEW_BOOL( n, f ) #define Z1_PRIVATE_NUM( n, f ) Z1_NEW_NUM( n, f ) #define Z1_PRIVATE_FIXED( n, f ) Z1_NEW_FIXED( n, f ) #define Z1_PRIVATE_NUM_TABLE( n, f, m, c ) Z1_NEW_NUM_TABLE( n, f, m, c ) #define Z1_PRIVATE_NUM_TABLE2( n, f, m ) Z1_NEW_NUM_TABLE2( n, f, m ) #define Z1_TOPDICT_NUM( n, f ) Z1_NEW_NUM( n, f ) #define Z1_TOPDICT_NUM_FIXED2( n, f, m ) Z1_NEW_FIXED_TABLE2( n, f, m ) /* including this file defines all field variables */ #ifdef FT_FLAT_COMPILE #include "z1tokens.h" #else #include <type1z/z1tokens.h> #endif /*************************************************************************/ /* */ /* Second, define the keyword variables. This is a set of Z1_KeyWord */ /* structures used to model the way each keyword is `loaded'. */ /* */ /*************************************************************************/ typedef void (*Z1_Parse_Func)( T1_Face face, Z1_Loader* loader ); typedef enum Z1_KeyWord_Type_ { t1_keyword_callback = 0, t1_keyword_field, t1_keyword_field_table } Z1_KeyWord_Type; typedef enum Z1_KeyWord_Location_ { t1_keyword_type1 = 0, t1_keyword_font_info, t1_keyword_private } Z1_KeyWord_Location; typedef struct Z1_KeyWord_ { const char* name; Z1_KeyWord_Type type; Z1_KeyWord_Location location; Z1_Parse_Func parsing; const Z1_Field_Rec* field; } Z1_KeyWord; #define Z1_KEYWORD_CALLBACK( name, callback ) \ { \ name, t1_keyword_callback, t1_keyword_type1, callback, 0 \ } #define Z1_KEYWORD_TYPE1( name, f ) \ { \ name, t1_keyword_field, t1_keyword_type1, 0, &t1_field_ ## f \ } #define Z1_KEYWORD_FONTINFO( name, f ) \ { \ name, t1_keyword_field, t1_keyword_font_info, 0, &t1_field_ ## f \ } #define Z1_KEYWORD_PRIVATE( name, f ) \ { \ name, t1_keyword_field, t1_keyword_private, 0, &t1_field_ ## f \ } #define Z1_KEYWORD_FONTINFO_TABLE( name, f ) \ { \ name, t1_keyword_field_table, t1_keyword_font_info, 0, \ &t1_field_ ## f \ } #define Z1_KEYWORD_PRIVATE_TABLE( name, f ) \ { \ name, t1_keyword_field_table, t1_keyword_private, 0, \ &t1_field_ ## f \ } #undef Z1_FONTINFO_STRING #undef Z1_FONTINFO_NUM #undef Z1_FONTINFO_BOOL #undef Z1_PRIVATE_NUM #undef Z1_PRIVATE_FIXED #undef Z1_PRIVATE_NUM_TABLE #undef Z1_PRIVATE_NUM_TABLE2 #undef Z1_TOPDICT_NUM #undef Z1_TOPDICT_NUM_FIXED2 #define Z1_FONTINFO_STRING( n, f ) Z1_KEYWORD_FONTINFO( n, f ), #define Z1_FONTINFO_NUM( n, f ) Z1_KEYWORD_FONTINFO( n, f ), #define Z1_FONTINFO_BOOL( n, f ) Z1_KEYWORD_FONTINFO( n, f ), #define Z1_PRIVATE_NUM( n, f ) Z1_KEYWORD_PRIVATE( n, f ), #define Z1_PRIVATE_FIXED( n, f ) Z1_KEYWORD_PRIVATE( n, f ), #define Z1_PRIVATE_NUM_TABLE( n, f, m, c ) Z1_KEYWORD_PRIVATE_TABLE( n, f ), #define Z1_PRIVATE_NUM_TABLE2( n, f, m ) Z1_KEYWORD_PRIVATE_TABLE( n, f ), #define Z1_TOPDICT_NUM( n, f ) Z1_KEYWORD_TYPE1( n, f ), #define Z1_TOPDICT_NUM_FIXED2( n, f, m ) Z1_KEYWORD_TYPE1( n, f ), static FT_Error t1_load_keyword( T1_Face face, Z1_Loader* loader, Z1_KeyWord* keyword ) { FT_Error error; void* dummy_object; void** objects; FT_UInt max_objects; T1_Blend* blend = face->blend; /* if the keyword has a dedicated callback, call it */ if ( keyword->type == t1_keyword_callback ) { keyword->parsing( face, loader ); error = loader->parser.error; goto Exit; } /* now, the keyword is either a simple field, or a table of fields; */ /* we are now going to take care of it */ switch ( keyword->location ) { case t1_keyword_font_info: dummy_object = &face->type1.font_info; objects = &dummy_object; max_objects = 0; if ( blend ) { objects = (void**)blend->font_infos; max_objects = blend->num_designs; } break; case t1_keyword_private: dummy_object = &face->type1.private_dict; objects = &dummy_object; max_objects = 0; if ( blend ) { objects = (void**)blend->privates; max_objects = blend->num_designs; } break; default: dummy_object = &face->type1; objects = &dummy_object; max_objects = 0; } if ( keyword->type == t1_keyword_field_table ) error = Z1_Load_Field_Table( &loader->parser, keyword->field, objects, max_objects, 0 ); else error = Z1_Load_Field( &loader->parser, keyword->field, objects, max_objects, 0 ); Exit: return error; } static int is_space( char c ) { return ( c == ' ' || c == '\t' || c == '\r' || c == '\n' ); } static int is_alpha( char c ) { return ( isalnum( (int)c ) || ( c == '.' ) || ( c == '_' ) ); } static void skip_whitespace( Z1_Parser* parser ) { FT_Byte* cur = parser->cursor; while ( cur < parser->limit && is_space( *cur ) ) cur++; parser->cursor = cur; } static void skip_blackspace( Z1_Parser* parser ) { FT_Byte* cur = parser->cursor; while ( cur < parser->limit && !is_space( *cur ) ) cur++; parser->cursor = cur; } static int read_binary_data( Z1_Parser* parser, FT_Int* size, FT_Byte** base ) { FT_Byte* cur; FT_Byte* limit = parser->limit; /* the binary data has the following format */ /* */ /* `size' [white*] RD white ....... ND */ /* */ skip_whitespace( parser ); cur = parser->cursor; if ( cur < limit && (FT_Byte)( *cur - '0' ) < 10 ) { *size = Z1_ToInt( parser ); skip_whitespace( parser ); skip_blackspace( parser ); /* `RD' or `-|' or something else */ /* there is only one whitespace char after the */ /* `RD' or `-|' token */ *base = parser->cursor + 1; parser->cursor += *size+1; return 1; } FT_ERROR(( "read_binary_data: invalid size field\n" )); parser->error = T1_Err_Invalid_File_Format; return 0; } /* we will now define the routines used to handle */ /* the `/Encoding', `/Subrs', and `/CharStrings' */ /* dictionaries */ static void parse_font_name( T1_Face face, Z1_Loader* loader ) { Z1_Parser* parser = &loader->parser; FT_Error error; FT_Memory memory = parser->memory; FT_Int len; FT_Byte* cur; FT_Byte* cur2; FT_Byte* limit; skip_whitespace( parser ); cur = parser->cursor; limit = parser->limit; if ( cur >= limit - 1 || *cur != '/' ) return; cur++; cur2 = cur; while ( cur2 < limit && is_alpha( *cur2 ) ) cur2++; len = cur2 - cur; if ( len > 0 ) { if ( ALLOC( face->type1.font_name, len + 1 ) ) { parser->error = error; return; } MEM_Copy( face->type1.font_name, cur, len ); face->type1.font_name[len] = '\0'; } parser->cursor = cur2; } static void parse_font_bbox( T1_Face face, Z1_Loader* loader ) { Z1_Parser* parser = &loader->parser; FT_Short temp[4]; FT_BBox* bbox = &face->type1.font_bbox; (void)Z1_ToCoordArray( parser, 4, temp ); bbox->xMin = temp[0]; bbox->yMin = temp[1]; bbox->xMax = temp[2]; bbox->yMax = temp[3]; } static void parse_font_matrix( T1_Face face, Z1_Loader* loader ) { Z1_Parser* parser = &loader->parser; FT_Matrix* matrix = &face->type1.font_matrix; FT_Fixed temp[4]; (void)Z1_ToFixedArray( parser, 4, temp, 3 ); matrix->xx = temp[0]; matrix->yx = temp[1]; matrix->xy = temp[2]; matrix->yy = temp[3]; } static void parse_encoding( T1_Face face, Z1_Loader* loader ) { Z1_Parser* parser = &loader->parser; FT_Byte* cur = parser->cursor; FT_Byte* limit = parser->limit; /* skip whitespace */ while ( is_space( *cur ) ) { cur++; if ( cur >= limit ) { FT_ERROR(( "parse_encoding: out of bounds!\n" )); parser->error = T1_Err_Invalid_File_Format; return; } } /* if we have a number, then the encoding is an array, */ /* and we must load it now */ if ( (FT_Byte)( *cur - '0' ) < 10 ) { T1_Encoding* encode = &face->type1.encoding; FT_Int count, n; Z1_Table* char_table = &loader->encoding_table; FT_Memory memory = parser->memory; FT_Error error; /* read the number of entries in the encoding, should be 256 */ count = Z1_ToInt( parser ); if ( parser->error ) return; /* we use a Z1_Table to store our charnames */ encode->num_chars = count; if ( ALLOC_ARRAY( encode->char_index, count, FT_Short ) || ALLOC_ARRAY( encode->char_name, count, FT_String* ) || ( error = Z1_New_Table( char_table, count, memory ) ) != 0 ) { parser->error = error; return; } /* Now, we will need to read a record of the form */ /* ... charcode /charname ... for each entry in our table */ /* */ /* We simply look for a number followed by an immediate */ /* name. Note that this ignores correctly the sequence */ /* that is often seen in type1 fonts: */ /* */ /* 0 1 255 { 1 index exch /.notdef put } for dup */ /* */ /* used to clean the encoding array before anything else. */ /* */ /* We stop when we encounter a `def'. */ cur = parser->cursor; limit = parser->limit; n = 0; for ( ; cur < limit; ) { FT_Byte c; c = *cur; /* we stop when we encounter a `def' */ if ( c == 'd' && cur + 3 < limit ) { if ( cur[1] == 'e' && cur[2] == 'f' && is_space(cur[-1]) && is_space(cur[3]) ) { FT_TRACE6(( "encoding end\n" )); break; } } /* otherwise, we must find a number before anything else */ if ( (FT_Byte)( c - '0' ) < 10 ) { FT_Int charcode; parser->cursor = cur; charcode = Z1_ToInt( parser ); cur = parser->cursor; /* skip whitespace */ while ( cur < limit && is_space( *cur ) ) cur++; if ( cur < limit && *cur == '/' ) { /* bingo, we have an immediate name -- it must be a */ /* character name */ FT_Byte* cur2 = cur + 1; FT_Int len; while ( cur2 < limit && is_alpha( *cur2 ) ) cur2++; len = cur2 - cur - 1; parser->error = Z1_Add_Table( char_table, charcode, cur + 1, len + 1 ); char_table->elements[charcode][len] = '\0'; if ( parser->error ) return; cur = cur2; } } else cur++; } face->type1.encoding_type = t1_encoding_array; parser->cursor = cur; } /* Otherwise, we should have either `StandardEncoding' or */ /* `ExpertEncoding' */ else { if ( cur + 17 < limit && strncmp( (const char*)cur, "StandardEncoding", 16 ) == 0 ) face->type1.encoding_type = t1_encoding_standard; else if ( cur + 15 < limit && strncmp( (const char*)cur, "ExpertEncoding", 14 ) == 0 ) face->type1.encoding_type = t1_encoding_expert; else { FT_ERROR(( "parse_encoding: invalid token!\n" )); parser->error = T1_Err_Invalid_File_Format; } } } static void parse_subrs( T1_Face face, Z1_Loader* loader ) { Z1_Parser* parser = &loader->parser; Z1_Table* table = &loader->subrs; FT_Memory memory = parser->memory; FT_Error error; FT_Int n; loader->num_subrs = Z1_ToInt( parser ); if ( parser->error ) return; /* position the parser right before the `dup' of the first subr */ skip_whitespace( parser ); skip_blackspace( parser ); /* `array' */ skip_whitespace( parser ); /* initialize subrs array */ error = Z1_New_Table( table, loader->num_subrs, memory ); if ( error ) goto Fail; /* the format is simple: */ /* */ /* `index' + binary data */ /* */ for ( n = 0; n < loader->num_subrs; n++ ) { FT_Int index, size; FT_Byte* base; /* If the next token isn't `dup', we are also done. This */ /* happens when there are `holes' in the Subrs array. */ if ( strncmp( (char*)parser->cursor, "dup", 3 ) != 0 ) break; index = Z1_ToInt( parser ); if ( !read_binary_data( parser, &size, &base ) ) return; /* The binary string is followed by one token, e.g. `NP' */ /* (bound to `noaccess put') or by two separate tokens: */ /* `noaccess' & `put'. We position the parser right */ /* before the next `dup', if any. */ skip_whitespace( parser ); skip_blackspace( parser ); /* `NP' or `I' or `noaccess' */ skip_whitespace( parser ); if ( strncmp( (char*)parser->cursor, "put", 3 ) == 0 ) { skip_blackspace( parser ); /* skip `put' */ skip_whitespace( parser ); } /* some fonts use a value of -1 for lenIV to indicate that */ /* the charstrings are unencoded */ /* */ /* thanks to Tom Kacvinsky for pointing this out */ /* */ if ( face->type1.private_dict.lenIV >= 0 ) { Z1_Decrypt( base, size, 4330 ); size -= face->type1.private_dict.lenIV; base += face->type1.private_dict.lenIV; } error = Z1_Add_Table( table, index, base, size ); if ( error ) goto Fail; } return; Fail: parser->error = error; } static void parse_charstrings( T1_Face face, Z1_Loader* loader ) { Z1_Parser* parser = &loader->parser; Z1_Table* code_table = &loader->charstrings; Z1_Table* name_table = &loader->glyph_names; FT_Memory memory = parser->memory; FT_Error error; FT_Byte* cur; FT_Byte* limit = parser->limit; FT_Int n; loader->num_glyphs = Z1_ToInt( parser ); if ( parser->error ) return; /* initialize tables */ error = Z1_New_Table( code_table, loader->num_glyphs, memory ) || Z1_New_Table( name_table, loader->num_glyphs, memory ); if ( error ) goto Fail; n = 0; for (;;) { FT_Int size; FT_Byte* base; /* the format is simple: */ /* `/glyphname' + binary data */ /* */ /* note that we stop when we find a `def' */ /* */ skip_whitespace( parser ); cur = parser->cursor; if ( cur >= limit ) break; /* we stop when we find a `def' or `end' keyword */ if ( *cur == 'd' && cur + 3 < limit && cur[1] == 'e' && cur[2] == 'f' ) break; if ( *cur == 'e' && cur + 3 < limit && cur[1] == 'n' && cur[2] == 'd' ) break; if ( *cur != '/' ) skip_blackspace( parser ); else { FT_Byte* cur2 = cur + 1; FT_Int len; while ( cur2 < limit && is_alpha( *cur2 ) ) cur2++; len = cur2 - cur - 1; error = Z1_Add_Table( name_table, n, cur + 1, len + 1 ); if ( error ) goto Fail; /* add a trailing zero to the name table */ name_table->elements[n][len] = '\0'; parser->cursor = cur2; if ( !read_binary_data( parser, &size, &base ) ) return; if ( face->type1.private_dict.lenIV >= 0 ) { Z1_Decrypt( base, size, 4330 ); size -= face->type1.private_dict.lenIV; base += face->type1.private_dict.lenIV; } error = Z1_Add_Table( code_table, n, base, size ); if ( error ) goto Fail; n++; if ( n >= loader->num_glyphs ) break; } } loader->num_glyphs = n; return; Fail: parser->error = error; } static const Z1_KeyWord t1_keywords[] = { #ifdef FT_FLAT_COMPILE #include "z1tokens.h" #else #include <type1z/z1tokens.h> #endif /* now add the special functions... */ Z1_KEYWORD_CALLBACK( "FontName", parse_font_name ), Z1_KEYWORD_CALLBACK( "FontBBox", parse_font_bbox ), Z1_KEYWORD_CALLBACK( "FontMatrix", parse_font_matrix ), Z1_KEYWORD_CALLBACK( "Encoding", parse_encoding ), Z1_KEYWORD_CALLBACK( "Subrs", parse_subrs ), Z1_KEYWORD_CALLBACK( "CharStrings", parse_charstrings ), #ifndef Z1_CONFIG_OPTION_NO_MM_SUPPORT Z1_KEYWORD_CALLBACK( "BlendDesignPositions", parse_blend_design_positions ), Z1_KEYWORD_CALLBACK( "BlendDesignMap", parse_blend_design_map ), Z1_KEYWORD_CALLBACK( "BlendAxisTypes", parse_blend_axis_types ), Z1_KEYWORD_CALLBACK( "WeightVector", parse_weight_vector ), Z1_KEYWORD_CALLBACK( "shareddict", parse_shared_dict ), #endif Z1_KEYWORD_CALLBACK( 0, 0 ) }; static FT_Error parse_dict( T1_Face face, Z1_Loader* loader, FT_Byte* base, FT_Long size ) { Z1_Parser* parser = &loader->parser; parser->cursor = base; parser->limit = base + size; parser->error = 0; { FT_Byte* cur = base; FT_Byte* limit = cur + size; for ( ; cur < limit; cur++ ) { /* look for `FontDirectory', which causes problems on some fonts */ if ( *cur == 'F' && cur + 25 < limit && strncmp( (char*)cur, "FontDirectory", 13 ) == 0 ) { FT_Byte* cur2; /* skip the `FontDirectory' keyword */ cur += 13; cur2 = cur; /* lookup the `known' keyword */ while ( cur < limit && *cur != 'k' && strncmp( (char*)cur, "known", 5 ) ) cur++; if ( cur < limit ) { Z1_Token_Rec token; /* skip the `known' keyword and the token following it */ cur += 5; loader->parser.cursor = cur; Z1_ToToken( &loader->parser, &token ); /* if the last token was an array, skip it! */ if ( token.type == t1_token_array ) cur2 = parser->cursor; } cur = cur2; } /* look for immediates */ else if ( *cur == '/' && cur + 2 < limit ) { FT_Byte* cur2; FT_Int len; cur++; cur2 = cur; while ( cur2 < limit && is_alpha( *cur2 ) ) cur2++; len = cur2 - cur; if ( len > 0 && len < 22 ) { if ( !loader->fontdata ) { if ( strncmp( (char*)cur, "FontInfo", 8 ) == 0 ) loader->fontdata = 1; } else { /* now, compare the immediate name to the keyword table */ Z1_KeyWord* keyword = (Z1_KeyWord*)t1_keywords; for (;;) { FT_Byte* name; name = (FT_Byte*)keyword->name; if ( !name ) break; if ( cur[0] == name[0] && len == (FT_Int)strlen( (const char*)name ) ) { FT_Int n; for ( n = 1; n < len; n++ ) if ( cur[n] != name[n] ) break; if ( n >= len ) { /* we found it -- run the parsing callback! */ parser->cursor = cur2; skip_whitespace( parser ); parser->error = t1_load_keyword( face, loader, keyword ); if ( parser->error ) return parser->error; cur = parser->cursor; break; } } keyword++; } } } } } } return parser->error; } static void t1_init_loader( Z1_Loader* loader, T1_Face face ) { FT_UNUSED( face ); MEM_Set( loader, 0, sizeof ( *loader ) ); loader->num_glyphs = 0; loader->num_chars = 0; /* initialize the tables -- simply set their `init' field to 0 */ loader->encoding_table.init = 0; loader->charstrings.init = 0; loader->glyph_names.init = 0; loader->subrs.init = 0; loader->fontdata = 0; } static void t1_done_loader( Z1_Loader* loader ) { Z1_Parser* parser = &loader->parser; /* finalize tables */ Z1_Release_Table( &loader->encoding_table ); Z1_Release_Table( &loader->charstrings ); Z1_Release_Table( &loader->glyph_names ); Z1_Release_Table( &loader->subrs ); /* finalize parser */ Z1_Done_Parser( parser ); } LOCAL_FUNC FT_Error Z1_Open_Face( T1_Face face ) { Z1_Loader loader; Z1_Parser* parser; T1_Font* type1 = &face->type1; FT_Error error; t1_init_loader( &loader, face ); /* default lenIV */ type1->private_dict.lenIV = 4; parser = &loader.parser; error = Z1_New_Parser( parser, face->root.stream, face->root.memory ); if ( error ) goto Exit; error = parse_dict( face, &loader, parser->base_dict, parser->base_len ); if ( error ) goto Exit; error = Z1_Get_Private_Dict( parser ); if ( error ) goto Exit; error = parse_dict( face, &loader, parser->private_dict, parser->private_len ); if ( error ) goto Exit; /* now, propagate the subrs, charstrings, and glyphnames tables */ /* to the Type1 data */ type1->num_glyphs = loader.num_glyphs; if ( !loader.subrs.init ) { FT_ERROR(( "Z1_Open_Face: no subrs array in face!\n" )); error = T1_Err_Invalid_File_Format; } if ( !loader.charstrings.init ) { FT_ERROR(( "Z1_Open_Face: no charstrings array in face!\n" )); error = T1_Err_Invalid_File_Format; } loader.subrs.init = 0; type1->num_subrs = loader.num_subrs; type1->subrs_block = loader.subrs.block; type1->subrs = loader.subrs.elements; type1->subrs_len = loader.subrs.lengths; loader.charstrings.init = 0; type1->charstrings_block = loader.charstrings.block; type1->charstrings = loader.charstrings.elements; type1->charstrings_len = loader.charstrings.lengths; /* we copy the glyph names `block' and `elements' fields; */ /* the `lengths' field must be released later */ type1->glyph_names_block = loader.glyph_names.block; type1->glyph_names = (FT_String**)loader.glyph_names.elements; loader.glyph_names.block = 0; loader.glyph_names.elements = 0; /* we must now build type1.encoding when we have a custom */ /* array.. */ if ( type1->encoding_type == t1_encoding_array ) { FT_Int charcode, index, min_char, max_char; FT_Byte* char_name; FT_Byte* glyph_name; /* OK, we do the following: for each element in the encoding */ /* table, look up the index of the glyph having the same name */ /* the index is then stored in type1.encoding.char_index, and */ /* a the name to type1.encoding.char_name */ min_char = +32000; max_char = -32000; charcode = 0; for ( ; charcode < loader.encoding_table.num_elems; charcode++ ) { type1->encoding.char_index[charcode] = 0; type1->encoding.char_name [charcode] = ".notdef"; char_name = loader.encoding_table.elements[charcode]; if ( char_name ) for ( index = 0; index < type1->num_glyphs; index++ ) { glyph_name = (FT_Byte*)type1->glyph_names[index]; if ( strcmp( (const char*)char_name, (const char*)glyph_name ) == 0 ) { type1->encoding.char_index[charcode] = index; type1->encoding.char_name [charcode] = (char*)glyph_name; if (charcode < min_char) min_char = charcode; if (charcode > max_char) max_char = charcode; break; } } } type1->encoding.code_first = min_char; type1->encoding.code_last = max_char; type1->encoding.num_chars = loader.num_chars; } Exit: t1_done_loader( &loader ); return error; } /* END */