ref: d082cd680122af0f5ab7381b921462d2587adb83
dir: /src/type1z/z1parse.c/
/***************************************************************************/ /* */ /* z1parse.c */ /* */ /* Experimental Type 1 parser (body). */ /* */ /* Copyright 1996-2000 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ /*************************************************************************/ /* */ /* The Type 1 parser is in charge of the following: */ /* */ /* - provide an implementation of a growing sequence of objects called */ /* a `Z1_Table' (used to build various tables needed by the loader). */ /* */ /* - opening .pfb and .pfa files to extract their top-level and private */ /* dictionaries. */ /* */ /* - read numbers, arrays & strings from any dictionary. */ /* */ /* See `z1load.c' to see how data is loaded from the font file. */ /* */ /*************************************************************************/ #include <freetype/internal/ftdebug.h> #include <freetype/internal/ftcalc.h> #include <freetype/internal/ftobjs.h> #include <freetype/internal/ftstream.h> #include <freetype/internal/t1errors.h> #ifdef FT_FLAT_COMPILE #include "z1parse.h" #else #include <type1z/z1parse.h> #endif #include <string.h> /* for strncmp() */ /*************************************************************************/ /* */ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ /* messages during execution. */ /* */ #undef FT_COMPONENT #define FT_COMPONENT trace_z1parse /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /***** *****/ /***** IMPLEMENTATION OF Z1_TABLE OBJECT *****/ /***** *****/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /* */ /* <Function> */ /* Z1_New_Table */ /* */ /* <Description> */ /* Initialises a Z1_Table. */ /* */ /* <InOut> */ /* table :: The address of the target table. */ /* */ /* <Input> */ /* count :: The table size = the maximum number of elements. */ /* */ /* memory :: The memory object to use for all subsequent */ /* reallocations. */ /* */ /* <Return> */ /* FreeType error code. 0 means success. */ /* */ LOCAL_FUNC FT_Error Z1_New_Table( Z1_Table* table, FT_Int count, FT_Memory memory ) { FT_Error error; table->memory = memory; if ( ALLOC_ARRAY( table->elements, count, FT_Byte* ) || ALLOC_ARRAY( table->lengths, count, FT_Byte* ) ) goto Exit; table->max_elems = count; table->init = 0xdeadbeef; table->num_elems = 0; table->block = 0; table->capacity = 0; table->cursor = 0; Exit: if ( error ) FREE( table->elements ); return error; } static void shift_elements( Z1_Table* table, FT_Byte* old_base ) { FT_Long delta = table->block - old_base; FT_Byte** offset = table->elements; FT_Byte** limit = offset + table->max_elems; if ( delta ) for ( ; offset < limit; offset++ ) { if ( offset[0] ) offset[0] += delta; } } static FT_Error reallocate_t1_table( Z1_Table* table, FT_Int new_size ) { FT_Memory memory = table->memory; FT_Byte* old_base = table->block; FT_Error error; /* reallocate the base block */ if ( REALLOC( table->block, table->capacity, new_size ) ) return error; table->capacity = new_size; /* shift all offsets if necessary */ if ( old_base ) shift_elements( table, old_base ); return T1_Err_Ok; } /*************************************************************************/ /* */ /* <Function> */ /* Z1_Add_Table */ /* */ /* <Description> */ /* Adds an object to a Z1_Table, possibly growing its memory block. */ /* */ /* <InOut> */ /* table :: The target table. */ /* */ /* <Input> */ /* index :: The index of the object in the table. */ /* */ /* object :: The address of the object to copy in memory. */ /* */ /* length :: The length in bytes of the source object. */ /* */ /* <Return> */ /* FreeType error code. 0 means success. An error is returned if a */ /* reallocation fails. */ /* */ LOCAL_FUNC FT_Error Z1_Add_Table( Z1_Table* table, FT_Int index, void* object, FT_Int length ) { if ( index < 0 || index > table->max_elems ) { FT_ERROR(( "Z1_Add_Table: invalid index\n" )); return T1_Err_Syntax_Error; } /* grow the base block if needed */ if ( table->cursor + length > table->capacity ) { FT_Error error; FT_Int new_size = table->capacity; while ( new_size < table->cursor + length ) new_size += 1024; error = reallocate_t1_table( table, new_size ); if ( error ) return error; } /* add the object to the base block and adjust offset */ table->elements[index] = table->block + table->cursor; table->lengths [index] = length; MEM_Copy( table->block + table->cursor, object, length ); table->cursor += length; return T1_Err_Ok; } #if 0 /*************************************************************************/ /* */ /* <Function> */ /* Z1_Done_Table */ /* */ /* <Description> */ /* Finalizes a Z1_Table (i.e., reallocate it to its current cursor). */ /* */ /* <InOut> */ /* table :: The target table. */ /* */ /* <Note> */ /* This function does NOT release the heap's memory block. It is up */ /* to the caller to clean it, or reference it in its own structures. */ /* */ LOCAL_FUNC void Z1_Done_Table( Z1_Table* table ) { FT_Memory memory = table->memory; FT_Error error; FT_Byte* old_base; /* should never fail, as rec.cursor <= rec.size */ old_base = table->block; if ( !old_base ) return; (void)REALLOC( table->block, table->capacity, table->cursor ); table->capacity = table->cursor; if ( old_base != table->block ) shift_elements( table, old_base ); } #endif /* 0 */ LOCAL_FUNC void Z1_Release_Table( Z1_Table* table ) { FT_Memory memory = table->memory; if ( table->init == (FT_Long)0xDEADBEEF ) { FREE( table->block ); FREE( table->elements ); FREE( table->lengths ); table->init = 0; } } /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /***** *****/ /***** INPUT STREAM PARSER *****/ /***** *****/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ #define IS_Z1_WHITESPACE( c ) ( (c) == ' ' || (c) == '\t' ) #define IS_Z1_LINESPACE( c ) ( (c) == '\r' || (c) == '\n' ) #define IS_Z1_SPACE( c ) ( IS_Z1_WHITESPACE( c ) || IS_Z1_LINESPACE( c ) ) LOCAL_FUNC void Z1_Skip_Spaces( Z1_Parser* parser ) { FT_Byte* cur = parser->cursor; FT_Byte* limit = parser->limit; while ( cur < limit ) { FT_Byte c = *cur; if ( !IS_Z1_SPACE( c ) ) break; cur++; } parser->cursor = cur; } LOCAL_FUNC void Z1_ToToken( Z1_Parser* parser, Z1_Token_Rec* token ) { FT_Byte* cur; FT_Byte* limit; FT_Byte starter, ender; FT_Int embed; token->type = t1_token_none; token->start = 0; token->limit = 0; /* first of all, skip space */ Z1_Skip_Spaces( parser ); cur = parser->cursor; limit = parser->limit; if ( cur < limit ) { switch ( *cur ) { /************* check for strings ***********************/ case '(': token->type = t1_token_string; ender = ')'; goto Lookup_Ender; /************* check for programs/array ****************/ case '{': token->type = t1_token_array; ender = '}'; goto Lookup_Ender; /************* check for table/array ******************/ case '[': token->type = t1_token_array; ender = ']'; Lookup_Ender: embed = 1; starter = *cur++; token->start = cur; while ( cur < limit ) { if ( *cur == starter ) embed++; else if ( *cur == ender ) { embed--; if ( embed <= 0 ) { token->limit = cur++; break; } } cur++; } break; /* **************** otherwise, it's any token **********/ default: token->start = cur++; token->type = t1_token_any; while ( cur < limit && !IS_Z1_SPACE( *cur ) ) cur++; token->limit = cur; } if ( !token->limit ) { token->start = 0; token->type = t1_token_none; } parser->cursor = cur; } } LOCAL_FUNC void Z1_ToTokenArray( Z1_Parser* parser, Z1_Token_Rec* tokens, FT_UInt max_tokens, FT_Int* pnum_tokens ) { Z1_Token_Rec master; *pnum_tokens = -1; Z1_ToToken( parser, &master ); if ( master.type == t1_token_array ) { FT_Byte* old_cursor = parser->cursor; FT_Byte* old_limit = parser->limit; Z1_Token_Rec* cur = tokens; Z1_Token_Rec* limit = cur + max_tokens; parser->cursor = master.start; parser->limit = master.limit; while ( parser->cursor < parser->limit ) { Z1_Token_Rec token; Z1_ToToken( parser, &token ); if ( !token.type ) break; if ( cur < limit ) *cur = token; cur++; } *pnum_tokens = cur - tokens; parser->cursor = old_cursor; parser->limit = old_limit; } } static FT_Long t1_toint( FT_Byte** cursor, FT_Byte* limit ) { FT_Long result = 0; FT_Byte* cur = *cursor; FT_Byte c, d; for ( ; cur < limit; cur++ ) { c = *cur; d = (FT_Byte)( c - '0' ); if ( d < 10 ) break; if ( c == '-' ) { cur++; break; } } if ( cur < limit ) { do { d = (FT_Byte)( cur[0] - '0' ); if ( d >= 10 ) break; result = result * 10 + d; cur++; } while ( cur < limit ); if ( c == '-' ) result = -result; } *cursor = cur; return result; } static FT_Long t1_tofixed( FT_Byte** cursor, FT_Byte* limit, FT_Long power_ten ) { FT_Byte* cur = *cursor; FT_Long num, divider, result; FT_Int sign = 0; FT_Byte d; if ( cur >= limit ) return 0; /* first of all, read the integer part */ result = t1_toint( &cur, limit ) << 16; num = 0; divider = 1; if ( result < 0 ) { sign = 1; result = -result; } if ( cur >= limit ) goto Exit; /* read decimal part, if any */ if ( *cur == '.' && cur + 1 < limit ) { cur++; for (;;) { d = (FT_Byte)( *cur - '0' ); if ( d >= 10 ) break; if ( divider < 10000000L ) { num = num * 10 + d; divider *= 10; } cur++; if ( cur >= limit ) break; } } /* read exponent, if any */ if ( cur + 1 < limit && ( *cur == 'e' || *cur == 'E' ) ) { cur++; power_ten += t1_toint( &cur, limit ); } Exit: /* raise to power of ten if needed */ while ( power_ten > 0 ) { result = result * 10; num = num * 10; power_ten--; } while ( power_ten < 0 ) { result = result / 10; divider = divider * 10; power_ten++; } if ( num ) result += FT_DivFix( num, divider ); if ( sign ) result = -result; *cursor = cur; return result; } static FT_Int t1_tocoordarray( FT_Byte** cursor, FT_Byte* limit, FT_Int max_coords, FT_Short* coords ) { FT_Byte* cur = *cursor; FT_Int count = 0; FT_Byte c, ender; if ( cur >= limit ) goto Exit; /* check for the beginning of an array. If not, only one number will */ /* be read */ c = *cur; ender = 0; if ( c == '[' ) ender = ']'; if ( c == '{' ) ender = '}'; if ( ender ) cur++; /* now, read the coordinates */ for ( ; cur < limit; ) { /* skip whitespace in front of data */ for (;;) { c = *cur; if ( c != ' ' && c != '\t' ) break; cur++; if ( cur >= limit ) goto Exit; } if ( count >= max_coords || c == ender ) break; coords[count] = (FT_Short)( t1_tofixed( &cur, limit, 0 ) >> 16 ); count++; if ( !ender ) break; } Exit: *cursor = cur; return count; } static FT_Int t1_tofixedarray( FT_Byte** cursor, FT_Byte* limit, FT_Int max_values, FT_Fixed* values, FT_Int power_ten ) { FT_Byte* cur = *cursor; FT_Int count = 0; FT_Byte c, ender; if ( cur >= limit ) goto Exit; /* check for the beginning of an array. If not, only one number will */ /* be read */ c = *cur; ender = 0; if ( c == '[' ) ender = ']'; if ( c == '{' ) ender = '}'; if ( ender ) cur++; /* now, read the values */ for ( ; cur < limit; ) { /* skip whitespace in front of data */ for (;;) { c = *cur; if ( c != ' ' && c != '\t' ) break; cur++; if ( cur >= limit ) goto Exit; } if ( count >= max_values || c == ender ) break; values[count] = t1_tofixed( &cur, limit, power_ten ); count++; if ( !ender ) break; } Exit: *cursor = cur; return count; } #if 0 static FT_String* t1_tostring( FT_Byte** cursor, FT_Byte* limit, FT_Memory memory ) { FT_Byte* cur = *cursor; FT_Int len = 0; FT_Int count; FT_String* result; FT_Error error; /* XXX: some stupid fonts have a `Notice' or `Copyright' string */ /* that simply doesn't begin with an opening parenthesis, even */ /* though they have a closing one! E.g. "amuncial.pfb" */ /* */ /* We must deal with these ill-fated cases there. Note that */ /* these fonts didn't work with the old Type 1 driver as the */ /* notice/copyright was not recognized as a valid string token */ /* and made the old token parser commit errors. */ while ( cur < limit && ( *cur == ' ' || *cur == '\t' ) ) cur++; if ( cur + 1 >= limit ) return 0; if ( *cur == '(' ) cur++; /* skip the opening parenthesis, if there is one */ *cursor = cur; count = 0; /* then, count its length */ for ( ; cur < limit; cur++ ) { if ( *cur == '(' ) count++; else if ( *cur == ')' ) { count--; if ( count < 0 ) break; } } len = cur - *cursor; if ( cur >= limit || ALLOC( result, len + 1 ) ) return 0; /* now copy the string */ MEM_Copy( result, *cursor, len ); result[len] = '\0'; *cursor = cur; return result; } #endif /* 0 */ static int t1_tobool( FT_Byte** cursor, FT_Byte* limit ) { FT_Byte* cur = *cursor; FT_Bool result = 0; /* return 1 if we find `true', 0 otherwise */ if ( cur + 3 < limit && cur[0] == 't' && cur[1] == 'r' && cur[2] == 'u' && cur[3] == 'e' ) { result = 1; cur += 5; } else if ( cur + 4 < limit && cur[0] == 'f' && cur[1] == 'a' && cur[2] == 'l' && cur[3] == 's' && cur[4] == 'e' ) { result = 0; cur += 6; } *cursor = cur; return result; } /* Load a simple field (i.e. non-table) into the current list of objects */ LOCAL_FUNC FT_Error Z1_Load_Field( Z1_Parser* parser, const Z1_Field_Rec* field, void** objects, FT_UInt max_objects, FT_ULong* pflags ) { Z1_Token_Rec token; FT_Byte* cur; FT_Byte* limit; FT_UInt count; FT_UInt index; FT_Error error; Z1_ToToken( parser, &token ); if ( !token.type ) goto Fail; count = 1; index = 0; cur = token.start; limit = token.limit; if ( token.type == t1_token_array ) { /* if this is an array, and we have no blend, an error occurs */ if ( max_objects == 0 ) goto Fail; count = max_objects; index = 1; } for ( ; count > 0; count--, index++ ) { FT_Byte* q = (FT_Byte*)objects[index] + field->offset; FT_Long val; FT_String* string; switch ( field->type ) { case t1_field_bool: val = t1_tobool( &cur, limit ); goto Store_Integer; case t1_field_fixed: val = t1_tofixed( &cur, limit, 3 ); goto Store_Integer; case t1_field_integer: val = t1_toint( &cur, limit ); Store_Integer: switch ( field->size ) { case 1: *(FT_Byte*)q = (FT_Byte)val; break; case 2: *(FT_UShort*)q = (FT_UShort)val; break; case 4: *(FT_UInt32*)q = (FT_UInt32)val; break; default: /* for 64-bit systems */ *(FT_Long*)q = val; } break; case t1_field_string: { FT_Memory memory = parser->memory; FT_UInt len = limit-cur; if ( ALLOC( string, len + 1 ) ) goto Exit; MEM_Copy( string, cur, len ); string[len] = 0; *(FT_String**)q = string; } break; default: /* an error occured */ goto Fail; } } if ( pflags ) *pflags |= 1L << field->flag_bit; error = FT_Err_Ok; Exit: return error; Fail: error = T1_Err_Invalid_File_Format; goto Exit; } #define T1_MAX_TABLE_ELEMENTS 32 LOCAL_FUNC FT_Error Z1_Load_Field_Table( Z1_Parser* parser, const Z1_Field_Rec* field, void** objects, FT_UInt max_objects, FT_ULong* pflags ) { Z1_Token_Rec elements[T1_MAX_TABLE_ELEMENTS]; Z1_Token_Rec* token; FT_Int num_elements; FT_Error error = 0; FT_Byte* old_cursor; FT_Byte* old_limit; Z1_Field_Rec fieldrec = *(Z1_Field_Rec*)field; Z1_ToTokenArray( parser, elements, 32, &num_elements ); if ( num_elements < 0 ) goto Fail; if ( num_elements > T1_MAX_TABLE_ELEMENTS ) num_elements = T1_MAX_TABLE_ELEMENTS; old_cursor = parser->cursor; old_limit = parser->limit; /* we store the elements count */ *(FT_Byte*)( (FT_Byte*)objects[0] + field->count_offset ) = num_elements; /* we now load each element, adjusting the field.offset on each one */ token = elements; for ( ; num_elements > 0; num_elements--, token++ ) { parser->cursor = token->start; parser->limit = token->limit; Z1_Load_Field( parser, &fieldrec, objects, max_objects, 0 ); fieldrec.offset += fieldrec.size; } if ( pflags ) *pflags |= 1L << field->flag_bit; parser->cursor = old_cursor; parser->limit = old_limit; Exit: return error; Fail: error = T1_Err_Invalid_File_Format; goto Exit; } LOCAL_FUNC FT_Long Z1_ToInt ( Z1_Parser* parser ) { return t1_toint( &parser->cursor, parser->limit ); } LOCAL_FUNC FT_Long Z1_ToFixed( Z1_Parser* parser, FT_Int power_ten ) { return t1_tofixed( &parser->cursor, parser->limit, power_ten ); } LOCAL_FUNC FT_Int Z1_ToCoordArray( Z1_Parser* parser, FT_Int max_coords, FT_Short* coords ) { return t1_tocoordarray( &parser->cursor, parser->limit, max_coords, coords ); } LOCAL_FUNC FT_Int Z1_ToFixedArray( Z1_Parser* parser, FT_Int max_values, FT_Fixed* values, FT_Int power_ten ) { return t1_tofixedarray( &parser->cursor, parser->limit, max_values, values, power_ten ); } #if 0 LOCAL_FUNC FT_String* Z1_ToString( Z1_Parser* parser ) { return t1_tostring( &parser->cursor, parser->limit, parser->memory ); } LOCAL_FUNC FT_Bool Z1_ToBool( Z1_Parser* parser ) { return t1_tobool( &parser->cursor, parser->limit ); } #endif /* 0 */ static FT_Error read_pfb_tag( FT_Stream stream, FT_UShort* tag, FT_Long* size ) { FT_Error error; if ( READ_UShort( *tag ) ) goto Exit; if ( *tag == 0x8001 || *tag == 0x8002 ) { FT_Long asize; if ( READ_ULong( asize ) ) goto Exit; /* swap between big and little endianness */ *size = ( ( asize & 0xFF000000L ) >> 24 ) | ( ( asize & 0x00FF0000L ) >> 8 ) | ( ( asize & 0x0000FF00L ) << 8 ) | ( ( asize & 0x000000FFL ) << 24 ); } Exit: return error; } LOCAL_FUNC FT_Error Z1_New_Parser( Z1_Parser* parser, FT_Stream stream, FT_Memory memory ) { FT_Error error; FT_UShort tag; FT_Long size; parser->stream = stream; parser->memory = memory; parser->base_len = 0; parser->base_dict = 0; parser->private_len = 0; parser->private_dict = 0; parser->in_pfb = 0; parser->in_memory = 0; parser->single_block = 0; parser->cursor = 0; parser->limit = 0; /******************************************************************/ /* */ /* Here a short summary of what is going on: */ /* */ /* When creating a new Type 1 parser, we try to locate and load */ /* the base dictionary if this is possible (i.e. for PFB */ /* files). Otherwise, we load the whole font into memory. */ /* */ /* When `loading' the base dictionary, we only setup pointers */ /* in the case of a memory-based stream. Otherwise, we */ /* allocate and load the base dictionary in it. */ /* */ /* parser->in_pfb is set if we are in a binary (".pfb") font. */ /* parser->in_memory is set if we have a memory stream. */ /* */ /* try to compute the size of the base dictionary; */ /* look for a Postscript binary file tag, i.e 0x8001 */ if ( FILE_Seek( 0L ) ) goto Exit; error = read_pfb_tag( stream, &tag, &size ); if ( error ) goto Exit; if ( tag != 0x8001 ) { /* assume that this is a PFA file for now; an error will */ /* be produced later when more things are checked */ (void)FILE_Seek( 0L ); size = stream->size; } else parser->in_pfb = 1; /* now, try to load `size' bytes of the `base' dictionary we */ /* found previously */ /* if it is a memory-based resource, set up pointers */ if ( !stream->read ) { parser->base_dict = (FT_Byte*)stream->base + stream->pos; parser->base_len = size; parser->in_memory = 1; /* check that the `size' field is valid */ if ( FILE_Skip( size ) ) goto Exit; } else { /* read segment in memory */ if ( ALLOC( parser->base_dict, size ) || FILE_Read( parser->base_dict, size ) ) goto Exit; parser->base_len = size; } /* Now check font format; we must see `%!PS-AdobeFont-1' */ /* or `%!FontType' */ { if ( size <= 16 || ( strncmp( (const char*)parser->base_dict, "%!PS-AdobeFont-1", 16 ) && strncmp( (const char*)parser->base_dict, "%!FontType", 10 ) ) ) { FT_TRACE2(( "[not a Type1 font]\n" )); error = FT_Err_Unknown_File_Format; } else { parser->cursor = parser->base_dict; parser->limit = parser->cursor + parser->base_len; } } Exit: if ( error && !parser->in_memory ) FREE( parser->base_dict ); return error; } LOCAL_FUNC void Z1_Done_Parser( Z1_Parser* parser ) { FT_Memory memory = parser->memory; /* always free the private dictionary */ FREE( parser->private_dict ); /* free the base dictionary only when we have a disk stream */ if ( !parser->in_memory ) FREE( parser->base_dict ); } /* return the value of an hexadecimal digit */ static int hexa_value( char c ) { unsigned int d; d = (unsigned int)( c - '0' ); if ( d <= 9 ) return (int)d; d = (unsigned int)( c - 'a' ); if ( d <= 5 ) return (int)( d + 10 ); d = (unsigned int)( c - 'A' ); if ( d <= 5 ) return (int)( d + 10 ); return -1; } LOCAL_FUNC void Z1_Decrypt( FT_Byte* buffer, FT_Int length, FT_UShort seed ) { while ( length > 0 ) { FT_Byte plain; plain = ( *buffer ^ ( seed >> 8 ) ); seed = ( *buffer + seed ) * 52845 + 22719; *buffer++ = plain; length--; } } LOCAL_FUNC FT_Error Z1_Get_Private_Dict( Z1_Parser* parser ) { FT_Stream stream = parser->stream; FT_Memory memory = parser->memory; FT_Error error = 0; FT_Long size; if ( parser->in_pfb ) { /* in the case of the PFB format, the private dictionary can be */ /* made of several segments. We thus first read the number of */ /* segments to compute the total size of the private dictionary */ /* then re-read them into memory. */ FT_Long start_pos = FILE_Pos(); FT_UShort tag; FT_Long size; parser->private_len = 0; for (;;) { error = read_pfb_tag( stream, &tag, &size ); if ( error ) goto Fail; if ( tag != 0x8002 ) break; parser->private_len += size; if ( FILE_Skip( size ) ) goto Fail; } /* Check that we have a private dictionary there */ /* and allocate private dictionary buffer */ if ( parser->private_len == 0 ) { FT_ERROR(( "Z1_Get_Private_Dict:" )); FT_ERROR(( " invalid private dictionary section\n" )); error = T1_Err_Invalid_File_Format; goto Fail; } if ( FILE_Seek( start_pos ) || ALLOC( parser->private_dict, parser->private_len ) ) goto Fail; parser->private_len = 0; for (;;) { error = read_pfb_tag( stream, &tag, &size ); if ( error || tag != 0x8002 ) { error = FT_Err_Ok; break; } if ( FILE_Read( parser->private_dict + parser->private_len, size ) ) goto Fail; parser->private_len += size; } } else { /* we have already `loaded' the whole PFA font file into memory; */ /* if this is a memory resource, allocate a new block to hold */ /* the private dict. Otherwise, simply overwrite into the base */ /* dictionary block in the heap. */ /* first of all, look at the `eexec' keyword */ FT_Byte* cur = parser->base_dict; FT_Byte* limit = cur + parser->base_len; FT_Byte c; for (;;) { c = cur[0]; if ( c == 'e' && cur + 9 < limit ) /* 9 = 5 letters for `eexec' + */ /* newline + 4 chars */ { if ( cur[1] == 'e' && cur[2] == 'x' && cur[3] == 'e' && cur[4] == 'c' ) { cur += 6; /* we skip the newling after the `eexec' */ /* XXX: Some fonts use DOS-linefeeds, i.e. \r\n; we need to */ /* skip the extra \n if we find it */ if ( cur[0] == '\n' ) cur++; break; } } cur++; if ( cur >= limit ) { FT_ERROR(( "Z1_Get_Private_Dict:" )); FT_ERROR(( " could not find `eexec' keyword\n" )); error = T1_Err_Invalid_File_Format; goto Exit; } } /* now determine where to write the _encrypted_ binary private */ /* dictionary. We overwrite the base dictionary for disk-based */ /* resources and allocate a new block otherwise */ size = parser->base_len - ( cur - parser->base_dict); if ( parser->in_memory ) { /* note that we allocate one more byte to put a terminating `0' */ if ( ALLOC( parser->private_dict, size + 1 ) ) goto Fail; parser->private_len = size; } else { parser->single_block = 1; parser->private_dict = parser->base_dict; parser->private_len = size; parser->base_dict = 0; parser->base_len = 0; } /* now determine whether the private dictionary is encoded in binary */ /* or hexadecimal ASCII format -- decode it accordingly */ /* we need to access the next 4 bytes (after the final \r following */ /* the `eexec' keyword); if they all are hexadecimal digits, then */ /* we have a case of ASCII storage */ if ( ( hexa_value( cur[0] ) | hexa_value( cur[1] ) | hexa_value( cur[2] ) | hexa_value( cur[3] ) ) < 0 ) /* binary encoding -- `simply' copy the private dict */ MEM_Copy( parser->private_dict, cur, size ); else { /* ASCII hexadecimal encoding */ FT_Byte* write; FT_Int count; write = parser->private_dict; count = 0; for ( ;cur < limit; cur++ ) { int hex1; /* check for newline */ if ( cur[0] == '\r' || cur[0] == '\n' ) continue; /* exit if we have a non-hexadecimal digit that isn't a newline */ hex1 = hexa_value( cur[0] ); if ( hex1 < 0 || cur + 1 >= limit ) break; /* otherwise, store byte */ *write++ = ( hex1 << 4 ) | hexa_value( cur[1] ); count++; cur++; } /* put a safeguard */ parser->private_len = write - parser->private_dict; *write++ = 0; } } /* we now decrypt the encoded binary private dictionary */ Z1_Decrypt( parser->private_dict, parser->private_len, 55665 ); parser->cursor = parser->private_dict; parser->limit = parser->cursor + parser->private_len; Fail: Exit: return error; } /* END */