ref: cdc8f4d9330b0e402fbc22e22c13c30656d1c3cd
dir: /src/autofit/afhints.c/
/***************************************************************************/ /* */ /* afhints.c */ /* */ /* Auto-fitter hinting routines (body). */ /* */ /* Copyright 2003-2016 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ #include "afhints.h" #include "aferrors.h" #include FT_INTERNAL_CALC_H #include FT_INTERNAL_DEBUG_H /*************************************************************************/ /* */ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ /* messages during execution. */ /* */ #undef FT_COMPONENT #define FT_COMPONENT trace_afhints /* Get new segment for given axis. */ FT_LOCAL_DEF( FT_Error ) af_axis_hints_new_segment( AF_AxisHints axis, FT_Memory memory, AF_Segment *asegment ) { FT_Error error = FT_Err_Ok; AF_Segment segment = NULL; if ( axis->num_segments < AF_SEGMENTS_EMBEDDED ) { if ( axis->segments == NULL ) { axis->segments = axis->embedded.segments; axis->max_segments = AF_SEGMENTS_EMBEDDED; } } else if ( axis->num_segments >= axis->max_segments ) { FT_Int old_max = axis->max_segments; FT_Int new_max = old_max; FT_Int big_max = (FT_Int)( FT_INT_MAX / sizeof ( *segment ) ); if ( old_max >= big_max ) { error = FT_THROW( Out_Of_Memory ); goto Exit; } new_max += ( new_max >> 2 ) + 4; if ( new_max < old_max || new_max > big_max ) new_max = big_max; if ( axis->segments == axis->embedded.segments ) { if ( FT_NEW_ARRAY( axis->segments, new_max ) ) goto Exit; ft_memcpy( axis->segments, axis->embedded.segments, sizeof ( axis->embedded.segments ) ); } else { if ( FT_RENEW_ARRAY( axis->segments, old_max, new_max ) ) goto Exit; } axis->max_segments = new_max; } segment = axis->segments + axis->num_segments++; Exit: *asegment = segment; return error; } /* Get new edge for given axis, direction, and position, */ /* without initializing the edge itself. */ FT_LOCAL( FT_Error ) af_axis_hints_new_edge( AF_AxisHints axis, FT_Int fpos, AF_Direction dir, FT_Bool top_to_bottom_hinting, FT_Memory memory, AF_Edge *anedge ) { FT_Error error = FT_Err_Ok; AF_Edge edge = NULL; AF_Edge edges; if ( axis->num_edges < AF_EDGES_EMBEDDED ) { if ( axis->edges == NULL ) { axis->edges = axis->embedded.edges; axis->max_edges = AF_EDGES_EMBEDDED; } } else if ( axis->num_edges >= axis->max_edges ) { FT_Int old_max = axis->max_edges; FT_Int new_max = old_max; FT_Int big_max = (FT_Int)( FT_INT_MAX / sizeof ( *edge ) ); if ( old_max >= big_max ) { error = FT_THROW( Out_Of_Memory ); goto Exit; } new_max += ( new_max >> 2 ) + 4; if ( new_max < old_max || new_max > big_max ) new_max = big_max; if ( axis->edges == axis->embedded.edges ) { if ( FT_NEW_ARRAY( axis->edges, new_max ) ) goto Exit; ft_memcpy( axis->edges, axis->embedded.edges, sizeof ( axis->embedded.edges ) ); } else { if ( FT_RENEW_ARRAY( axis->edges, old_max, new_max ) ) goto Exit; } axis->max_edges = new_max; } edges = axis->edges; edge = edges + axis->num_edges; while ( edge > edges ) { if ( top_to_bottom_hinting ? ( edge[-1].fpos > fpos ) : ( edge[-1].fpos < fpos ) ) break; /* we want the edge with same position and minor direction */ /* to appear before those in the major one in the list */ if ( edge[-1].fpos == fpos && dir == axis->major_dir ) break; edge[0] = edge[-1]; edge--; } axis->num_edges++; Exit: *anedge = edge; return error; } #ifdef FT_DEBUG_AUTOFIT #include FT_CONFIG_STANDARD_LIBRARY_H /* The dump functions are used in the `ftgrid' demo program, too. */ #define AF_DUMP( varformat ) \ do \ { \ if ( to_stdout ) \ printf varformat; \ else \ FT_TRACE7( varformat ); \ } while ( 0 ) static const char* af_dir_str( AF_Direction dir ) { const char* result; switch ( dir ) { case AF_DIR_UP: result = "up"; break; case AF_DIR_DOWN: result = "down"; break; case AF_DIR_LEFT: result = "left"; break; case AF_DIR_RIGHT: result = "right"; break; default: result = "none"; } return result; } #define AF_INDEX_NUM( ptr, base ) (int)( (ptr) ? ( (ptr) - (base) ) : -1 ) static char* af_print_idx( char* p, int idx ) { if ( idx == -1 ) { p[0] = '-'; p[1] = '-'; p[2] = '\0'; } else ft_sprintf( p, "%d", idx ); return p; } static int af_get_segment_index( AF_GlyphHints hints, int point_idx, int dimension ) { AF_AxisHints axis = &hints->axis[dimension]; AF_Point point = hints->points + point_idx; AF_Segment segments = axis->segments; AF_Segment limit = segments + axis->num_segments; AF_Segment segment; for ( segment = segments; segment < limit; segment++ ) { if ( segment->first <= segment->last ) { if ( point >= segment->first && point <= segment->last ) break; } else { AF_Point p = segment->first; for (;;) { if ( point == p ) goto Exit; if ( p == segment->last ) break; p = p->next; } } } Exit: if ( segment == limit ) return -1; return (int)( segment - segments ); } static int af_get_edge_index( AF_GlyphHints hints, int segment_idx, int dimension ) { AF_AxisHints axis = &hints->axis[dimension]; AF_Edge edges = axis->edges; AF_Segment segment = axis->segments + segment_idx; return segment_idx == -1 ? -1 : AF_INDEX_NUM( segment->edge, edges ); } #ifdef __cplusplus extern "C" { #endif void af_glyph_hints_dump_points( AF_GlyphHints hints, FT_Bool to_stdout ) { AF_Point points = hints->points; AF_Point limit = points + hints->num_points; AF_Point* contour = hints->contours; AF_Point* climit = contour + hints->num_contours; AF_Point point; AF_DUMP(( "Table of points:\n" )); if ( hints->num_points ) AF_DUMP(( " index hedge hseg vedge vseg flags " " xorg yorg xscale yscale xfit yfit" )); else AF_DUMP(( " (none)\n" )); for ( point = points; point < limit; point++ ) { int point_idx = AF_INDEX_NUM( point, points ); int segment_idx_0 = af_get_segment_index( hints, point_idx, 0 ); int segment_idx_1 = af_get_segment_index( hints, point_idx, 1 ); char buf1[16], buf2[16], buf3[16], buf4[16]; /* insert extra newline at the beginning of a contour */ if ( contour < climit && *contour == point ) { AF_DUMP(( "\n" )); contour++; } AF_DUMP(( " %5d %5s %5s %5s %5s %s" " %5d %5d %7.2f %7.2f %7.2f %7.2f\n", point_idx, af_print_idx( buf1, af_get_edge_index( hints, segment_idx_1, 1 ) ), af_print_idx( buf2, segment_idx_1 ), af_print_idx( buf3, af_get_edge_index( hints, segment_idx_0, 0 ) ), af_print_idx( buf4, segment_idx_0 ), ( point->flags & AF_FLAG_NEAR ) ? " near " : ( point->flags & AF_FLAG_WEAK_INTERPOLATION ) ? " weak " : "strong", point->fx, point->fy, point->ox / 64.0, point->oy / 64.0, point->x / 64.0, point->y / 64.0 )); } AF_DUMP(( "\n" )); } #ifdef __cplusplus } #endif static const char* af_edge_flags_to_string( FT_UInt flags ) { static char temp[32]; int pos = 0; if ( flags & AF_EDGE_ROUND ) { ft_memcpy( temp + pos, "round", 5 ); pos += 5; } if ( flags & AF_EDGE_SERIF ) { if ( pos > 0 ) temp[pos++] = ' '; ft_memcpy( temp + pos, "serif", 5 ); pos += 5; } if ( pos == 0 ) return "normal"; temp[pos] = '\0'; return temp; } /* Dump the array of linked segments. */ #ifdef __cplusplus extern "C" { #endif void af_glyph_hints_dump_segments( AF_GlyphHints hints, FT_Bool to_stdout ) { FT_Int dimension; for ( dimension = 1; dimension >= 0; dimension-- ) { AF_AxisHints axis = &hints->axis[dimension]; AF_Point points = hints->points; AF_Edge edges = axis->edges; AF_Segment segments = axis->segments; AF_Segment limit = segments + axis->num_segments; AF_Segment seg; char buf1[16], buf2[16], buf3[16]; AF_DUMP(( "Table of %s segments:\n", dimension == AF_DIMENSION_HORZ ? "vertical" : "horizontal" )); if ( axis->num_segments ) AF_DUMP(( " index pos dir from to" " link serif edge" " height extra flags\n" )); else AF_DUMP(( " (none)\n" )); for ( seg = segments; seg < limit; seg++ ) AF_DUMP(( " %5d %5.2g %5s %4d %4d" " %4s %5s %4s" " %6d %5d %11s\n", AF_INDEX_NUM( seg, segments ), dimension == AF_DIMENSION_HORZ ? (int)seg->first->ox / 64.0 : (int)seg->first->oy / 64.0, af_dir_str( (AF_Direction)seg->dir ), AF_INDEX_NUM( seg->first, points ), AF_INDEX_NUM( seg->last, points ), af_print_idx( buf1, AF_INDEX_NUM( seg->link, segments ) ), af_print_idx( buf2, AF_INDEX_NUM( seg->serif, segments ) ), af_print_idx( buf3, AF_INDEX_NUM( seg->edge, edges ) ), seg->height, seg->height - ( seg->max_coord - seg->min_coord ), af_edge_flags_to_string( seg->flags ) )); AF_DUMP(( "\n" )); } } #ifdef __cplusplus } #endif /* Fetch number of segments. */ #ifdef __cplusplus extern "C" { #endif FT_Error af_glyph_hints_get_num_segments( AF_GlyphHints hints, FT_Int dimension, FT_Int* num_segments ) { AF_Dimension dim; AF_AxisHints axis; dim = ( dimension == 0 ) ? AF_DIMENSION_HORZ : AF_DIMENSION_VERT; axis = &hints->axis[dim]; *num_segments = axis->num_segments; return FT_Err_Ok; } #ifdef __cplusplus } #endif /* Fetch offset of segments into user supplied offset array. */ #ifdef __cplusplus extern "C" { #endif FT_Error af_glyph_hints_get_segment_offset( AF_GlyphHints hints, FT_Int dimension, FT_Int idx, FT_Pos *offset, FT_Bool *is_blue, FT_Pos *blue_offset ) { AF_Dimension dim; AF_AxisHints axis; AF_Segment seg; if ( !offset ) return FT_THROW( Invalid_Argument ); dim = ( dimension == 0 ) ? AF_DIMENSION_HORZ : AF_DIMENSION_VERT; axis = &hints->axis[dim]; if ( idx < 0 || idx >= axis->num_segments ) return FT_THROW( Invalid_Argument ); seg = &axis->segments[idx]; *offset = ( dim == AF_DIMENSION_HORZ ) ? seg->first->ox : seg->first->oy; if ( seg->edge ) *is_blue = (FT_Bool)( seg->edge->blue_edge != 0 ); else *is_blue = FALSE; if ( *is_blue ) *blue_offset = seg->edge->blue_edge->cur; else *blue_offset = 0; return FT_Err_Ok; } #ifdef __cplusplus } #endif /* Dump the array of linked edges. */ #ifdef __cplusplus extern "C" { #endif void af_glyph_hints_dump_edges( AF_GlyphHints hints, FT_Bool to_stdout ) { FT_Int dimension; for ( dimension = 1; dimension >= 0; dimension-- ) { AF_AxisHints axis = &hints->axis[dimension]; AF_Edge edges = axis->edges; AF_Edge limit = edges + axis->num_edges; AF_Edge edge; char buf1[16], buf2[16]; /* * note: AF_DIMENSION_HORZ corresponds to _vertical_ edges * since they have a constant X coordinate. */ AF_DUMP(( "Table of %s edges:\n", dimension == AF_DIMENSION_HORZ ? "vertical" : "horizontal" )); if ( axis->num_edges ) AF_DUMP(( " index pos dir link serif" " blue opos pos flags\n" )); else AF_DUMP(( " (none)\n" )); for ( edge = edges; edge < limit; edge++ ) AF_DUMP(( " %5d %5.2g %5s %4s %5s" " %c %5.2f %5.2f %11s\n", AF_INDEX_NUM( edge, edges ), (int)edge->opos / 64.0, af_dir_str( (AF_Direction)edge->dir ), af_print_idx( buf1, AF_INDEX_NUM( edge->link, edges ) ), af_print_idx( buf2, AF_INDEX_NUM( edge->serif, edges ) ), edge->blue_edge ? 'y' : 'n', edge->opos / 64.0, edge->pos / 64.0, af_edge_flags_to_string( edge->flags ) )); AF_DUMP(( "\n" )); } } #ifdef __cplusplus } #endif #undef AF_DUMP #endif /* !FT_DEBUG_AUTOFIT */ /* Compute the direction value of a given vector. */ FT_LOCAL_DEF( AF_Direction ) af_direction_compute( FT_Pos dx, FT_Pos dy ) { FT_Pos ll, ss; /* long and short arm lengths */ AF_Direction dir; /* candidate direction */ if ( dy >= dx ) { if ( dy >= -dx ) { dir = AF_DIR_UP; ll = dy; ss = dx; } else { dir = AF_DIR_LEFT; ll = -dx; ss = dy; } } else /* dy < dx */ { if ( dy >= -dx ) { dir = AF_DIR_RIGHT; ll = dx; ss = dy; } else { dir = AF_DIR_DOWN; ll = -dy; ss = dx; } } /* return no direction if arm lengths do not differ enough */ /* (value 14 is heuristic, corresponding to approx. 4.1 degrees) */ /* the long arm is never negative */ if ( ll <= 14 * FT_ABS( ss ) ) dir = AF_DIR_NONE; return dir; } FT_LOCAL_DEF( void ) af_glyph_hints_init( AF_GlyphHints hints, FT_Memory memory ) { /* no need to initialize the embedded items */ FT_MEM_ZERO( hints, sizeof ( *hints ) - sizeof ( hints->embedded ) ); hints->memory = memory; } FT_LOCAL_DEF( void ) af_glyph_hints_done( AF_GlyphHints hints ) { FT_Memory memory; int dim; if ( !( hints && hints->memory ) ) return; memory = hints->memory; /* * note that we don't need to free the segment and edge * buffers since they are really within the hints->points array */ for ( dim = 0; dim < AF_DIMENSION_MAX; dim++ ) { AF_AxisHints axis = &hints->axis[dim]; axis->num_segments = 0; axis->max_segments = 0; if ( axis->segments != axis->embedded.segments ) FT_FREE( axis->segments ); axis->num_edges = 0; axis->max_edges = 0; if ( axis->edges != axis->embedded.edges ) FT_FREE( axis->edges ); } if ( hints->contours != hints->embedded.contours ) FT_FREE( hints->contours ); hints->max_contours = 0; hints->num_contours = 0; if ( hints->points != hints->embedded.points ) FT_FREE( hints->points ); hints->max_points = 0; hints->num_points = 0; hints->memory = NULL; } /* Reset metrics. */ FT_LOCAL_DEF( void ) af_glyph_hints_rescale( AF_GlyphHints hints, AF_StyleMetrics metrics ) { hints->metrics = metrics; hints->scaler_flags = metrics->scaler.flags; } /* Recompute all AF_Point in AF_GlyphHints from the definitions */ /* in a source outline. */ FT_LOCAL_DEF( FT_Error ) af_glyph_hints_reload( AF_GlyphHints hints, FT_Outline* outline ) { FT_Error error = FT_Err_Ok; AF_Point points; FT_UInt old_max, new_max; FT_Fixed x_scale = hints->x_scale; FT_Fixed y_scale = hints->y_scale; FT_Pos x_delta = hints->x_delta; FT_Pos y_delta = hints->y_delta; FT_Memory memory = hints->memory; hints->num_points = 0; hints->num_contours = 0; hints->axis[0].num_segments = 0; hints->axis[0].num_edges = 0; hints->axis[1].num_segments = 0; hints->axis[1].num_edges = 0; /* first of all, reallocate the contours array if necessary */ new_max = (FT_UInt)outline->n_contours; old_max = (FT_UInt)hints->max_contours; if ( new_max <= AF_CONTOURS_EMBEDDED ) { if ( hints->contours == NULL ) { hints->contours = hints->embedded.contours; hints->max_contours = AF_CONTOURS_EMBEDDED; } } else if ( new_max > old_max ) { if ( hints->contours == hints->embedded.contours ) hints->contours = NULL; new_max = ( new_max + 3 ) & ~3U; /* round up to a multiple of 4 */ if ( FT_RENEW_ARRAY( hints->contours, old_max, new_max ) ) goto Exit; hints->max_contours = (FT_Int)new_max; } /* * then reallocate the points arrays if necessary -- * note that we reserve two additional point positions, used to * hint metrics appropriately */ new_max = (FT_UInt)( outline->n_points + 2 ); old_max = (FT_UInt)hints->max_points; if ( new_max <= AF_POINTS_EMBEDDED ) { if ( hints->points == NULL ) { hints->points = hints->embedded.points; hints->max_points = AF_POINTS_EMBEDDED; } } else if ( new_max > old_max ) { if ( hints->points == hints->embedded.points ) hints->points = NULL; new_max = ( new_max + 2 + 7 ) & ~7U; /* round up to a multiple of 8 */ if ( FT_RENEW_ARRAY( hints->points, old_max, new_max ) ) goto Exit; hints->max_points = (FT_Int)new_max; } hints->num_points = outline->n_points; hints->num_contours = outline->n_contours; /* We can't rely on the value of `FT_Outline.flags' to know the fill */ /* direction used for a glyph, given that some fonts are broken (e.g., */ /* the Arphic ones). We thus recompute it each time we need to. */ /* */ hints->axis[AF_DIMENSION_HORZ].major_dir = AF_DIR_UP; hints->axis[AF_DIMENSION_VERT].major_dir = AF_DIR_LEFT; if ( FT_Outline_Get_Orientation( outline ) == FT_ORIENTATION_POSTSCRIPT ) { hints->axis[AF_DIMENSION_HORZ].major_dir = AF_DIR_DOWN; hints->axis[AF_DIMENSION_VERT].major_dir = AF_DIR_RIGHT; } hints->x_scale = x_scale; hints->y_scale = y_scale; hints->x_delta = x_delta; hints->y_delta = y_delta; hints->xmin_delta = 0; hints->xmax_delta = 0; points = hints->points; if ( hints->num_points == 0 ) goto Exit; { AF_Point point; AF_Point point_limit = points + hints->num_points; /* value 20 in `near_limit' is heuristic */ FT_UInt units_per_em = hints->metrics->scaler.face->units_per_EM; FT_Int near_limit = 20 * units_per_em / 2048; /* compute coordinates & Bezier flags, next and prev */ { FT_Vector* vec = outline->points; char* tag = outline->tags; FT_Short endpoint = outline->contours[0]; AF_Point end = points + endpoint; AF_Point prev = end; FT_Int contour_index = 0; for ( point = points; point < point_limit; point++, vec++, tag++ ) { FT_Pos out_x, out_y; point->in_dir = (FT_Char)AF_DIR_NONE; point->out_dir = (FT_Char)AF_DIR_NONE; point->fx = (FT_Short)vec->x; point->fy = (FT_Short)vec->y; point->ox = point->x = FT_MulFix( vec->x, x_scale ) + x_delta; point->oy = point->y = FT_MulFix( vec->y, y_scale ) + y_delta; end->fx = (FT_Short)outline->points[endpoint].x; end->fy = (FT_Short)outline->points[endpoint].y; switch ( FT_CURVE_TAG( *tag ) ) { case FT_CURVE_TAG_CONIC: point->flags = AF_FLAG_CONIC; break; case FT_CURVE_TAG_CUBIC: point->flags = AF_FLAG_CUBIC; break; default: point->flags = AF_FLAG_NONE; } out_x = point->fx - prev->fx; out_y = point->fy - prev->fy; if ( FT_ABS( out_x ) + FT_ABS( out_y ) < near_limit ) prev->flags |= AF_FLAG_NEAR; point->prev = prev; prev->next = point; prev = point; if ( point == end ) { if ( ++contour_index < outline->n_contours ) { endpoint = outline->contours[contour_index]; end = points + endpoint; prev = end; } } } } /* set up the contours array */ { AF_Point* contour = hints->contours; AF_Point* contour_limit = contour + hints->num_contours; short* end = outline->contours; short idx = 0; for ( ; contour < contour_limit; contour++, end++ ) { contour[0] = points + idx; idx = (short)( end[0] + 1 ); } } { /* * Compute directions of `in' and `out' vectors. * * Note that distances between points that are very near to each * other are accumulated. In other words, the auto-hinter either * prepends the small vectors between near points to the first * non-near vector, or the sum of small vector lengths exceeds a * threshold, thus `grouping' the small vectors. All intermediate * points are tagged as weak; the directions are adjusted also to * be equal to the accumulated one. */ FT_Int near_limit2 = 2 * near_limit - 1; AF_Point* contour; AF_Point* contour_limit = hints->contours + hints->num_contours; for ( contour = hints->contours; contour < contour_limit; contour++ ) { AF_Point first = *contour; AF_Point next, prev, curr; FT_Pos out_x, out_y; /* since the first point of a contour could be part of a */ /* series of near points, go backwards to find the first */ /* non-near point and adjust `first' */ point = first; prev = first->prev; while ( prev != first ) { out_x = point->fx - prev->fx; out_y = point->fy - prev->fy; /* * We use Taxicab metrics to measure the vector length. * * Note that the accumulated distances so far could have the * opposite direction of the distance measured here. For this * reason we use `near_limit2' for the comparison to get a * non-near point even in the worst case. */ if ( FT_ABS( out_x ) + FT_ABS( out_y ) >= near_limit2 ) break; point = prev; prev = prev->prev; } /* adjust first point */ first = point; /* now loop over all points of the contour to get */ /* `in' and `out' vector directions */ curr = first; /* * We abuse the `u' and `v' fields to store index deltas to the * next and previous non-near point, respectively. * * To avoid problems with not having non-near points, we point to * `first' by default as the next non-near point. * */ curr->u = (FT_Pos)( first - curr ); first->v = -curr->u; out_x = 0; out_y = 0; next = first; do { AF_Direction out_dir; point = next; next = point->next; out_x += next->fx - point->fx; out_y += next->fy - point->fy; if ( FT_ABS( out_x ) + FT_ABS( out_y ) < near_limit ) { next->flags |= AF_FLAG_WEAK_INTERPOLATION; continue; } curr->u = (FT_Pos)( next - curr ); next->v = -curr->u; out_dir = af_direction_compute( out_x, out_y ); /* adjust directions for all points inbetween; */ /* the loop also updates position of `curr' */ curr->out_dir = (FT_Char)out_dir; for ( curr = curr->next; curr != next; curr = curr->next ) { curr->in_dir = (FT_Char)out_dir; curr->out_dir = (FT_Char)out_dir; } next->in_dir = (FT_Char)out_dir; curr->u = (FT_Pos)( first - curr ); first->v = -curr->u; out_x = 0; out_y = 0; } while ( next != first ); } /* * The next step is to `simplify' an outline's topology so that we * can identify local extrema more reliably: A series of * non-horizontal or non-vertical vectors pointing into the same * quadrant are handled as a single, long vector. From a * topological point of the view, the intermediate points are of no * interest and thus tagged as weak. */ for ( point = points; point < point_limit; point++ ) { if ( point->flags & AF_FLAG_WEAK_INTERPOLATION ) continue; if ( point->in_dir == AF_DIR_NONE && point->out_dir == AF_DIR_NONE ) { /* check whether both vectors point into the same quadrant */ FT_Pos in_x, in_y; FT_Pos out_x, out_y; AF_Point next_u = point + point->u; AF_Point prev_v = point + point->v; in_x = point->fx - prev_v->fx; in_y = point->fy - prev_v->fy; out_x = next_u->fx - point->fx; out_y = next_u->fy - point->fy; if ( ( in_x ^ out_x ) >= 0 && ( in_y ^ out_y ) >= 0 ) { /* yes, so tag current point as weak */ /* and update index deltas */ point->flags |= AF_FLAG_WEAK_INTERPOLATION; prev_v->u = (FT_Pos)( next_u - prev_v ); next_u->v = -prev_v->u; } } } /* * Finally, check for remaining weak points. Everything else not * collected in edges so far is then implicitly classified as strong * points. */ for ( point = points; point < point_limit; point++ ) { if ( point->flags & AF_FLAG_WEAK_INTERPOLATION ) continue; if ( point->flags & AF_FLAG_CONTROL ) { /* control points are always weak */ Is_Weak_Point: point->flags |= AF_FLAG_WEAK_INTERPOLATION; } else if ( point->out_dir == point->in_dir ) { if ( point->out_dir != AF_DIR_NONE ) { /* current point lies on a horizontal or */ /* vertical segment (but doesn't start or end it) */ goto Is_Weak_Point; } { AF_Point next_u = point + point->u; AF_Point prev_v = point + point->v; if ( ft_corner_is_flat( point->fx - prev_v->fx, point->fy - prev_v->fy, next_u->fx - point->fx, next_u->fy - point->fy ) ) { /* either the `in' or the `out' vector is much more */ /* dominant than the other one, so tag current point */ /* as weak and update index deltas */ prev_v->u = (FT_Pos)( next_u - prev_v ); next_u->v = -prev_v->u; goto Is_Weak_Point; } } } else if ( point->in_dir == -point->out_dir ) { /* current point forms a spike */ goto Is_Weak_Point; } } } } Exit: return error; } /* Store the hinted outline in an FT_Outline structure. */ FT_LOCAL_DEF( void ) af_glyph_hints_save( AF_GlyphHints hints, FT_Outline* outline ) { AF_Point point = hints->points; AF_Point limit = point + hints->num_points; FT_Vector* vec = outline->points; char* tag = outline->tags; for ( ; point < limit; point++, vec++, tag++ ) { vec->x = point->x; vec->y = point->y; if ( point->flags & AF_FLAG_CONIC ) tag[0] = FT_CURVE_TAG_CONIC; else if ( point->flags & AF_FLAG_CUBIC ) tag[0] = FT_CURVE_TAG_CUBIC; else tag[0] = FT_CURVE_TAG_ON; } } /**************************************************************** * * EDGE POINT GRID-FITTING * ****************************************************************/ /* Align all points of an edge to the same coordinate value, */ /* either horizontally or vertically. */ FT_LOCAL_DEF( void ) af_glyph_hints_align_edge_points( AF_GlyphHints hints, AF_Dimension dim ) { AF_AxisHints axis = & hints->axis[dim]; AF_Segment segments = axis->segments; AF_Segment segment_limit = segments + axis->num_segments; AF_Segment seg; if ( dim == AF_DIMENSION_HORZ ) { for ( seg = segments; seg < segment_limit; seg++ ) { AF_Edge edge = seg->edge; AF_Point point, first, last; if ( edge == NULL ) continue; first = seg->first; last = seg->last; point = first; for (;;) { point->x = edge->pos; point->flags |= AF_FLAG_TOUCH_X; if ( point == last ) break; point = point->next; } } } else { for ( seg = segments; seg < segment_limit; seg++ ) { AF_Edge edge = seg->edge; AF_Point point, first, last; if ( edge == NULL ) continue; first = seg->first; last = seg->last; point = first; for (;;) { point->y = edge->pos; point->flags |= AF_FLAG_TOUCH_Y; if ( point == last ) break; point = point->next; } } } } /**************************************************************** * * STRONG POINT INTERPOLATION * ****************************************************************/ /* Hint the strong points -- this is equivalent to the TrueType `IP' */ /* hinting instruction. */ FT_LOCAL_DEF( void ) af_glyph_hints_align_strong_points( AF_GlyphHints hints, AF_Dimension dim ) { AF_Point points = hints->points; AF_Point point_limit = points + hints->num_points; AF_AxisHints axis = &hints->axis[dim]; AF_Edge edges = axis->edges; AF_Edge edge_limit = edges + axis->num_edges; FT_UInt touch_flag; if ( dim == AF_DIMENSION_HORZ ) touch_flag = AF_FLAG_TOUCH_X; else touch_flag = AF_FLAG_TOUCH_Y; if ( edges < edge_limit ) { AF_Point point; AF_Edge edge; for ( point = points; point < point_limit; point++ ) { FT_Pos u, ou, fu; /* point position */ FT_Pos delta; if ( point->flags & touch_flag ) continue; /* if this point is candidate to weak interpolation, we */ /* interpolate it after all strong points have been processed */ if ( ( point->flags & AF_FLAG_WEAK_INTERPOLATION ) ) continue; if ( dim == AF_DIMENSION_VERT ) { u = point->fy; ou = point->oy; } else { u = point->fx; ou = point->ox; } fu = u; /* is the point before the first edge? */ edge = edges; delta = edge->fpos - u; if ( delta >= 0 ) { u = edge->pos - ( edge->opos - ou ); goto Store_Point; } /* is the point after the last edge? */ edge = edge_limit - 1; delta = u - edge->fpos; if ( delta >= 0 ) { u = edge->pos + ( ou - edge->opos ); goto Store_Point; } { FT_PtrDist min, max, mid; FT_Pos fpos; /* find enclosing edges */ min = 0; max = edge_limit - edges; #if 1 /* for a small number of edges, a linear search is better */ if ( max <= 8 ) { FT_PtrDist nn; for ( nn = 0; nn < max; nn++ ) if ( edges[nn].fpos >= u ) break; if ( edges[nn].fpos == u ) { u = edges[nn].pos; goto Store_Point; } min = nn; } else #endif while ( min < max ) { mid = ( max + min ) >> 1; edge = edges + mid; fpos = edge->fpos; if ( u < fpos ) max = mid; else if ( u > fpos ) min = mid + 1; else { /* we are on the edge */ u = edge->pos; goto Store_Point; } } /* point is not on an edge */ { AF_Edge before = edges + min - 1; AF_Edge after = edges + min + 0; /* assert( before && after && before != after ) */ if ( before->scale == 0 ) before->scale = FT_DivFix( after->pos - before->pos, after->fpos - before->fpos ); u = before->pos + FT_MulFix( fu - before->fpos, before->scale ); } } Store_Point: /* save the point position */ if ( dim == AF_DIMENSION_HORZ ) point->x = u; else point->y = u; point->flags |= touch_flag; } } } /**************************************************************** * * WEAK POINT INTERPOLATION * ****************************************************************/ /* Shift the original coordinates of all points between `p1' and */ /* `p2' to get hinted coordinates, using the same difference as */ /* given by `ref'. */ static void af_iup_shift( AF_Point p1, AF_Point p2, AF_Point ref ) { AF_Point p; FT_Pos delta = ref->u - ref->v; if ( delta == 0 ) return; for ( p = p1; p < ref; p++ ) p->u = p->v + delta; for ( p = ref + 1; p <= p2; p++ ) p->u = p->v + delta; } /* Interpolate the original coordinates of all points between `p1' and */ /* `p2' to get hinted coordinates, using `ref1' and `ref2' as the */ /* reference points. The `u' and `v' members are the current and */ /* original coordinate values, respectively. */ /* */ /* Details can be found in the TrueType bytecode specification. */ static void af_iup_interp( AF_Point p1, AF_Point p2, AF_Point ref1, AF_Point ref2 ) { AF_Point p; FT_Pos u, v1, v2, u1, u2, d1, d2; if ( p1 > p2 ) return; if ( ref1->v > ref2->v ) { p = ref1; ref1 = ref2; ref2 = p; } v1 = ref1->v; v2 = ref2->v; u1 = ref1->u; u2 = ref2->u; d1 = u1 - v1; d2 = u2 - v2; if ( u1 == u2 || v1 == v2 ) { for ( p = p1; p <= p2; p++ ) { u = p->v; if ( u <= v1 ) u += d1; else if ( u >= v2 ) u += d2; else u = u1; p->u = u; } } else { FT_Fixed scale = FT_DivFix( u2 - u1, v2 - v1 ); for ( p = p1; p <= p2; p++ ) { u = p->v; if ( u <= v1 ) u += d1; else if ( u >= v2 ) u += d2; else u = u1 + FT_MulFix( u - v1, scale ); p->u = u; } } } /* Hint the weak points -- this is equivalent to the TrueType `IUP' */ /* hinting instruction. */ FT_LOCAL_DEF( void ) af_glyph_hints_align_weak_points( AF_GlyphHints hints, AF_Dimension dim ) { AF_Point points = hints->points; AF_Point point_limit = points + hints->num_points; AF_Point* contour = hints->contours; AF_Point* contour_limit = contour + hints->num_contours; FT_UInt touch_flag; AF_Point point; AF_Point end_point; AF_Point first_point; /* PASS 1: Move segment points to edge positions */ if ( dim == AF_DIMENSION_HORZ ) { touch_flag = AF_FLAG_TOUCH_X; for ( point = points; point < point_limit; point++ ) { point->u = point->x; point->v = point->ox; } } else { touch_flag = AF_FLAG_TOUCH_Y; for ( point = points; point < point_limit; point++ ) { point->u = point->y; point->v = point->oy; } } for ( ; contour < contour_limit; contour++ ) { AF_Point first_touched, last_touched; point = *contour; end_point = point->prev; first_point = point; /* find first touched point */ for (;;) { if ( point > end_point ) /* no touched point in contour */ goto NextContour; if ( point->flags & touch_flag ) break; point++; } first_touched = point; for (;;) { FT_ASSERT( point <= end_point && ( point->flags & touch_flag ) != 0 ); /* skip any touched neighbours */ while ( point < end_point && ( point[1].flags & touch_flag ) != 0 ) point++; last_touched = point; /* find the next touched point, if any */ point++; for (;;) { if ( point > end_point ) goto EndContour; if ( ( point->flags & touch_flag ) != 0 ) break; point++; } /* interpolate between last_touched and point */ af_iup_interp( last_touched + 1, point - 1, last_touched, point ); } EndContour: /* special case: only one point was touched */ if ( last_touched == first_touched ) af_iup_shift( first_point, end_point, first_touched ); else /* interpolate the last part */ { if ( last_touched < end_point ) af_iup_interp( last_touched + 1, end_point, last_touched, first_touched ); if ( first_touched > points ) af_iup_interp( first_point, first_touched - 1, last_touched, first_touched ); } NextContour: ; } /* now save the interpolated values back to x/y */ if ( dim == AF_DIMENSION_HORZ ) { for ( point = points; point < point_limit; point++ ) point->x = point->u; } else { for ( point = points; point < point_limit; point++ ) point->y = point->u; } } #ifdef AF_CONFIG_OPTION_USE_WARPER /* Apply (small) warp scale and warp delta for given dimension. */ FT_LOCAL_DEF( void ) af_glyph_hints_scale_dim( AF_GlyphHints hints, AF_Dimension dim, FT_Fixed scale, FT_Pos delta ) { AF_Point points = hints->points; AF_Point points_limit = points + hints->num_points; AF_Point point; if ( dim == AF_DIMENSION_HORZ ) { for ( point = points; point < points_limit; point++ ) point->x = FT_MulFix( point->fx, scale ) + delta; } else { for ( point = points; point < points_limit; point++ ) point->y = FT_MulFix( point->fy, scale ) + delta; } } #endif /* AF_CONFIG_OPTION_USE_WARPER */ /* END */