ref: e33dc2ebeef85f78805a422f089307606925e062
dir: /src/lzw/ftzopen.c/
/***************************************************************************/ /* */ /* ftzopen.c */ /* */ /* FreeType support for .Z compressed files. */ /* */ /* This optional component relies on NetBSD's zopen(). It should mainly */ /* be used to parse compressed PCF fonts, as found with many X11 server */ /* distributions. */ /* */ /* Copyright 2005 by David Turner. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ #include "ftzopen.h" #include FT_INTERNAL_MEMORY_H #include FT_INTERNAL_STREAM_H #include FT_INTERNAL_DEBUG_H /* refill input buffer, return 0 on success, or -1 if eof */ static int ft_lzwstate_refill( FT_LzwState state ) { int result = -1; if ( !state->in_eof ) { FT_ULong count = FT_Stream_TryRead( state->source, state->in_buff, sizeof ( state->in_buff ) ); state->in_cursor = state->in_buff; state->in_limit = state->in_buff + count; state->in_eof = FT_BOOL( count < sizeof ( state->in_buff ) ); if ( count > 0 ) result = 0; } return result; } /* return new code of 'num_bits', or -1 if eof */ static FT_Int32 ft_lzwstate_get_code( FT_LzwState state, FT_UInt num_bits ) { FT_Int32 result = -1; FT_UInt32 pad = state->pad; FT_UInt pad_bits = state->pad_bits; while ( num_bits > pad_bits ) { if ( state->in_cursor >= state->in_limit && ft_lzwstate_refill( state ) < 0 ) goto Exit; pad |= (FT_UInt32)(*state->in_cursor++) << pad_bits; pad_bits += 8; } result = (FT_Int32)( pad & LZW_MASK( num_bits ) ); state->pad_bits = pad_bits - num_bits; state->pad = pad >> num_bits; Exit: return result; } /* grow the character stack */ static int ft_lzwstate_stack_grow( FT_LzwState state ) { if ( state->stack_top >= state->stack_size ) { FT_Memory memory = state->memory; FT_Error error; FT_UInt old_size = state->stack_size; FT_UInt new_size = old_size; new_size = new_size + ( new_size >> 1 ) + 4; if ( state->stack == state->stack_0 ) { state->stack = NULL; old_size = 0; } if ( FT_RENEW_ARRAY( state->stack, old_size, new_size ) ) return -1; state->stack_size = new_size; } return 0; } /* grow the prefix/suffix arrays */ static int ft_lzwstate_prefix_grow( FT_LzwState state ) { FT_UInt old_size = state->prefix_size; FT_UInt new_size = old_size; FT_Memory memory = state->memory; FT_Error error; if ( new_size == 0 ) /* first allocation -> 9 bits */ new_size = 512; else new_size += new_size >> 2; /* don't grow too fast */ /* * Note that the `suffix' array is located in the same memory block * pointed to by `prefix'. * * I know that sizeof(FT_Byte) == 1 by definition, but it is clearer * to write it literally. * */ if ( FT_REALLOC( state->prefix, old_size * (sizeof ( FT_UShort ) + sizeof ( FT_Byte ) ), new_size * (sizeof ( FT_UShort ) + sizeof ( FT_Byte ) ) ) ) return -1; /* now adjust `suffix' and move the data accordingly */ state->suffix = (FT_Byte*)( state->prefix + new_size ); FT_MEM_MOVE( state->suffix, state->prefix + old_size, old_size * sizeof ( FT_Byte ) ); state->prefix_size = new_size; return 0; } FT_LOCAL_DEF( void ) ft_lzwstate_reset( FT_LzwState state ) { state->in_cursor = state->in_buff; state->in_limit = state->in_buff; state->in_eof = 0; state->pad_bits = 0; state->pad = 0; state->stack_top = 0; state->num_bits = LZW_INIT_BITS; state->phase = FT_LZW_PHASE_START; } FT_LOCAL_DEF( void ) ft_lzwstate_init( FT_LzwState state, FT_Stream source ) { FT_ZERO( state ); state->source = source; state->memory = source->memory; state->prefix = NULL; state->suffix = NULL; state->prefix_size = 0; state->stack = state->stack_0; state->stack_size = sizeof ( state->stack_0 ); ft_lzwstate_reset( state ); } FT_LOCAL_DEF( void ) ft_lzwstate_done( FT_LzwState state ) { FT_Memory memory = state->memory; ft_lzwstate_reset( state ); if ( state->stack != state->stack_0 ) FT_FREE( state->stack ); FT_FREE( state->prefix ); state->suffix = NULL; FT_ZERO( state ); } #define FTLZW_STACK_PUSH( c ) \ FT_BEGIN_STMNT \ if ( state->stack_top >= state->stack_size && \ ft_lzwstate_stack_grow( state ) < 0 ) \ goto Eof; \ \ state->stack[ state->stack_top++ ] = (FT_Byte)(c); \ FT_END_STMNT FT_LOCAL_DEF( FT_ULong ) ft_lzwstate_io( FT_LzwState state, FT_Byte* buffer, FT_ULong out_size ) { FT_ULong result = 0; FT_UInt num_bits = state->num_bits; FT_UInt free_ent = state->free_ent; FT_UInt old_char = state->old_char; FT_UInt old_code = state->old_code; FT_UInt in_code = state->in_code; if ( out_size == 0 ) goto Exit; switch ( state->phase ) { case FT_LZW_PHASE_START: { FT_Byte max_bits; FT_Int32 c; /* skip magic bytes, and read max_bits + block_flag */ if ( FT_Stream_Seek( state->source, 2 ) != 0 || FT_Stream_TryRead( state->source, &max_bits, 1 ) != 1 ) goto Eof; state->max_bits = max_bits & LZW_BIT_MASK; state->block_mode = max_bits & LZW_BLOCK_MASK; state->max_free = (FT_UInt)( ( 1UL << state->max_bits ) - 256 ); if ( state->max_bits > LZW_MAX_BITS ) goto Eof; num_bits = LZW_INIT_BITS; free_ent = ( state->block_mode ? LZW_FIRST : LZW_CLEAR ) - 256; in_code = 0; state->free_bits = num_bits < state->max_bits ? (FT_UInt)( ( 1UL << num_bits ) - 256 ) : state->max_free + 1; c = ft_lzwstate_get_code( state, num_bits ); if ( c < 0 ) goto Eof; old_code = old_char = (FT_UInt)c; if ( buffer ) buffer[result] = (FT_Byte)old_char; if ( ++result >= out_size ) goto Exit; state->phase = FT_LZW_PHASE_CODE; } /* fall-through */ case FT_LZW_PHASE_CODE: { FT_Int32 c; FT_UInt code; NextCode: c = ft_lzwstate_get_code( state, num_bits ); if ( c < 0 ) goto Eof; code = (FT_UInt)c; if ( code == LZW_CLEAR && state->block_mode ) { free_ent = ( LZW_FIRST - 1 ) - 256; /* why not LZW_FIRST-256 ? */ num_bits = LZW_INIT_BITS; state->free_bits = num_bits < state->max_bits ? (FT_UInt)( ( 1UL << num_bits ) - 256 ) : state->max_free + 1; c = ft_lzwstate_get_code( state, num_bits ); if ( c < 0 ) goto Eof; code = (FT_UInt)c; } in_code = code; /* save code for later */ if ( code >= 256U ) { /* special case for KwKwKwK */ if ( code - 256U >= free_ent ) { FTLZW_STACK_PUSH( old_char ); code = old_code; } while ( code >= 256U ) { FTLZW_STACK_PUSH( state->suffix[code - 256] ); code = state->prefix[code - 256]; } } old_char = code; FTLZW_STACK_PUSH( old_char ); state->phase = FT_LZW_PHASE_STACK; } /* fall-through */ case FT_LZW_PHASE_STACK: { while ( state->stack_top > 0 ) { --state->stack_top; if ( buffer ) buffer[result] = state->stack[state->stack_top]; if ( ++result == out_size ) goto Exit; } /* now create new entry */ if ( free_ent < state->max_free ) { if ( free_ent >= state->prefix_size && ft_lzwstate_prefix_grow( state ) < 0 ) goto Eof; FT_ASSERT( free_ent < state->prefix_size ); state->prefix[free_ent] = (FT_UShort)old_code; state->suffix[free_ent] = (FT_Byte) old_char; if ( ++free_ent == state->free_bits ) { num_bits++; state->free_bits = num_bits < state->max_bits ? (FT_UInt)( ( 1UL << num_bits ) - 256 ) : state->max_free + 1; } } old_code = in_code; state->phase = FT_LZW_PHASE_CODE; goto NextCode; } default: /* state == EOF */ ; } Exit: state->num_bits = num_bits; state->free_ent = free_ent; state->old_code = old_code; state->old_char = old_char; state->in_code = in_code; return result; Eof: state->phase = FT_LZW_PHASE_EOF; goto Exit; } /* END */