ref: b46a2d8a7448955dae9b1ec5d853a2d3c9be3481
dir: /demos/src/ftgrays.c/
/*****************************************************************************/ /* */ /* ftgrays.c - a new 'perfect' anti-aliasing renderer for FreeType 2 */ /* */ /* (c) 2000 David Turner - <[email protected]> */ /* */ /* Beware, this code is still in heavy beta.. */ /* */ /* This is a new anti-aliasing scan-converter for FreeType 2. The */ /* algorithm used here is _very_ different from the one in the standard */ /* "ftraster.c". Actually, "ftgrays.c" computes the _exact_ coverage of */ /* the outline on each pixel cell. */ /* */ /* It is based on ideas that I initially found in Raph Levien's excellent */ /* LibArt graphics library (see www.levien.com/libart for more information, */ /* though the web pages do not tell anything about the renderer, you'll */ /* have to dive in the source code to understand how it works..) */ /* */ /* Note however that this is a _very_ different implementation from */ /* Raph's. Coverage information is stored in a very different way, */ /* and I don't use sorted vector paths. Also, it doesn't use floating */ /* point values.. */ /* */ /* This renderer has the following advantages: */ /* */ /* - doesn't need an intermediate bitmap. Instead, one can supply */ /* a callback fuction that will be called by the renderer to */ /* draw gray spans on any target surface.. You can thus do direct */ /* composition on any kind of bitmap, provided that you give the */ /* renderer the right callback.. */ /* */ /* - perfect anti-aliaser, i.e. computes the _exact_ coverage on */ /* each pixel cell */ /* */ /* - performs a single pass on the outline (the 'standard' FT2 */ /* renderer performs two passes). */ /* */ /* - can easily be modified to render to _any_ number of gray levels */ /* cheaply.. */ /* */ /* It has the following disadvantages (for now): */ /* */ /* - need more memory than the standard scan-converter to render */ /* a single outline. Note that this may be changed in a near */ /* future (we might be able to pack the data in the TCell structure) */ /* */ /* - apparently, glyphs rendered with this module are a bit more */ /* "fuzzy" than those produced with the standard renderer. I hope */ /* to fix this using a gamma table somewhere.. */ /* */ /* */ #include <ftimage.h> #define ErrRaster_Invalid_Outline -1 #include "ftgrays.h" #define xxxDEBUG_GRAYS #ifndef FT_STATIC_RASTER #define RAS_ARG PRaster raster #define RAS_ARG_ PRaster raster, #define RAS_VAR raster #define RAS_VAR_ raster, #define ras (*raster) #else #define RAS_ARG #define RAS_ARG_ #define RAS_VAR #define RAS_VAR_ static TRaster ras; #endif #define PIXEL_BITS 8 #define ONE_PIXEL (1L << PIXEL_BITS) #define PIXEL_MASK (-1L << PIXEL_BITS) #define TRUNC(x) ((x) >> PIXEL_BITS) #define SUBPIXELS(x) ((x) << PIXEL_BITS) #define FLOOR(x) ((x) & -ONE_PIXEL) #define CEILING(x) (((x)+ONE_PIXEL-1) & -ONE_PIXEL) #define ROUND(x) (((x)+ONE_PIXEL/2) & -ONE_PIXEL) #define UPSCALE(x) (PIXEL_BITS >= 6 ? (x) << (PIXEL_BITS-6) : (x) >> (6-PIXEL_BITS)) #define DOWNSCALE(x) (PIXEL_BITS >= 6 ? (x) >> (PIXEL_BITS-6) : (x) << (6-PIXEL_BITS)) /****************************************************************************/ /* */ /* INITIALIZE THE CELLS TABLE */ /* */ static void init_cells( RAS_ARG_ void* buffer, long byte_size ) { ras.cells = (PCell)buffer; ras.max_cells = byte_size / sizeof(TCell); ras.num_cells = 0; ras.area = 0; ras.cover = 0; ras.invalid = 1; } /****************************************************************************/ /* */ /* COMPUTE THE OUTLINE BOUNDING BOX */ /* */ static void compute_cbox( RAS_ARG_ FT_Outline* outline ) { FT_Vector* vec = outline->points; FT_Vector* limit = vec + outline->n_points; if ( outline->n_points <= 0 ) { ras.min_ex = ras.max_ex = 0; ras.min_ey = ras.max_ey = 0; return; } ras.min_ex = ras.max_ex = vec->x; ras.min_ey = ras.max_ey = vec->y; vec++; for ( ; vec < limit; vec++ ) { TPos x = vec->x; TPos y = vec->y; if ( x < ras.min_ex ) ras.min_ex = x; if ( x > ras.max_ex ) ras.max_ex = x; if ( y < ras.min_ey ) ras.min_ey = y; if ( y > ras.max_ey ) ras.max_ey = y; } /* truncate the bounding box to integer pixels */ ras.min_ex = ras.min_ex >> 6; ras.min_ey = ras.min_ey >> 6; ras.max_ex = ( ras.max_ex+63 ) >> 6; ras.max_ey = ( ras.max_ey+63 ) >> 6; } /****************************************************************************/ /* */ /* RECORD THE CURRENT CELL IN THE TABLE */ /* */ static int record_cell( RAS_ARG ) { PCell cell; if (!ras.invalid && (ras.area | ras.cover)) { if ( ras.num_cells >= ras.max_cells ) return 1; cell = ras.cells + ras.num_cells++; cell->x = ras.ex - ras.min_ex; cell->y = ras.ey - ras.min_ey; cell->area = ras.area; cell->cover = ras.cover; } return 0; } /****************************************************************************/ /* */ /* SET THE CURRENT CELL TO A NEW POSITION */ /* */ static int set_cell( RAS_ARG_ TScan ex, TScan ey ) { int invalid, record, clean; /* move the cell pointer to a new position. We set the "invalid" */ /* flag to indicate that the cell isn't part of those we're interested */ /* in during the render phase.. This means that: */ /* */ /* the new vertical position must be within min_ey..max_ey-1. */ /* the new horizontal position must be strictly less than max_ey */ /* */ /* Note that we a cell is to the left of the clipping region, it is */ /* actually set to the (min_ex-1) horizontal position */ /* */ record = 0; clean = 1; invalid = ( ey < ras.min_ey || ey >= ras.max_ey || ex >= ras.max_ex ); if (!invalid) { /* all cells that are on the left of the clipping region go to the */ /* min_ex-1 horizontal position.. */ if (ex < ras.min_ex) ex = ras.min_ex-1; /* if our position is new, then record the previous cell */ if (ex != ras.ex || ey != ras.ey) record = 1; else clean = ras.invalid; /* do not clean if we didn't move from */ /* a valid cell.. */ } /* record the previous cell if needed (i.e. if we changed the cell */ /* position, of changed the 'invalid' flag..) */ if ( (ras.invalid != invalid || record) && record_cell( RAS_VAR ) ) return 1; if (clean) { ras.area = 0; ras.cover = 0; } ras.invalid = invalid; ras.ex = ex; ras.ey = ey; return 0; } /****************************************************************************/ /* */ /* START A NEW CONTOUR AT A GIVEN CELL */ /* */ static void start_cell( RAS_ARG_ TScan ex, TScan ey ) { if (ex < ras.min_ex) ex = ras.min_ex-1; ras.area = 0; ras.cover = 0; ras.ex = ex; ras.ey = ey; ras.last_ey = SUBPIXELS(ey); ras.invalid = 0; (void)set_cell( RAS_VAR_ ex, ey ); } /****************************************************************************/ /* */ /* RENDER A SCANLINE AS ONE OR MORE CELLS */ /* */ static int render_scanline( RAS_ARG_ TScan ey, TPos x1, TScan y1, TPos x2, TScan y2 ) { TScan ex1, ex2, fx1, fx2, delta; long p, first, dx; int incr, lift, mod, rem; dx = x2-x1; ex1 = TRUNC(x1); /* if (ex1 >= ras.max_ex) ex1 = ras.max_ex-1; */ ex2 = TRUNC(x2); /* if (ex2 >= ras.max_ex) ex2 = ras.max_ex-1; */ fx1 = x1 - SUBPIXELS(ex1); fx2 = x2 - SUBPIXELS(ex2); /* trivial case. Happens often */ if (y1 == y2) return set_cell( RAS_VAR_ ex2, ey ); /* everything is located in a single cell, that is easy ! */ /* */ if ( ex1 == ex2 ) { delta = y2-y1; ras.area += (fx1+fx2)*delta; ras.cover += delta; return 0; } /* ok, we'll have to render a run of adjacent cells on the same */ /* scanline.. */ /* */ p = (ONE_PIXEL-fx1)*(y2-y1); first = ONE_PIXEL; incr = 1; if ( dx < 0 ) { p = fx1*(y2-y1); first = 0; incr = -1; dx = -dx; } delta = p / dx; mod = p % dx; if (mod < 0) { delta--; mod += dx; } ras.area += (fx1+first)*delta; ras.cover += delta; ex1 += incr; if (set_cell( RAS_VAR_ ex1, ey )) goto Error; y1 += delta; if (ex1 != ex2) { p = ONE_PIXEL*(y2-y1); lift = p / dx; rem = p % dx; if (rem < 0) { lift--; rem += dx; } mod -= dx; while (ex1 != ex2) { delta = lift; mod += rem; if (mod >= 0) { mod -= dx; delta++; } ras.area += ONE_PIXEL*delta; ras.cover += delta; y1 += delta; ex1 += incr; if (set_cell( RAS_VAR_ ex1, ey )) goto Error; } } delta = y2-y1; ras.area += (fx2+ONE_PIXEL-first)*delta; ras.cover += delta; return 0; Error: return 1; } /****************************************************************************/ /* */ /* RENDER A GIVEN LINE AS A SERIES OF SCANLINES */ /* */ static int render_line( RAS_ARG_ TPos to_x, TPos to_y ) { TScan ey1, ey2, fy1, fy2; TPos dx, dy, x, x2; int p, rem, mod, lift, delta, first, incr; ey1 = TRUNC(ras.last_ey); ey2 = TRUNC(to_y); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ fy1 = ras.y - ras.last_ey; fy2 = to_y - SUBPIXELS(ey2); dx = to_x - ras.x; dy = to_y - ras.y; /* we should do something about the trivial case where dx == 0, */ /* as it happens very often !! ... XXXXX */ /* everything is on a single scanline */ if ( ey1 == ey2 ) { if (render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 )) goto Error; goto Fin; } /* ok, we'll have to render a run of adjacent cells on the same */ /* scanline.. */ /* */ p = (ONE_PIXEL-fy1)*dx; first = ONE_PIXEL; incr = 1; if ( dy < 0 ) { p = fy1*dx; first = 0; incr = -1; dy = -dy; } delta = p / dy; mod = p % dy; if (mod < 0) { delta--; mod += dy; } x = ras.x + delta; if (render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first )) goto Error; ey1 += incr; if (set_cell( RAS_VAR_ TRUNC(x), ey1 )) goto Error; if (ey1 != ey2) { p = ONE_PIXEL*dx; lift = p / dy; rem = p % dy; if (rem < 0) { lift--; rem += dy; } mod -= dy; while (ey1 != ey2) { delta = lift; mod += rem; if (mod >= 0) { mod -= dy; delta++; } x2 = x + delta; if (render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL-first, x2, first )) goto Error; x = x2; ey1 += incr; if (set_cell( RAS_VAR_ TRUNC(x), ey1 )) goto Error; } } if (render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL-first, to_x, fy2 )) goto Error; Fin: ras.x = to_x; ras.y = to_y; ras.last_ey = SUBPIXELS(ey2); return 0; Error: return 1; } static void split_conic( FT_Vector* base ) { TPos a, b; base[4].x = base[2].x; b = base[1].x; a = base[3].x = ( base[2].x + b )/2; b = base[1].x = ( base[0].x + b )/2; base[2].x = ( a + b ) / 2; base[4].y = base[2].y; b = base[1].y; a = base[3].y = ( base[2].y + b )/2; b = base[1].y = ( base[0].y + b )/2; base[2].y = ( a + b ) / 2; } static int render_conic( RAS_ARG_ FT_Vector* control, FT_Vector* to ) { TPos dx, dy; int top, level; int* levels; FT_Vector* arc; dx = DOWNSCALE(ras.x) + to->x - (control->x << 1); if (dx < 0) dx = -dx; dy = DOWNSCALE(ras.y) + to->y - (control->y << 1); if (dy < 0) dy = -dy; if (dx < dy) dx = dy; level = 1; dx = dx/16; while ( dx > 0 ) { dx >>= 1; level++; } if (level <= 1) return render_line( RAS_VAR_ UPSCALE(to->x), UPSCALE(to->y) ); arc = ras.bez_stack; arc[0] = *to; arc[1] = *control; arc[2].x = ras.x; arc[2].y = ras.y; arc[0].x = UPSCALE(arc[0].x); arc[0].y = UPSCALE(arc[0].y); arc[1].x = UPSCALE(arc[1].x); arc[1].y = UPSCALE(arc[1].y); levels = ras.lev_stack; top = 0; levels[0] = level; for (;;) { level = levels[top]; if (level > 1) { split_conic(arc); arc += 2; top ++; levels[top] = levels[top-1] = level-1; } else { if (render_line( RAS_VAR_ arc[0].x, arc[0].y )) return 1; top--; arc-=2; if (top < 0) return 0; } } } static void split_cubic( FT_Vector* base ) { TPos a, b, c, d; base[6].x = base[3].x; c = base[1].x; d = base[2].x; base[1].x = a = ( base[0].x + c ) / 2; base[5].x = b = ( base[3].x + d ) / 2; c = ( c + d ) / 2; base[2].x = a = ( a + c ) / 2; base[4].x = b = ( b + c ) / 2; base[3].x = ( a + b ) / 2; base[6].y = base[3].y; c = base[1].y; d = base[2].y; base[1].y = a = ( base[0].y + c ) / 2; base[5].y = b = ( base[3].y + d ) / 2; c = ( c + d ) / 2; base[2].y = a = ( a + c ) / 2; base[4].y = b = ( b + c ) / 2; base[3].y = ( a + b ) / 2; } static int render_cubic( RAS_ARG_ FT_Vector* control1, FT_Vector* control2, FT_Vector* to ) { TPos dx, dy, da, db; int top, level; int* levels; FT_Vector* arc; dx = DOWNSCALE(ras.x) + to->x - (control1->x << 1); if (dx < 0) dx = -dx; dy = DOWNSCALE(ras.y) + to->y - (control1->y << 1); if (dy < 0) dy = -dy; if (dx < dy) dx = dy; da = dx; dx = DOWNSCALE(ras.x) + to->x - 3*(control1->x + control2->x); if (dx < 0) dx = -dx; dy = DOWNSCALE(ras.y) + to->y - 3*(control1->x + control2->y); if (dy < 0) dy = -dy; if (dx < dy) dx = dy; db = dx; level = 1; da = da/16; db = db/32; while ( da > 0 || db > 0 ) { da >>= 1; db >>= 2; level++; } if (level <= 1) return render_line( RAS_VAR_ UPSCALE(to->x), UPSCALE(to->y) ); arc = ras.bez_stack; arc[0] = *to; arc[1] = *control2; arc[2] = *control1; arc[3].x = ras.x; arc[3].y = ras.y; arc[0].x = UPSCALE(arc[0].x); arc[0].y = UPSCALE(arc[0].y); arc[1].x = UPSCALE(arc[1].x); arc[1].y = UPSCALE(arc[1].y); arc[2].x = UPSCALE(arc[2].x); arc[2].y = UPSCALE(arc[2].y); levels = ras.lev_stack; top = 0; levels[0] = level; for (;;) { level = levels[top]; if (level > 1) { split_cubic(arc); arc += 3; top ++; levels[top] = levels[top-1] = level-1; } else { if (render_line( RAS_VAR_ arc[0].x, arc[0].y )) return 1; top --; arc -= 3; if (top < 0) return 0; } } } /* a macro comparing two cell pointers. returns true if a <= b */ #define LESS_THAN(a,b) ( (a)->y<(b)->y || ((a)->y==(b)->y && (a)->x < (b)->x) ) #define SWAP_CELLS(a,b,temp) { temp = *(a); *(a) = *(b); *(b) = temp; } #define DEBUG_SORT #define QUICK_SORT #ifdef SHELL_SORT /* A simple shell sort algorithm that works directly on our */ /* cells table.. */ static void shell_sort ( PCell cells, int count ) { PCell i, j, limit = cells + count; TCell temp; int gap; /* compute initial gap */ for (gap = 0; ++gap < count; gap *=3 ); while ( gap /= 3 ) { for ( i = cells+gap; i < limit; i++ ) { for ( j = i-gap; ; j -= gap ) { PCell k = j+gap; if ( LESS_THAN(j,k) ) break; SWAP_CELLS(j,k,temp); if ( j < cells+gap ) break; } } } } #endif #ifdef QUICK_SORT /* this is a non-recursive quicksort that directly process our cells array */ /* it should be faster than calling the stdlib qsort(), and we can even */ /* tailor our insertion threshold... */ #define QSORT_THRESHOLD 7 /* below this size, a sub-array will be sorted */ /* through a normal insertion sort.. */ static void quick_sort( PCell cells, int count ) { PCell stack[40]; /* should be enough ;-) */ PCell* top; /* top of stack */ PCell base, limit; TCell temp; limit = cells + count; base = cells; top = stack; for (;;) { int len = limit-base; PCell i, j, pivot; if ( len > QSORT_THRESHOLD) { /* we use base+len/2 as the pivot */ pivot = base + len/2; SWAP_CELLS( base, pivot, temp ); i = base + 1; j = limit-1; /* now ensure that *i <= *base <= *j */ if (LESS_THAN(j,i)) SWAP_CELLS( i, j, temp ); if (LESS_THAN(base,i)) SWAP_CELLS( base, i, temp ); if (LESS_THAN(j,base)) SWAP_CELLS( base, j, temp ); for (;;) { do i++; while (LESS_THAN(i,base)); do j--; while (LESS_THAN(base,j)); if (i > j) break; SWAP_CELLS( i,j, temp ); } SWAP_CELLS( base, j, temp ); /* now, push the largest sub-array */ if ( j - base > limit -i ) { top[0] = base; top[1] = j; base = i; } else { top[0] = i; top[1] = limit; limit = j; } top += 2; } else { /* the sub-array is small, perform insertion sort */ j = base; i = j+1; for ( ; i < limit; j = i, i++ ) { for ( ; LESS_THAN(j+1,j); j-- ) { SWAP_CELLS( j+1, j, temp ); if (j == base) break; } } if (top > stack) { top -= 2; base = top[0]; limit = top[1]; } else break; } } } #endif #ifdef DEBUG_GRAYS #ifdef DEBUG_SORT static int check_sort( PCell cells, int count ) { PCell p, q; for ( p = cells + count-2; p >= cells; p-- ) { q = p+1; if (!LESS_THAN(p,q)) return 0; } return 1; } #endif #endif #if 0 static int FT_Decompose_Outline( FT_Outline* outline, FT_Outline_Funcs* interface, void* user ) { typedef enum _phases { phase_point, phase_conic, phase_cubic, phase_cubic2 } TPhase; FT_Vector v_first; FT_Vector v_last; FT_Vector v_control; FT_Vector v_start; FT_Vector* point; FT_Vector* limit; char* tags; int n; /* index of contour in outline */ int first; /* index of first point in contour */ int error; char tag; /* current point's state */ first = 0; for ( n = 0; n < outline->n_contours; n++ ) { int last; /* index of last point in contour */ last = outline->contours[n]; limit = outline->points + last; v_first = outline->points[first]; v_last = outline->points[last]; v_start = v_control = v_first; point = outline->points + first; tags = outline->tags + first; tag = FT_CURVE_TAG( tags[0] ); /* A contour cannot start with a cubic control point! */ if ( tag == FT_Curve_Tag_Cubic ) goto Invalid_Outline; /* check first point to determine origin */ if ( tag == FT_Curve_Tag_Conic ) { /* first point is conic control. Yes, this happens. */ if ( FT_CURVE_TAG( outline->tags[last] ) == FT_Curve_Tag_On ) { /* start at last point if it is on the curve */ v_start = v_last; limit--; } else { /* if both first and last points are conic, */ /* start at their middle and record its position */ /* for closure */ v_start.x = ( v_start.x + v_last.x ) / 2; v_start.y = ( v_start.y + v_last.y ) / 2; v_last = v_start; } point--; tags--; } error = interface->move_to( &v_start, user ); if (error) goto Exit; while (point < limit) { point++; tags++; tag = FT_CURVE_TAG( tags[0] ); switch (tag) { case FT_Curve_Tag_On: /* emit a single line_to */ { error = interface->line_to( point, user ); if (error) goto Exit; continue; } case FT_Curve_Tag_Conic: /* consume conic arcs */ { v_control = point[0]; Do_Conic: if (point < limit) { FT_Vector v_middle; point++; tags++; tag = FT_CURVE_TAG( tags[0] ); if (tag == FT_Curve_Tag_On) { error = interface->conic_to( &v_control, point, user ); if (error) goto Exit; continue; } if (tag != FT_Curve_Tag_Conic) goto Invalid_Outline; v_middle.x = (v_control.x + point->x)/2; v_middle.y = (v_control.y + point->y)/2; error = interface->conic_to( &v_control, &v_middle, user ); if (error) goto Exit; v_control = point[0]; goto Do_Conic; } error = interface->conic_to( &v_control, &v_start, user ); goto Close; } default: /* FT_Curve_Tag_Cubic */ { if ( point+1 > limit || FT_CURVE_TAG( tags[1] ) != FT_Curve_Tag_Cubic ) goto Invalid_Outline; point += 2; tags += 2; if (point <= limit) { error = interface->cubic_to( point-2, point-1, point, user ); if (error) goto Exit; continue; } error = interface->cubic_to( point-2, point-1, &v_start, user ); goto Close; } } } /* close the contour with a line segment */ error = interface->line_to( &v_start, user ); Close: if (error) goto Exit; first = last+1; } return 0; Exit: return error; Invalid_Outline: return -1; } #else static int FT_Decompose_Outline( FT_Outline* outline, FT_Outline_Funcs* interface, void* user ) { typedef enum _phases { phase_point, phase_conic, phase_cubic, phase_cubic2 } TPhase; FT_Vector v_first; FT_Vector v_last; FT_Vector v_control; FT_Vector v_control2; FT_Vector v_start; FT_Vector* point; char* tags; int n; /* index of contour in outline */ int first; /* index of first point in contour */ int index; /* current point's index */ int error; char tag; /* current point's state */ TPhase phase; first = 0; for ( n = 0; n < outline->n_contours; n++ ) { int last; /* index of last point in contour */ last = outline->contours[n]; v_first = outline->points[first]; v_last = outline->points[last]; v_start = v_control = v_first; tag = FT_CURVE_TAG( outline->tags[first] ); index = first; /* A contour cannot start with a cubic control point! */ if ( tag == FT_Curve_Tag_Cubic ) return ErrRaster_Invalid_Outline; /* check first point to determine origin */ if ( tag == FT_Curve_Tag_Conic ) { /* first point is conic control. Yes, this happens. */ if ( FT_CURVE_TAG( outline->tags[last] ) == FT_Curve_Tag_On ) { /* start at last point if it is on the curve */ v_start = v_last; } else { /* if both first and last points are conic, */ /* start at their middle and record its position */ /* for closure */ v_start.x = ( v_start.x + v_last.x ) / 2; v_start.y = ( v_start.y + v_last.y ) / 2; v_last = v_start; } phase = phase_conic; } else phase = phase_point; /* Begin a new contour with MOVE_TO */ error = interface->move_to( &v_start, user ); if ( error ) return error; point = outline->points + first; tags = outline->tags + first; /* now process each contour point individually */ while ( index < last ) { index++; point++; tags++; tag = FT_CURVE_TAG( tags[0] ); switch ( phase ) { case phase_point: /* the previous point was on the curve */ switch ( tag ) { /* two succesive on points -> emit segment */ case FT_Curve_Tag_On: error = interface->line_to( point, user ); break; /* on point + conic control -> remember control point */ case FT_Curve_Tag_Conic: v_control = point[0]; phase = phase_conic; break; /* on point + cubic control -> remember first control */ default: v_control = point[0]; phase = phase_cubic; break; } break; case phase_conic: /* the previous point was a conic control */ switch ( tag ) { /* conic control + on point -> emit conic arc */ case FT_Curve_Tag_On: error = interface->conic_to( &v_control, point, user ); phase = phase_point; break; /* two successive conics -> emit conic arc `in between' */ case FT_Curve_Tag_Conic: { FT_Vector v_middle; v_middle.x = (v_control.x + point->x)/2; v_middle.y = (v_control.y + point->y)/2; error = interface->conic_to( &v_control, &v_middle, user ); v_control = point[0]; } break; default: error = ErrRaster_Invalid_Outline; } break; case phase_cubic: /* the previous point was a cubic control */ /* this point _must_ be a cubic control too */ if ( tag != FT_Curve_Tag_Cubic ) return ErrRaster_Invalid_Outline; v_control2 = point[0]; phase = phase_cubic2; break; case phase_cubic2: /* the two previous points were cubics */ /* this point _must_ be an on point */ if ( tag != FT_Curve_Tag_On ) error = ErrRaster_Invalid_Outline; else error = interface->cubic_to( &v_control, &v_control2, point, user ); phase = phase_point; break; } /* lazy error testing */ if ( error ) return error; } /* end of contour, close curve cleanly */ error = 0; tag = FT_CURVE_TAG( outline->tags[first] ); switch ( phase ) { case phase_point: if ( tag == FT_Curve_Tag_On ) error = interface->line_to( &v_first, user ); break; case phase_conic: error = interface->conic_to( &v_control, &v_start, user ); break; case phase_cubic2: if ( tag == FT_Curve_Tag_On ) error = interface->cubic_to( &v_control, &v_control2, &v_first, user ); else error = ErrRaster_Invalid_Outline; break; default: error = ErrRaster_Invalid_Outline; break; } if ( error ) return error; first = last + 1; } return 0; } #endif static int Move_To( FT_Vector* to, FT_Raster raster ) { TPos x, y; /* record current cell, if any */ record_cell( (PRaster)raster ); /* start to a new position */ x = UPSCALE(to->x); y = UPSCALE(to->y); start_cell( (PRaster)raster, TRUNC(x), TRUNC(y) ); ((PRaster)raster)->x = x; ((PRaster)raster)->y = y; return 0; } static int Line_To( FT_Vector* to, FT_Raster raster ) { return render_line( (PRaster)raster, UPSCALE(to->x), UPSCALE(to->y) ); } static int Conic_To( FT_Vector* control, FT_Vector* to, FT_Raster raster ) { return render_conic( (PRaster)raster, control, to ); } static int Cubic_To( FT_Vector* control1, FT_Vector* control2, FT_Vector* to, FT_Raster raster ) { return render_cubic( (PRaster)raster, control1, control2, to ); } static void grays_render_span( int y, int count, FT_GraySpan* spans, PRaster raster ) { unsigned char *p, *q, *limit; FT_Bitmap* map = &raster->target; /* first of all, compute the scanline offset */ p = (unsigned char*)map->buffer - y*map->pitch; if (map->pitch >= 0) p += (map->rows-1)*map->pitch; for ( ; count > 0; count--, spans++ ) { if (spans->coverage) { q = p + spans->x; limit = q + spans->len; for ( ; q < limit; q++ ) q[0] = (spans->coverage+1) >> 1; } } } #ifdef DEBUG_GRAYS #include <stdio.h> static void dump_cells( RAS_ARG ) { PCell cell, limit; int y = -1; cell = ras.cells; limit = cell + ras.num_cells; for ( ; cell < limit; cell++ ) { if ( cell->y != y ) { fprintf( stderr, "\n%2d: ", cell->y ); y = cell->y; } fprintf( stderr, "[%d %d %d]", cell->x, cell->area, cell->cover ); } fprintf(stderr, "\n" ); } #endif #if 0 static void grays_hline( RAS_ARG_ TScan x, TScan y, TPos area, int count ) { if (area) fprintf( stderr, "hline( %3d, %3d, %2d, %5.2f )\n", y, x, count, (float)area/(2.0*ONE_PIXEL*ONE_PIXEL) ); } #else static void grays_hline( RAS_ARG_ TScan x, TScan y, TPos area, int acount ) { FT_GraySpan* span; int count; int coverage; /* compute the coverage line's coverage, depending on the */ /* outline fill rule.. */ /* */ /* The coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */ /* */ coverage = area >> (PIXEL_BITS*2+1-8); /* use range 0..256 */ if ( ras.outline.flags & ft_outline_even_odd_fill ) { if (coverage < 0) coverage = -coverage; while (coverage >= 512) coverage -= 512; if (coverage > 256) coverage = 0; else if (coverage == 256) coverage = 255; } else { /* normal non-zero winding rule */ if (coverage < 0) coverage = -coverage; if (coverage >= 256) coverage = 255; } if (coverage) { /* see if we can add this span to the current list */ count = ras.num_gray_spans; span = ras.gray_spans + count-1; if (count > 0 && ras.span_y == y && (int)span->x + span->len == (int)x && span->coverage == coverage) { span->len += acount; return; } if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS) { if (ras.render_span) ras.render_span( ras.span_y, count, ras.gray_spans, ras.render_span_closure ); /* ras.render_span( span->y, ras.gray_spans, count ); */ #ifdef DEBUG_GRAYS if (ras.span_y >= 0) { int n; fprintf( stderr, "y=%3d ", ras.span_y ); span = ras.gray_spans; for (n = 0; n < count; n++, span++) fprintf( stderr, "[%d..%d]:%02x ", span->x, span->x + span->len-1, span->coverage ); fprintf( stderr, "\n" ); } #endif ras.num_gray_spans = 0; ras.span_y = y; count = 0; span = ras.gray_spans; } else span++; /* add a gray span to the current list */ span->x = (short)x; span->len = (unsigned char)acount; span->coverage = (unsigned char)coverage; ras.num_gray_spans++; } } #endif static void grays_sweep( RAS_ARG_ FT_Bitmap* target ) { TScan x, y, cover; PCell start, cur, limit; cur = ras.cells; limit = cur + ras.num_cells; cover = 0; ras.span_y = -1; ras.num_gray_spans = 0; for (;;) { start = cur; y = start->y; x = start->x; /* accumulate all start cells */ for (;;) { ++cur; if (cur >= limit || cur->y != start->y || cur->x != start->x) break; start->area += cur->area; start->cover += cur->cover; } /* compute next cover */ cover += start->cover; /* if the start cell has a non-null area, we must draw an */ /* individual gray pixel there.. */ if (start->area && x >= 0) { grays_hline( RAS_VAR_ x, y, cover*(ONE_PIXEL*2)-start->area, 1 ); x++; } if (x < 0) x = 0; if (cur < limit && start->y == cur->y) { /* draw a gray span between the start cell and the current one */ if (cur->x > x) grays_hline( RAS_VAR_ x, y, cover*(ONE_PIXEL*2), cur->x - x ); } else { /* draw a gray span until the end of the clipping region */ if (cover && x < ras.max_ex) grays_hline( RAS_VAR_ x, y, cover*(ONE_PIXEL*2), ras.max_ex - x ); cover = 0; } if (cur >= limit) break; } if (ras.render_span && ras.num_gray_spans > 0) ras.render_span( ras.span_y, ras.num_gray_spans, ras.gray_spans, ras.render_span_closure ); #ifdef DEBUG_GRAYS { int n; FT_GraySpan* span; fprintf( stderr, "y=%3d ", ras.span_y ); span = ras.gray_spans; for (n = 0; n < ras.num_gray_spans; n++, span++) fprintf( stderr, "[%d..%d]:%02x ", span->x, span->x+span->len-1,span->coverage ); fprintf( stderr, "\n" ); } #endif } static int Convert_Glyph( RAS_ARG_ FT_Outline* outline ) { static FT_Outline_Funcs interface = { (FT_Outline_MoveTo_Func)Move_To, (FT_Outline_LineTo_Func)Line_To, (FT_Outline_ConicTo_Func)Conic_To, (FT_Outline_CubicTo_Func)Cubic_To }; /* Set up state in the raster object */ compute_cbox( RAS_VAR_ outline ); if (ras.min_ex < 0) ras.min_ex = 0; if (ras.min_ey < 0) ras.min_ey = 0; if (ras.max_ex > ras.target.width) ras.max_ex = ras.target.width; if (ras.max_ey > ras.target.rows) ras.max_ey = ras.target.rows; ras.num_cells = 0; /* Now decompose curve */ if ( FT_Decompose_Outline( outline, &interface, &ras ) ) return 1; /* XXX: the error condition is in ras.error */ /* record the last cell */ return record_cell( RAS_VAR ); } extern int grays_raster_render( TRaster* raster, FT_Outline* outline, FT_Bitmap* target_map ) { if ( !raster || !raster->cells || !raster->max_cells ) return -1; /* return immediately if the outline is empty */ if ( outline->n_points == 0 || outline->n_contours <= 0 ) return 0; if ( !outline || !outline->contours || !outline->points ) return -1; if ( outline->n_points != outline->contours[outline->n_contours - 1] + 1 ) return -1; if ( !target_map || !target_map->buffer ) return -1; ras.outline = *outline; ras.target = *target_map; ras.num_cells = 0; ras.invalid = 1; if (Convert_Glyph( (PRaster)raster, outline )) return 1; #ifdef SHELL_SORT shell_sort( ras.cells, ras.num_cells ); #else quick_sort( ras.cells, ras.num_cells ); #endif #ifdef DEBUG_GRAYS check_sort( ras.cells, ras.num_cells ); dump_cells( RAS_VAR ); #endif ras.render_span = (FT_GraySpan_Func)grays_render_span; ras.render_span_closure = &ras; grays_sweep( (PRaster)raster, target_map ); return 0; } extern int grays_raster_init( FT_Raster raster, const char* pool_base, long pool_size ) { /* static const char default_palette[5] = { 0, 1, 2, 3, 4 }; */ /* check the object address */ if ( !raster ) return -1; /* check the render pool - we won't go under 4 Kb */ if ( !pool_base || pool_size < 4096 ) return -1; /* save the pool */ init_cells( (PRaster)raster, (char*)pool_base, pool_size ); return 0; } FT_Raster_Interface ft_grays_raster = { sizeof( TRaster ), ft_glyph_format_outline, (FT_Raster_Init_Proc) grays_raster_init, (FT_Raster_Set_Mode_Proc) 0, (FT_Raster_Render_Proc) grays_raster_render };