ref: cd4138458a4a88dab6a1dc3b0f7c7907c855e800
dir: /src/sdf/ftsdf.c/
#include <freetype/internal/ftobjs.h> #include <freetype/internal/ftdebug.h> #include <freetype/fttrigon.h> #include "ftsdf.h" #include "ftsdferrs.h" /************************************************************************** * * for tracking used memory * */ /* The memory tracker only works when `FT_DEBUG_MEMORY` is defined; */ /* we need some variables such as `_ft_debug_file`, which aren't */ /* available otherwise. */ #if defined( FT_DEBUG_LEVEL_TRACE ) && defined( FT_DEBUG_MEMORY ) #undef FT_DEBUG_INNER #undef FT_ASSIGNP_INNER #define FT_DEBUG_INNER( exp ) ( _ft_debug_file = __FILE__, \ _ft_debug_lineno = line, \ (exp) ) #define FT_ASSIGNP_INNER( p, exp ) ( _ft_debug_file = __FILE__, \ _ft_debug_lineno = line, \ FT_ASSIGNP( p, exp ) ) /* To be used with `FT_Memory::user' in order to track */ /* memory allocations. */ typedef struct SDF_MemoryUser_ { void* prev_user; FT_Long total_usage; } SDF_MemoryUser; /* * These functions are used while allocating and deallocating memory. * They restore the previous user pointer before calling the allocation * functions. */ static FT_Pointer sdf_alloc( FT_Memory memory, FT_Long size, FT_Error* err, FT_Int line ) { SDF_MemoryUser* current_user; FT_Pointer ptr; FT_Error error; current_user = (SDF_MemoryUser*)memory->user; memory->user = current_user->prev_user; if ( !FT_QALLOC( ptr, size ) ) current_user->total_usage += size; memory->user = (void*)current_user; *err = error; return ptr; } static void sdf_free( FT_Memory memory, FT_Pointer ptr, FT_Int line ) { SDF_MemoryUser* current_user; current_user = (SDF_MemoryUser*)memory->user; memory->user = current_user->prev_user; FT_FREE( ptr ); memory->user = (void*)current_user; } #define SDF_ALLOC( ptr, size ) \ ( ptr = sdf_alloc( memory, size, \ &error, __LINE__ ), \ error != 0 ) #define SDF_FREE( ptr ) \ sdf_free( memory, ptr, __LINE__ ) #define SDF_MEMORY_TRACKER_DECLARE() SDF_MemoryUser sdf_memory_user #define SDF_MEMORY_TRACKER_SETUP() \ sdf_memory_user.prev_user = memory->user; \ sdf_memory_user.total_usage = 0; \ memory->user = &sdf_memory_user #define SDF_MEMORY_TRACKER_DONE() \ memory->user = sdf_memory_user.prev_user; \ \ FT_TRACE0(( "[sdf] sdf_raster_render:" \ " Total memory used = %ld\n", \ sdf_memory_user.total_usage )) #else /* !FT_DEBUG_LEVEL_TRACE */ #define SDF_ALLOC FT_QALLOC #define SDF_FREE FT_FREE #define SDF_MEMORY_TRACKER_DECLARE() FT_DUMMY_STMNT #define SDF_MEMORY_TRACKER_SETUP() FT_DUMMY_STMNT #define SDF_MEMORY_TRACKER_DONE() FT_DUMMY_STMNT #endif /* !FT_DEBUG_LEVEL_TRACE */ /************************************************************************** * * definitions * */ /* * If set to 1, the rasterizer uses Newton-Raphson's method for finding * the shortest distance from a point to a conic curve. * * If set to 0, an analytical method gets used instead, which computes the * roots of a cubic polynomial to find the shortest distance. However, * the analytical method can currently underflow; we thus use Newton's * method by default. */ #ifndef USE_NEWTON_FOR_CONIC #define USE_NEWTON_FOR_CONIC 1 #endif /* * The number of intervals a Bezier curve gets sampled and checked to find * the shortest distance. */ #define MAX_NEWTON_DIVISIONS 4 /* * The number of steps of Newton's iterations in each interval of the * Bezier curve. Basically, we run Newton's approximation * * x -= Q(t) / Q'(t) * * for each division to get the shortest distance. */ #define MAX_NEWTON_STEPS 4 /* * The epsilon distance (in 16.16 fractional units) used for corner * resolving. If the difference of two distances is less than this value * they will be checked for a corner if they are ambiguous. */ #define CORNER_CHECK_EPSILON 32 #if 0 /* * Coarse grid dimension. Will probably be removed in the future because * coarse grid optimization is the slowest algorithm. */ #define CG_DIMEN 8 #endif /************************************************************************** * * macros * */ #define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 ) #define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) + \ MUL_26D6( p.y, q.y ) ) /************************************************************************** * * structures and enums * */ /************************************************************************** * * @Struct: * SDF_TRaster * * @Description: * This struct is used in place of @FT_Raster and is stored within the * internal FreeType renderer struct. While rasterizing it is passed to * the @FT_Raster_RenderFunc function, which then can be used however we * want. * * @Fields: * memory :: * Used internally to allocate intermediate memory while raterizing. * */ typedef struct SDF_TRaster_ { FT_Memory memory; } SDF_TRaster; /************************************************************************** * * @Enum: * SDF_Edge_Type * * @Description: * Enumeration of all curve types present in fonts. * * @Fields: * SDF_EDGE_UNDEFINED :: * Undefined edge, simply used to initialize and detect errors. * * SDF_EDGE_LINE :: * Line segment with start and end point. * * SDF_EDGE_CONIC :: * A conic/quadratic Bezier curve with start, end, and one control * point. * * SDF_EDGE_CUBIC :: * A cubic Bezier curve with start, end, and two control points. * */ typedef enum SDF_Edge_Type_ { SDF_EDGE_UNDEFINED = 0, SDF_EDGE_LINE = 1, SDF_EDGE_CONIC = 2, SDF_EDGE_CUBIC = 3 } SDF_Edge_Type; /************************************************************************** * * @Enum: * SDF_Contour_Orientation * * @Description: * Enumeration of all orientation values of a contour. We determine the * orientation by calculating the area covered by a contour. Contrary * to values returned by @FT_Outline_Get_Orientation, * `SDF_Contour_Orientation` is independent of the fill rule, which can * be different for different font formats. * * @Fields: * SDF_ORIENTATION_NONE :: * Undefined orientation, used for initialization and error detection. * * SDF_ORIENTATION_CW :: * Clockwise orientation (positive area covered). * * SDF_ORIENTATION_ACW :: * Anti-clockwise orientation (negative area covered). * * @Note: * See @FT_Outline_Get_Orientation for more details. * */ typedef enum SDF_Contour_Orientation_ { SDF_ORIENTATION_NONE = 0, SDF_ORIENTATION_CW = 1, SDF_ORIENTATION_ACW = 2 } SDF_Contour_Orientation; /************************************************************************** * * @Struct: * SDF_Edge * * @Description: * Represent an edge of a contour. * * @Fields: * start_pos :: * Start position of an edge. Valid for all types of edges. * * end_pos :: * Etart position of an edge. Valid for all types of edges. * * control_a :: * A control point of the edge. Valid only for `SDF_EDGE_CONIC` * and `SDF_EDGE_CUBIC`. * * control_b :: * Another control point of the edge. Valid only for * `SDF_EDGE_CONIC`. * * edge_type :: * Type of the edge, see @SDF_Edge_Type for all possible edge types. * * next :: * Used to create a singly linked list, which can be interpreted * as a contour. * */ typedef struct SDF_Edge_ { FT_26D6_Vec start_pos; FT_26D6_Vec end_pos; FT_26D6_Vec control_a; FT_26D6_Vec control_b; SDF_Edge_Type edge_type; struct SDF_Edge_* next; } SDF_Edge; /************************************************************************** * * @Struct: * SDF_Contour * * @Description: * Represent a complete contour, which contains a list of edges. * * @Fields: * last_pos :: * Contains the value of `end_pos' of the last edge in the list of * edges. Useful while decomposing the outline with * @FT_Outline_Decompose. * * edges :: * Linked list of all the edges that make the contour. * * next :: * Used to create a singly linked list, which can be interpreted as a * complete shape or @FT_Outline. * */ typedef struct SDF_Contour_ { FT_26D6_Vec last_pos; SDF_Edge* edges; struct SDF_Contour_* next; } SDF_Contour; /************************************************************************** * * @Struct: * SDF_Shape * * @Description: * Represent a complete shape, which is the decomposition of * @FT_Outline. * * @Fields: * memory :: * Used internally to allocate memory. * * contours :: * Linked list of all the contours that make the shape. * */ typedef struct SDF_Shape_ { FT_Memory memory; SDF_Contour* contours; } SDF_Shape; /************************************************************************** * * @Struct: * SDF_Signed_Distance * * @Description: * Represent signed distance of a point, i.e., the distance of the edge * nearest to the point. * * @Fields: * distance :: * Distance of the point from the nearest edge. Can be squared or * absolute depending on the `USE_SQUARED_DISTANCES` macro defined in * file `ftsdfcommon.h`. * * cross :: * Cross product of the shortest distance vector (i.e., the vector * from the point to the nearest edge) and the direction of the edge * at the nearest point. This is used to resolve ambiguities of * `sign`. * * sign :: * A value used to indicate whether the distance vector is outside or * inside the contour corresponding to the edge. * * @Note: * `sign` may or may not be correct, therefore it must be checked * properly in case there is an ambiguity. * */ typedef struct SDF_Signed_Distance_ { FT_16D16 distance; FT_16D16 cross; FT_Char sign; } SDF_Signed_Distance; /************************************************************************** * * @Struct: * SDF_Params * * @Description: * Yet another internal parameters required by the rasterizer. * * @Fields: * orientation :: * This is not the @SDF_Contour_Orientation value but @FT_Orientation, * which determines whether clockwise-oriented outlines are to be * filled or anti-clockwise-oriented ones. * * flip_sign :: * If set to true, flip the sign. By default the points filled by the * outline are positive. * * flip_y :: * If set to true the output bitmap is upside-down. Can be useful * because OpenGL and DirectX use different coordinate systems for * textures. * * overload_sign :: * In the subdivision and bounding box optimization, the default * outside sign is taken as -1. This parameter can be used to modify * that behaviour. For example, while generating SDF for a single * counter-clockwise contour, the outside sign should be 1. * */ typedef struct SDF_Params_ { FT_Orientation orientation; FT_Bool flip_sign; FT_Bool flip_y; FT_Int overload_sign; } SDF_Params; /************************************************************************** * * constants, initializer, and destructor * */ static const FT_Vector zero_vector = { 0, 0 }; static const SDF_Edge null_edge = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, SDF_EDGE_UNDEFINED, NULL }; static const SDF_Contour null_contour = { { 0, 0 }, NULL, NULL }; static const SDF_Shape null_shape = { NULL, NULL }; static const SDF_Signed_Distance max_sdf = { INT_MAX, 0, 0 }; /* Create a new @SDF_Edge on the heap and assigns the `edge` */ /* pointer to the newly allocated memory. */ static FT_Error sdf_edge_new( FT_Memory memory, SDF_Edge** edge ) { FT_Error error = FT_Err_Ok; SDF_Edge* ptr = NULL; if ( !memory || !edge ) { error = FT_THROW( Invalid_Argument ); goto Exit; } if ( !SDF_ALLOC( ptr, sizeof ( *ptr ) ) ) { *ptr = null_edge; *edge = ptr; } Exit: return error; } /* Free the allocated `edge` variable. */ static void sdf_edge_done( FT_Memory memory, SDF_Edge** edge ) { if ( !memory || !edge || !*edge ) return; SDF_FREE( *edge ); } /* Create a new @SDF_Contour on the heap and assign */ /* the `contour` pointer to the newly allocated memory. */ static FT_Error sdf_contour_new( FT_Memory memory, SDF_Contour** contour ) { FT_Error error = FT_Err_Ok; SDF_Contour* ptr = NULL; if ( !memory || !contour ) { error = FT_THROW( Invalid_Argument ); goto Exit; } if ( !SDF_ALLOC( ptr, sizeof ( *ptr ) ) ) { *ptr = null_contour; *contour = ptr; } Exit: return error; } /* Free the allocated `contour` variable. */ /* Also free the list of edges. */ static void sdf_contour_done( FT_Memory memory, SDF_Contour** contour ) { SDF_Edge* edges; SDF_Edge* temp; if ( !memory || !contour || !*contour ) return; edges = (*contour)->edges; /* release all edges */ while ( edges ) { temp = edges; edges = edges->next; sdf_edge_done( memory, &temp ); } SDF_FREE( *contour ); } /* Create a new @SDF_Shape on the heap and assign */ /* the `shape` pointer to the newly allocated memory. */ static FT_Error sdf_shape_new( FT_Memory memory, SDF_Shape** shape ) { FT_Error error = FT_Err_Ok; SDF_Shape* ptr = NULL; if ( !memory || !shape ) { error = FT_THROW( Invalid_Argument ); goto Exit; } if ( !SDF_ALLOC( ptr, sizeof ( *ptr ) ) ) { *ptr = null_shape; ptr->memory = memory; *shape = ptr; } Exit: return error; } /* Free the allocated `shape` variable. */ /* Also free the list of contours. */ static void sdf_shape_done( SDF_Shape** shape ) { FT_Memory memory; SDF_Contour* contours; SDF_Contour* temp; if ( !shape || !*shape ) return; memory = (*shape)->memory; contours = (*shape)->contours; if ( !memory ) return; /* release all contours */ while ( contours ) { temp = contours; contours = contours->next; sdf_contour_done( memory, &temp ); } /* release the allocated shape struct */ SDF_FREE( *shape ); } /************************************************************************** * * shape decomposition functions * */ /* This function is called when starting a new contour at `to`, */ /* which gets added to the shape's list. */ static FT_Error sdf_move_to( const FT_26D6_Vec* to, void* user ) { SDF_Shape* shape = ( SDF_Shape* )user; SDF_Contour* contour = NULL; FT_Error error = FT_Err_Ok; FT_Memory memory = shape->memory; if ( !to || !user ) { error = FT_THROW( Invalid_Argument ); goto Exit; } FT_CALL( sdf_contour_new( memory, &contour ) ); contour->last_pos = *to; contour->next = shape->contours; shape->contours = contour; Exit: return error; } /* This function is called when there is a line in the */ /* contour. The line starts at the previous edge point and */ /* stops at `to`. */ static FT_Error sdf_line_to( const FT_26D6_Vec* to, void* user ) { SDF_Shape* shape = ( SDF_Shape* )user; SDF_Edge* edge = NULL; SDF_Contour* contour = NULL; FT_Error error = FT_Err_Ok; FT_Memory memory = shape->memory; if ( !to || !user ) { error = FT_THROW( Invalid_Argument ); goto Exit; } contour = shape->contours; if ( contour->last_pos.x == to->x && contour->last_pos.y == to->y ) goto Exit; FT_CALL( sdf_edge_new( memory, &edge ) ); edge->edge_type = SDF_EDGE_LINE; edge->start_pos = contour->last_pos; edge->end_pos = *to; edge->next = contour->edges; contour->edges = edge; contour->last_pos = *to; Exit: return error; } /* This function is called when there is a conic Bezier curve */ /* in the contour. The curve starts at the previous edge point */ /* and stops at `to`, with control point `control_1`. */ static FT_Error sdf_conic_to( const FT_26D6_Vec* control_1, const FT_26D6_Vec* to, void* user ) { SDF_Shape* shape = ( SDF_Shape* )user; SDF_Edge* edge = NULL; SDF_Contour* contour = NULL; FT_Error error = FT_Err_Ok; FT_Memory memory = shape->memory; if ( !control_1 || !to || !user ) { error = FT_THROW( Invalid_Argument ); goto Exit; } contour = shape->contours; FT_CALL( sdf_edge_new( memory, &edge ) ); edge->edge_type = SDF_EDGE_CONIC; edge->start_pos = contour->last_pos; edge->control_a = *control_1; edge->end_pos = *to; edge->next = contour->edges; contour->edges = edge; contour->last_pos = *to; Exit: return error; } /* This function is called when there is a cubic Bezier curve */ /* in the contour. The curve starts at the previous edge point */ /* and stops at `to`, with two control points `control_1` and */ /* `control_2`. */ static FT_Error sdf_cubic_to( const FT_26D6_Vec* control_1, const FT_26D6_Vec* control_2, const FT_26D6_Vec* to, void* user ) { SDF_Shape* shape = ( SDF_Shape* )user; SDF_Edge* edge = NULL; SDF_Contour* contour = NULL; FT_Error error = FT_Err_Ok; FT_Memory memory = shape->memory; if ( !control_2 || !control_1 || !to || !user ) { error = FT_THROW( Invalid_Argument ); goto Exit; } contour = shape->contours; FT_CALL( sdf_edge_new( memory, &edge ) ); edge->edge_type = SDF_EDGE_CUBIC; edge->start_pos = contour->last_pos; edge->control_a = *control_1; edge->control_b = *control_2; edge->end_pos = *to; edge->next = contour->edges; contour->edges = edge; contour->last_pos = *to; Exit: return error; } /* Construct the structure to hold all four outline */ /* decomposition functions. */ FT_DEFINE_OUTLINE_FUNCS( sdf_decompose_funcs, (FT_Outline_MoveTo_Func) sdf_move_to, /* move_to */ (FT_Outline_LineTo_Func) sdf_line_to, /* line_to */ (FT_Outline_ConicTo_Func)sdf_conic_to, /* conic_to */ (FT_Outline_CubicTo_Func)sdf_cubic_to, /* cubic_to */ 0, /* shift */ 0 /* delta */ ) /* Decompose `outline` and put it into the `shape` structure. */ static FT_Error sdf_outline_decompose( FT_Outline* outline, SDF_Shape* shape ) { FT_Error error = FT_Err_Ok; if ( !outline || !shape ) { error = FT_THROW( Invalid_Argument ); goto Exit; } error = FT_Outline_Decompose( outline, &sdf_decompose_funcs, (void*)shape ); Exit: return error; } /************************************************************************** * * utility functions * */ /* Return the control box of a edge. The control box is a rectangle */ /* in which all the control points can fit tightly. */ static FT_CBox get_control_box( SDF_Edge edge ) { FT_CBox cbox; FT_Bool is_set = 0; switch ( edge.edge_type ) { case SDF_EDGE_CUBIC: cbox.xMin = edge.control_b.x; cbox.xMax = edge.control_b.x; cbox.yMin = edge.control_b.y; cbox.yMax = edge.control_b.y; is_set = 1; /* fall through */ case SDF_EDGE_CONIC: if ( is_set ) { cbox.xMin = edge.control_a.x < cbox.xMin ? edge.control_a.x : cbox.xMin; cbox.xMax = edge.control_a.x > cbox.xMax ? edge.control_a.x : cbox.xMax; cbox.yMin = edge.control_a.y < cbox.yMin ? edge.control_a.y : cbox.yMin; cbox.yMax = edge.control_a.y > cbox.yMax ? edge.control_a.y : cbox.yMax; } else { cbox.xMin = edge.control_a.x; cbox.xMax = edge.control_a.x; cbox.yMin = edge.control_a.y; cbox.yMax = edge.control_a.y; is_set = 1; } /* fall through */ case SDF_EDGE_LINE: if ( is_set ) { cbox.xMin = edge.start_pos.x < cbox.xMin ? edge.start_pos.x : cbox.xMin; cbox.xMax = edge.start_pos.x > cbox.xMax ? edge.start_pos.x : cbox.xMax; cbox.yMin = edge.start_pos.y < cbox.yMin ? edge.start_pos.y : cbox.yMin; cbox.yMax = edge.start_pos.y > cbox.yMax ? edge.start_pos.y : cbox.yMax; } else { cbox.xMin = edge.start_pos.x; cbox.xMax = edge.start_pos.x; cbox.yMin = edge.start_pos.y; cbox.yMax = edge.start_pos.y; } cbox.xMin = edge.end_pos.x < cbox.xMin ? edge.end_pos.x : cbox.xMin; cbox.xMax = edge.end_pos.x > cbox.xMax ? edge.end_pos.x : cbox.xMax; cbox.yMin = edge.end_pos.y < cbox.yMin ? edge.end_pos.y : cbox.yMin; cbox.yMax = edge.end_pos.y > cbox.yMax ? edge.end_pos.y : cbox.yMax; break; default: break; } return cbox; } /* Return orientation of a single contour. */ /* Note that the orientation is independent of the fill rule! */ /* So, for TTF a clockwise-oriented contour has to be filled */ /* and the opposite for OTF fonts. */ static SDF_Contour_Orientation get_contour_orientation ( SDF_Contour* contour ) { SDF_Edge* head = NULL; FT_26D6 area = 0; /* return none if invalid parameters */ if ( !contour || !contour->edges ) return SDF_ORIENTATION_NONE; head = contour->edges; /* Calculate the area of the control box for all edges. */ while ( head ) { switch ( head->edge_type ) { case SDF_EDGE_LINE: area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ), ( head->end_pos.y + head->start_pos.y ) ); break; case SDF_EDGE_CONIC: area += MUL_26D6( head->control_a.x - head->start_pos.x, head->control_a.y + head->start_pos.y ); area += MUL_26D6( head->end_pos.x - head->control_a.x, head->end_pos.y + head->control_a.y ); break; case SDF_EDGE_CUBIC: area += MUL_26D6( head->control_a.x - head->start_pos.x, head->control_a.y + head->start_pos.y ); area += MUL_26D6( head->control_b.x - head->control_a.x, head->control_b.y + head->control_a.y ); area += MUL_26D6( head->end_pos.x - head->control_b.x, head->end_pos.y + head->control_b.y ); break; default: return SDF_ORIENTATION_NONE; } head = head->next; } /* Clockwise contours cover a positive area, and anti-clockwise */ /* contours cover a negative area. */ if ( area > 0 ) return SDF_ORIENTATION_CW; else return SDF_ORIENTATION_ACW; } /* This function is exactly the same as the one */ /* in the smooth renderer. It splits a conic */ /* into two conics exactly half way at t = 0.5. */ static void split_conic( FT_26D6_Vec* base ) { FT_26D6 a, b; base[4].x = base[2].x; a = base[0].x + base[1].x; b = base[1].x + base[2].x; base[3].x = b / 2; base[2].x = ( a + b ) / 4; base[1].x = a / 2; base[4].y = base[2].y; a = base[0].y + base[1].y; b = base[1].y + base[2].y; base[3].y = b / 2; base[2].y = ( a + b ) / 4; base[1].y = a / 2; } /* This function is exactly the same as the one */ /* in the smooth renderer. It splits a cubic */ /* into two cubics exactly half way at t = 0.5. */ static void split_cubic( FT_26D6_Vec* base ) { FT_26D6 a, b, c; base[6].x = base[3].x; a = base[0].x + base[1].x; b = base[1].x + base[2].x; c = base[2].x + base[3].x; base[5].x = c / 2; c += b; base[4].x = c / 4; base[1].x = a / 2; a += b; base[2].x = a / 4; base[3].x = ( a + c ) / 8; base[6].y = base[3].y; a = base[0].y + base[1].y; b = base[1].y + base[2].y; c = base[2].y + base[3].y; base[5].y = c / 2; c += b; base[4].y = c / 4; base[1].y = a / 2; a += b; base[2].y = a / 4; base[3].y = ( a + c ) / 8; } /* Split a conic Bezier curve into a number of lines */ /* and add them to `out'. */ /* */ /* This function uses recursion; we thus need */ /* parameter `max_splits' for stopping. */ static FT_Error split_sdf_conic( FT_Memory memory, FT_26D6_Vec* control_points, FT_Int max_splits, SDF_Edge** out ) { FT_Error error = FT_Err_Ok; FT_26D6_Vec cpos[5]; SDF_Edge* left,* right; if ( !memory || !out ) { error = FT_THROW( Invalid_Argument ); goto Exit; } /* split conic outline */ cpos[0] = control_points[0]; cpos[1] = control_points[1]; cpos[2] = control_points[2]; split_conic( cpos ); /* If max number of splits is done */ /* then stop and add the lines to */ /* the list. */ if ( max_splits <= 2 ) goto Append; /* Otherwise keep splitting. */ FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) ); FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) ); /* [NOTE]: This is not an efficient way of */ /* splitting the curve. Check the deviation */ /* instead and stop if the deviation is less */ /* than a pixel. */ goto Exit; Append: /* Do allocation and add the lines to the list. */ FT_CALL( sdf_edge_new( memory, &left ) ); FT_CALL( sdf_edge_new( memory, &right ) ); left->start_pos = cpos[0]; left->end_pos = cpos[2]; left->edge_type = SDF_EDGE_LINE; right->start_pos = cpos[2]; right->end_pos = cpos[4]; right->edge_type = SDF_EDGE_LINE; left->next = right; right->next = (*out); *out = left; Exit: return error; } /* Split a cubic Bezier curve into a number of lines */ /* and add them to `out`. */ /* */ /* This function uses recursion; we thus need */ /* parameter `max_splits' for stopping. */ static FT_Error split_sdf_cubic( FT_Memory memory, FT_26D6_Vec* control_points, FT_Int max_splits, SDF_Edge** out ) { FT_Error error = FT_Err_Ok; FT_26D6_Vec cpos[7]; SDF_Edge* left,* right; if ( !memory || !out ) { error = FT_THROW( Invalid_Argument ); goto Exit; } /* split the conic */ cpos[0] = control_points[0]; cpos[1] = control_points[1]; cpos[2] = control_points[2]; cpos[3] = control_points[3]; split_cubic( cpos ); /* If max number of splits is done */ /* then stop and add the lines to */ /* the list. */ if ( max_splits <= 2 ) goto Append; /* Otherwise keep splitting. */ FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) ); FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) ); /* [NOTE]: This is not an efficient way of */ /* splitting the curve. Check the deviation */ /* instead and stop if the deviation is less */ /* than a pixel. */ goto Exit; Append: /* Do allocation and add the lines to the list. */ FT_CALL( sdf_edge_new( memory, &left) ); FT_CALL( sdf_edge_new( memory, &right) ); left->start_pos = cpos[0]; left->end_pos = cpos[3]; left->edge_type = SDF_EDGE_LINE; right->start_pos = cpos[3]; right->end_pos = cpos[6]; right->edge_type = SDF_EDGE_LINE; left->next = right; right->next = (*out); *out = left; Exit: return error; } /* Subdivide an entire shape into line segments */ /* such that it doesn't look visually different */ /* from the original curve. */ static FT_Error split_sdf_shape( SDF_Shape* shape ) { FT_Error error = FT_Err_Ok; FT_Memory memory; SDF_Contour* contours; SDF_Contour* new_contours = NULL; if ( !shape || !shape->memory ) { error = FT_THROW( Invalid_Argument ); goto Exit; } contours = shape->contours; memory = shape->memory; /* for each contour */ while ( contours ) { SDF_Edge* edges = contours->edges; SDF_Edge* new_edges = NULL; SDF_Contour* tempc; /* for each edge */ while ( edges ) { SDF_Edge* edge = edges; SDF_Edge* temp; switch ( edge->edge_type ) { case SDF_EDGE_LINE: /* Just create a duplicate edge in case */ /* it is a line. We can use the same edge. */ FT_CALL( sdf_edge_new( memory, &temp ) ); ft_memcpy( temp, edge, sizeof ( *edge ) ); temp->next = new_edges; new_edges = temp; break; case SDF_EDGE_CONIC: /* Subdivide the curve and add it to the list. */ { FT_26D6_Vec ctrls[3]; ctrls[0] = edge->start_pos; ctrls[1] = edge->control_a; ctrls[2] = edge->end_pos; error = split_sdf_conic( memory, ctrls, 32, &new_edges ); } break; case SDF_EDGE_CUBIC: /* Subdivide the curve and add it to the list. */ { FT_26D6_Vec ctrls[4]; ctrls[0] = edge->start_pos; ctrls[1] = edge->control_a; ctrls[2] = edge->control_b; ctrls[3] = edge->end_pos; error = split_sdf_cubic( memory, ctrls, 32, &new_edges ); } break; default: error = FT_THROW( Invalid_Argument ); goto Exit; } edges = edges->next; } /* add to the contours list */ FT_CALL( sdf_contour_new( memory, &tempc ) ); tempc->next = new_contours; tempc->edges = new_edges; new_contours = tempc; new_edges = NULL; /* deallocate the contour */ tempc = contours; contours = contours->next; sdf_contour_done( memory, &tempc ); } shape->contours = new_contours; Exit: return error; } /* END */