ref: c31286153ab17cb67c3732e497abf6969b7a2da4
dir: /src/cff/t2parse.c/
/***************************************************************************/ /* */ /* t2parse.c */ /* */ /* OpenType parser (body). */ /* */ /* Copyright 1996-2000 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ #include <t2parse.h> #include <freetype/internal/t2errors.h> /*************************************************************************/ /* */ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ /* messages during execution. */ /* */ #undef FT_COMPONENT #define FT_COMPONENT trace_t2parse #define T2_Err_Stack_Underflow FT_Err_Invalid_Argument #define T2_Err_Syntax_Error FT_Err_Invalid_Argument enum { t2_kind_none = 0, t2_kind_num, t2_kind_fixed, t2_kind_string, t2_kind_bool, t2_kind_delta, t2_kind_callback, t2_kind_max /* do not remove */ }; /* now generate handlers for the most simple fields */ typedef FT_Error (*T2_Field_Reader)( T2_Parser* parser ); typedef struct T2_Field_Handler_ { int kind; int code; FT_UInt offset; FT_Byte size; T2_Field_Reader reader; FT_UInt array_max; FT_UInt count_offset; } T2_Field_Handler; LOCAL_FUNC void T2_Parser_Init( T2_Parser* parser, FT_UInt code, void* object ) { MEM_Set( parser, 0, sizeof ( *parser ) ); parser->top = parser->stack; parser->object_code = code; parser->object = object; } /* reads an integer */ static FT_Long parse_t2_integer( FT_Byte* start, FT_Byte* limit ) { FT_Byte* p = start; FT_Int v = *p++; FT_Long val = 0; if ( v == 28 ) { if ( p + 2 > limit ) goto Bad; val = (FT_Short)( ( (FT_Int)p[0] << 8 ) | p[1] ); p += 2; } else if ( v == 29 ) { if ( p + 4 > limit ) goto Bad; val = ( (FT_Long)p[0] << 24 ) | ( (FT_Long)p[1] << 16 ) | ( (FT_Long)p[2] << 8 ) | p[3]; p += 4; } else if ( v < 247 ) { val = v - 139; } else if ( v < 251 ) { if ( p + 1 > limit ) goto Bad; val = ( v - 247 ) * 256 + p[0] + 108; p++; } else { if ( p + 1 > limit ) goto Bad; val = -( v - 251 ) * 256 - p[0] - 108; p++; } Exit: return val; Bad: val = 0; goto Exit; } /* reads a real */ static FT_Fixed parse_t2_real( FT_Byte* start, FT_Byte* limit, FT_Int power_ten ) { FT_Byte* p = start; FT_Long num, divider, result, exp; FT_Int sign = 0, exp_sign = 0; FT_Byte nib; FT_Byte phase; result = 0; num = 0; divider = 1; /* first of all, read the integer part */ phase = 4; p--; for (;;) { /* read one nibble at a time */ if ( phase && ++p >= limit ) goto Bad; nib = ( p[0] >> phase ) & 0xF; phase = 4 - phase; if ( nib == 0xE ) sign = 1; else if ( nib > 9 ) break; else result = result * 10 + nib; } /* read decimal part, if any */ if ( nib == 0xa ) for (;;) { /* read one nibble at a time */ if ( !phase && ++p >= limit ) goto Bad; phase = 4 - phase; nib = ( p[0] >> phase ) & 0xF; if ( nib >= 10 ) break; if (divider < 10000000L) { num = num * 10 + nib; divider *= 10; } } /* read exponent, if any */ if ( nib == 12 ) { exp_sign = 1; nib = 11; } if ( nib == 11 ) { exp = 0; for (;;) { /* read one nibble at a time */ if ( !phase && ++p >= limit ) goto Bad; phase = 4 - phase; nib = ( p[0] >> phase ) & 0xF; if ( nib >= 10 ) break; exp = exp * 10 + nib; } if ( exp_sign ) exp = -exp; power_ten += exp; } /* raise to power of ten if needed */ while ( power_ten > 0 ) { result = result * 10; num = num * 10; power_ten--; } while ( power_ten < 0 ) { result = result / 10; divider = divider * 10; power_ten++; } if ( num ) result += FT_DivFix( num, divider ); if ( sign ) result = -result; Exit: return result; Bad: result = 0; goto Exit; } /* reads a number, either integer or real */ static FT_Long t2_parse_num( FT_Byte** d ) { return ( **d == 30 ? ( parse_t2_real( d[0], d[1], 0 ) >> 16 ) : parse_t2_integer( d[0], d[1] ) ); } /* reads a floating point number, either integer or real */ static FT_Fixed t2_parse_fixed( FT_Byte** d ) { return ( **d == 30 ? parse_t2_real( d[0], d[1], 0 ) : parse_t2_integer( d[0], d[1] ) << 16 ); } static FT_Error parse_font_matrix( T2_Parser* parser ) { CFF_Top_Dict* dict = (CFF_Top_Dict*)parser->object; FT_Matrix* matrix = &dict->font_matrix; FT_Byte** data = parser->stack; FT_Error error; error = T2_Err_Stack_Underflow; if ( parser->top >= parser->stack + 4 ) { matrix->xx = t2_parse_fixed( data++ ); matrix->yx = t2_parse_fixed( data++ ); matrix->xy = t2_parse_fixed( data++ ); matrix->yy = t2_parse_fixed( data ); error = 0; } return error; } static FT_Error parse_font_bbox( T2_Parser* parser ) { CFF_Top_Dict* dict = (CFF_Top_Dict*)parser->object; FT_BBox* bbox = &dict->font_bbox; FT_Byte** data = parser->stack; FT_Error error; error = T2_Err_Stack_Underflow; if ( parser->top >= parser->stack + 4 ) { bbox->xMin = t2_parse_num( data++ ); bbox->yMin = t2_parse_num( data++ ); bbox->xMax = t2_parse_num( data++ ); bbox->yMax = t2_parse_num( data ); error = 0; } return error; } static FT_Error parse_private_dict( T2_Parser* parser ) { CFF_Top_Dict* dict = (CFF_Top_Dict*)parser->object; FT_Byte** data = parser->stack; FT_Error error; error = T2_Err_Stack_Underflow; if ( parser->top >= parser->stack + 2 ) { dict->private_size = t2_parse_num( data++ ); dict->private_offset = t2_parse_num( data ); error = 0; } return error; } static FT_Error parse_cid_ros( T2_Parser* parser ) { CFF_Top_Dict* dict = (CFF_Top_Dict*)parser->object; FT_Byte** data = parser->stack; FT_Error error; error = T2_Err_Stack_Underflow; if ( parser->top >= parser->stack + 3 ) { dict->cid_registry = (FT_UInt)t2_parse_num( data++ ); dict->cid_ordering = (FT_UInt)t2_parse_num( data++ ); dict->cid_supplement = (FT_ULong)t2_parse_num( data ); error = 0; } return error; } #define T2_FIELD_NUM( code, name ) \ T2_FIELD( code, name, t2_kind_num ) #define T2_FIELD_FIXED( code, name ) \ T2_FIELD( code, name, t2_kind_fixed ) #define T2_FIELD_STRING( code, name ) \ T2_FIELD( code, name, t2_kind_string ) #define T2_FIELD_BOOL( code, name ) \ T2_FIELD( code, name, t2_kind_bool ) #define T2_FIELD_DELTA( code, name,max ) \ T2_FIELD( code, name, t2_kind_delta ) #define T2_REF( s, f ) ( ((s*)0)->f ) #define T2_FIELD_CALLBACK( code, name ) \ { \ t2_kind_callback, \ code | T2CODE, \ 0, 0, \ parse_ ## name, \ 0, 0 }, #undef T2_FIELD #define T2_FIELD( code, name, kind ) \ { \ kind, \ code | T2CODE, \ (FT_UInt)(char*)&T2_REF( T2TYPE, name ), \ sizeof( T2_REF( T2TYPE, name ) ), \ 0 \ }, #undef T2_FIELD_DELTA #define T2_FIELD_DELTA( code, name, max ) \ { \ t2_kind_delta, \ code | T2CODE, \ (FT_UInt)(char*)&T2_REF( T2TYPE, name ), \ sizeof( T2_REF( T2TYPE, name ) ), \ 0, \ max, \ (FT_UInt)(char*)&T2_REF( T2TYPE, num_ ## name ) \ }, #define T2CODE_TOPDICT 0x1000 #define T2CODE_PRIVATE 0x2000 static const T2_Field_Handler t2_field_handlers[] = { #include <t2tokens.h> { 0, 0, 0, 0, 0, 0, 0 } }; LOCAL_FUNC FT_Error T2_Parser_Run( T2_Parser* parser, FT_Byte* start, FT_Byte* limit ) { FT_Byte* p = start; FT_Error error = 0; parser->top = parser->stack; parser->start = start; parser->limit = limit; parser->cursor = start; while ( p < limit ) { FT_Byte v = *p; if ( v >= 27 && v != 31 ) { /* it's a number; we will push its position on the stack */ if ( parser->top - parser->stack >= T2_MAX_STACK_DEPTH ) goto Stack_Overflow; *parser->top ++ = p; /* now, skip it */ if ( v == 30 ) { /* skip real number */ for (;;) { if ( p >= limit ) goto Syntax_Error; v = p[0] >> 4; if ( v == 15 ) break; v = p[0] & 0xF; if ( v == 15 ) break; p++; } p++; } else if ( v == 28 ) p += 2; else if ( v == 29 ) p += 4; else if ( v > 246 ) p += 1; } else { /* this is not a number, hence it's an operator. Compute its code */ /* and look for it in our current list. */ FT_UInt code; FT_Int num_args = parser->top - parser->stack; const T2_Field_Handler* field; /* first of all, a trivial check */ if ( num_args < 1 ) goto Stack_Underflow; *parser->top = p; code = v; if ( v == 12 ) { /* two byte operator */ p++; code = 0x100 | p[0]; } code = code | parser->object_code; for ( field = t2_field_handlers; field->kind; field++ ) { if ( field->code == code ) { /* we found our field's handler; read it */ FT_Long val; FT_Byte* q = (FT_Byte*)parser->object + field->offset; switch ( field->kind ) { case t2_kind_bool: case t2_kind_string: case t2_kind_num: val = t2_parse_num( parser->stack ); goto Store_Number; case t2_kind_fixed: val = t2_parse_fixed( parser->stack ); Store_Number: switch ( field->size ) { case 1: *(FT_Byte*)q = (FT_Byte)val; break; case 2: *(FT_Short*)q = (FT_Short)val; break; default: *(FT_Long*)q = val; } break; case t2_kind_delta: { FT_Byte* qcount = (FT_Byte*)parser->object + field->count_offset; FT_Long val; FT_Byte** data = parser->stack; if ( num_args > field->array_max ) num_args = field->array_max; /* store count */ *qcount = (FT_Byte)num_args; val = 0; while ( num_args > 0 ) { val += t2_parse_num( data++ ); switch ( field->size ) { case 1: *(FT_Byte*)q = (FT_Byte)val; break; case 2: *(FT_Short*)q = (FT_Short)val; break; default: *(FT_Long*)q = val; } q += field->size; num_args--; } } break; default: /* callback */ error = field->reader( parser ); if ( error ) goto Exit; } goto Found; } } /* this is an unknown operator, or it is unsupported; */ /* we will ignore it for now. */ Found: /* clear stack */ parser->top = parser->stack; } p++; } Exit: return error; Stack_Overflow: error = T2_Err_Invalid_Argument; goto Exit; Stack_Underflow: error = T2_Err_Invalid_Argument; goto Exit; Syntax_Error: error = T2_Err_Invalid_Argument; goto Exit; } /* END */