ref: 83b4a4b5157089bc293d512a19013ab43c0b27bc
dir: /src/sfnt/ttcmap0.c/
/***************************************************************************/ /* */ /* ttcmap.c */ /* */ /* TrueType character mapping table (cmap) support (body). */ /* */ /* Copyright 1996-2001 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ #include <ft2build.h> #include FT_INTERNAL_DEBUG_H #include "ttload.h" #include "ttcmap.h" #include "sferrors.h" /*************************************************************************/ /* */ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ /* messages during execution. */ /* */ #undef FT_COMPONENT #define FT_COMPONENT trace_ttcmap #define TT_PEEK_SHORT FT_PEEK_SHORT #define TT_PEEK_USHORT FT_PEEK16_UBE #define TT_PEEK_Long FT_PEEK32_BE #define TT_PEEK_ULong FT_PEEK32_UBE #define TT_NEXT_Short FT_NEXT_SHORT_BE #define TT_NEXT_UShort FT_NEXT_USHORT_BE #define TT_NEXT_Long FT_NEXT_LONG_BE #define TT_NEXT_ULong FT_NEXT_ULONG_BE FT_CALLBACK_DEF FT_Error tt_cmap_init( TT_CMap cmap, FT_Byte* data ) { cmap->data = data; return 0; } /************************************************************************/ /************************************************************************/ /***** *****/ /***** FORMAT 0 *****/ /***** *****/ /************************************************************************/ /************************************************************************/ /************************************************************************* * * TABLE OVERVIEW: * --------------- * * NAME OFFSET TYPE DESCRIPTION * * format 0 USHORT must be 0 * length 2 USHORT table length in bytes * language 4 USHORT Mac language code * glyph_ids 6 BYTE[256] array of glyph indices * 262 */ #ifdef TT_CONFIG_CMAP_FORMAT_0 FT_CALLBACK_DEF void tt_cmap0_validate( FT_Byte* table, FT_Validator valid ) { FT_Byte* p = table + 2; FT_UInt length = TT_NEXT_USHORT(p); if ( table + length > valid->limit || length < 262 ) TOO_SHORT; /* check glyph indices whenever necessary */ if ( valid->level >= FT_VALIDATE_TIGHT ) { FT_UInt n, index; p = table + 6; for ( n = 0; n < 256; n++ ) { index = *p++; if ( index >= valid->num_glyphs ) INVALID_DATA; } } } FT_CALLBACK_DEF FT_UInt tt_cmap0_char_index( TT_CMap cmap, FT_UInt32 char_code ) { FT_Byte* table = cmap->data; return ( char_code < 256 ? table[6+char_code] : 0 ); } FT_CALLBACK_DEF FT_UInt32 tt_cmap0_char_next( TT_CMap cmap, FT_UInt32 char_code, FT_UInt *agindex ) { FT_Byte* table = cmap->data; FT_UInt32 result = 0; FT_UInt gindex = 0; table += 6; /* go to glyph ids */ while ( ++char_code < 256 ) { gindex = table[char_code]; if ( gindex != 0 ) { result = char_code; break; } } if ( agindex ) *agindex = gindex; return result; } FT_CALLBACK_TABLE const TT_CMap_ClassRec tt_cmap0_class_rec = { { sizeof( FT_CMapRec ), (FT_CMap_InitFunc) tt_cmap_init, (FT_CMap_DoneFunc) NULL, (FT_CMap_CharIndexFunc) tt_cmap0_char_index, (FT_CMap_CharNextFunc) tt_cmap0_char_next }, 0, (TT_CMap_ValidateFunc) tt_cmap0_validate }; FT_LOCAL_DEF( TT_CMap_Class ) tt_cmap0_class = &tt_cmap0_class_rec; #endif /* TT_CONFIG_CMAP_FORMAT_0 */ /************************************************************************/ /************************************************************************/ /***** *****/ /***** FORMAT 2 *****/ /***** *****/ /***** This is used for certain CJK encodings that encode text *****/ /***** in a mixed 8/16 bits along the following lines: *****/ /***** *****/ /***** * certain byte values correspond to an 8-bit character code *****/ /***** (typicall in the range 0..127 for ASCII compatibility) *****/ /***** *****/ /***** * certain byte values signal the first byte of a 2-byte *****/ /***** character code (but these values are also valid as the *****/ /***** second byte of a 2-byte character) *****/ /***** *****/ /***** the following charmap lookup and iteration function all *****/ /***** assume that the value "charcode" correspond to following: *****/ /***** *****/ /***** - for one byte characters, "charcode" is simply the *****/ /***** character code *****/ /***** *****/ /***** - for two byte characters, "charcode" is the 2-byte *****/ /***** character code in big endian format. More exactly: *****/ /***** *****/ /***** (charcode >> 8) is the first byte value *****/ /***** (charcode & 0xFF) is the second byte value *****/ /***** *****/ /***** note that not all values of "charcode" are valid *****/ /***** according to these rules, and the function moderately *****/ /***** check the arguments.. *****/ /***** *****/ /************************************************************************/ /************************************************************************/ /************************************************************************* * * TABLE OVERVIEW: * --------------- * * NAME OFFSET TYPE DESCRIPTION * * format 0 USHORT must be 2 * length 2 USHORT table length in bytes * language 4 USHORT Mac language code * keys 6 USHORT[256] sub-header keys * subs 518 SUBHEAD[NSUBS] sub-headers array * glyph_ids 518+NSUB*8 USHORT[] glyph id array * * the 'keys' table is used to map charcode high-bytes to sub-headers. * the value of 'NSUBS' is the number of sub-headers defined in the * table and is computed by finding the maximum of the 'keys' table. * * note that for any N, keys[n] is a byte offset within the subs table, * i.e. it is the corresponding sub-header index multiplied by 8. * * each sub-header has the following format: * * NAME OFFSET TYPE DESCRIPTION * * first 0 USHORT first valid low-byte * count 2 USHORT number of valid low-bytes * delta 4 SHORT see below * offset 6 USHORT see below * * a sub-header defines, for each high-byte, the range of valid low-bytes * within the charmap. note that the range defined by 'first' and 'count' * must be completely included in the interval [0..255] according to the * specification * * if a character code is contained within a given sub-header, then mapping * it to a glyph index is done as follows: * * * the value of 'offset' is read. this is a _byte_ distance from the * location of the 'offset' field itself into a slice of the 'glyph_ids' * table. Let's call it 'slice' (it's a USHORT[] too) * * * the value 'slice[ char.lo - first ]' is read. If it is 0, there is * no glyph for the charcode. Otherwise, the value of 'delta' is added * to it (modulo 65536) to form a new glyph index * * it is up to the validation routine to check that all offsets fall within * the glyph ids table (and not within the 'subs' table itself or outside * of the CMap). */ #ifdef TT_CONFIG_CMAP_FORMAT_2 FT_CALLBACK_DEF void tt_cmap2_validate( FT_Byte* table, FT_Validator valid ) { FT_Byte* p = table + 2; /* skip format */ FT_UInt length = TT_PEEK_USHORT(p); FT_UInt n, max_subs; FT_Byte* keys; /* keys table */ FT_Byte* subs; /* sub-headers */ FT_Byte* glyph_ids; /* glyph id array */ if ( table + length > valid->limit || length < 6+512 ) TOO_SHORT; keys = table + 6; /* parse keys to compute sub-headers count */ p = keys; for ( n = 0; n < 256; n++ ) { FT_UInt index = TT_NEXT_USHORT(p); /* value must be multiple of 8 */ if ( valid->level >= FT_VALIDATE_PARANOID && ( index & 7 ) != 0 ) INVALID_DATA; index >>= 3; if ( index > max_subs ) max_subs = index; } FT_ASSERT( p == table + 518 ); subs = p; glyph_ids = subs + (max_subs + 1)*8; if ( glyph_ids > valid->limit ) TOO_SHORT; /* parse sub-headers */ for ( n = 0; n <= max_subs; n++ ) { FT_UInt first_code, code_count, offset; FT_Int delta; FT_Byte* ids; first_code = TT_NEXT_USHORT(p); code_count = TT_NEXT_USHORT(p); delta = TT_NEXT_SHORT(p); offset = TT_NEXT_USHORT(p); /* check range within 0..255 */ if ( valid->level >= FT_VALIDATE_PARANOID ) { if ( first_code >= 256 || first_code + code_count > 256 ) INVALID_DATA; } /* check offset */ if ( offset != 0 ) { ids = p - 2 + offset; if ( ids < glyph_ids || ids + code_count*2 > table + length ) INVALID_DATA; /* check glyph ids */ if ( valid->level >= FT_VALIDATE_TIGHT ) { FT_Byte* limit = p + code_count*2; FT_UInt index; for ( ; p < limit; ) { index = TT_NEXT_USHORT(p); if ( index != 0 ) { index = (index + delta) & 0xFFFFU; if ( index >= valid->num_glyphs ) INVALID_GLYPH_ID } } } } } } /* return sub header corresponding to a given character code */ /* NULL on invalid charcode.. */ static FT_Byte* tt_cmap2_get_subheader( FT_Byte* table, FT_UInt32 char_code ) { FT_Byte* result = NULL; if ( char_code < 0x10000 ) { FT_UInt char_lo = (FT_UInt)( char_code & 0xFF ); FT_UInt char_hi = (FT_UInt)( char_code >> 8 ); FT_Byte* p = table + 6; /* keys table */ FT_Byte* subs = table + 518; /* subheaders table */ FT_Byte* sub; if ( char_hi == 0 ) { /* an 8-bit character code -- we use subHeader 0 in this case */ /* to test wheteher the character code is in the charmap */ /* */ sub = subs; /* jump to first sub-header */ /* check that the sub-header for this byte is 0, which */ /* indicates that it's really a valid one-byte value */ /* Otherwise, return 0 */ /* */ p += char_lo*2; if ( TT_PEEK_USHORT(p) != 0 ) goto Exit; } else { /* a 16-bit character code */ p += char_hi*2; /* jump to key entry */ sub = subs + ( TT_PEEK_USHORT(p) & -8 ); /* jump to sub-header */ /* check that the hi byte isn't a valid one-byte value */ if ( sub == subs ) goto Exit; } result = sub; } Exit: return result; } FT_CALLBACK_DEF FT_UInt tt_cmap2_char_index( TT_CMap cmap, FT_UInt32 char_code ) { FT_Byte* table = cmap->data; FT_UInt result = 0; FT_Byte* subheader; subheader = tt_cmap2_get_subheader( table, char_code ); if ( subheader ) { FT_Byte* p = subheader; FT_UInt index = (FT_UInt)(char_code & 0xFF); FT_UInt start, count; FT_Int delta; FT_UInt offset; start = TT_NEXT_USHORT(p); count = TT_NEXT_USHORT(p); delta = TT_NEXT_SHORT(p); offset = TT_PEEK_USHORT(p); index -= start; if ( index < count && offset != 0 ) { p += offset + 2*index; index = TT_PEEK_USHORT(p); if ( index != 0 ) result = (FT_UInt)( index + delta ) & 0xFFFFU; } } return result; } FT_CALLBACK_DEF FT_UInt tt_cmap2_char_next( TT_CMap cmap, FT_UInt32 char_code, FT_UInt *agindex ) { FT_Byte* table = cmap->data; FT_UInt result = 0; FT_UInt n, gindex = 0; FT_Byte* subheader; FT_Byte* p; ++char_code; while ( char_code < 0x10000U ) { subheader = tt_cmap2_get_subheader( table, char_code ); if ( subheader ) { FT_Byte* p = subheader; FT_UInt start = TT_NEXT_USHORT(p); FT_UInt count = TT_NEXT_USHORT(p); FT_Int delta = TT_NEXT_SHORT(p); FT_UInt offset = TT_PEEK_USHORT(p); FT_UInt char_lo = (FT_UInt)( char_code & 0xFF ); FT_UInt pos, index; if ( offset == 0 ) goto Next_SubHeader: if ( char_lo < start ) { char_lo = start; pos = 0; } else pos = (FT_UInt)( char_lo - start ); p += offset + pos*2; char_code = (char_code & -256) + char_lo; for ( ; pos < count; pos++, char_code++ ) { index = TT_NEXT_USHORT(p); if ( index != 0 ) { gindex = ( index + delta ) & 0xFFFFU; if ( gindex != 0 ) { result = char_code; goto Exit; } } } } /* jump to next sub-header, i.e. higher byte value */ Next_SubHeader: char_code = (char_code & -256) + 256; } Exit: if ( agindex ) *agindex = gindex; return result; } FT_CALLBACK_TABLE const TT_CMap_ClassRec tt_cmap2_class_rec = { { sizeof( FT_CMapRec ), (FT_CMap_InitFunc) tt_cmap_init, (FT_CMap_DoneFunc) NULL, (FT_CMap_CharIndexFunc) tt_cmap2_char_index, (FT_CMap_CharNextFunc) tt_cmap2_char_next }, 2, (TT_CMap_ValidateFunc) tt_cmap2_validate }; FT_LOCAL_DEF( TT_CMap_Class ) tt_cmap2_class = &tt_cmap2_class_rec; #endif /* TT_CONFIG_CMAP_FORMAT_2 */ /************************************************************************/ /************************************************************************/ /***** *****/ /***** FORMAT 4 *****/ /***** *****/ /************************************************************************/ /************************************************************************/ /************************************************************************* * * TABLE OVERVIEW: * --------------- * * NAME OFFSET TYPE DESCRIPTION * * format 0 USHORT must be 4 * length 2 USHORT table length in bytes * language 4 USHORT Mac language code * * segCountX2 6 USHORT 2*NUM_SEGS * searchRange 8 USHORT 2*(1 << LOG_SEGS) * entrySelector 10 USHORT LOG_SEGS * rangeShift 12 USHORT segCountX2 - searchRange * * endCount 14 USHORT[NUM_SEGS] end charcode for each * segment. last is 0xFFFF * * pad 14+NUM_SEGS*2 USHORT padding * * startCount 16+NUM_SEGS*2 USHORT[NUM_SEGS] first charcode for each * segment * * idDelta 16+NUM_SEGS*4 SHORT[NUM_SEGS] delta for each segment * * idOffset 16+NUM_SEGS*6 SHORT[NUM_SEGS] range offset for each * segment. can be 0 * * glyphIds 16+NUM_SEGS*8 USHORT[] array og glyph id ranges * * * Charcodes are modelled by a series of ordered (increasing) intervals * called segments. Each segment has start and end codes, provided by * the 'startCount' and 'endCount' arrays. Segments must not be over-lapping * and the last segment should always contain the '0xFFFF' endCount. * * The fields 'searchRange', 'entrySelector' and 'rangeShift' are better * ignored (they're traces of over-engineering in the TT specification) * * Each segment also has a signed 'delta', as well as an optional offset * within the 'glyphIds' table. * * if a segment's idOffset is 0, then the glyph index corresponding to * any charcode within the segment is obtained by adding the value of * 'idDelta' directly to the charcode, modulo 65536 * * otherwise, a glyph index is taken from the glyph ids sub-array for the * segment, and the value of 'idDelta' is added to it.. */ #ifdef TT_CONFIG_CMAP_FORMAT_4 FT_CALLBACK_DEF void tt_cmap4_validate( FT_Byte* table, FT_Validator valid ) { FT_Byte* p = table + 2; /* skip format */ FT_UInt length = TT_NEXT_USHORT(p); FT_Byte *ends, *starts, *offsets, *deltas, *glyph_ids; FT_UInt n, num_segs; if ( table + length > valid->limit || length < 16 ) TOO_SHORT; p = table + 6; num_segs = TT_NEXT_USHORT(p); /* read segCountX2 */ if ( valid->level >= FT_VALIDATE_PARANOID ) { /* check that we have an even value here */ if ( num_segs & 1 ) INVALID_DATA; } num_segs /= 2; /* check the search parameters - even though we never use them */ /* */ if ( valid->level >= FT_VALIDATE_PARANOID ) { /* check the values of 'searchRange', 'entrySelector', 'rangeShift' */ FT_UInt search_range = TT_NEXT_USHORT(p); FT_UInt entry_selector = TT_NEXT_USHORT(p); FT_UInt range_shift = TT_NEXT_USHORT(p); if ( (search_range | range_shift) & 1 ) /* must be even values */ INVALID_DATA; search_range /= 2; range_shift /= 2; /* 'search range' is the greatest power of 2 that is <= num_segs */ if ( search_range > num_segs || search_range*2 < num_segs || search_range + range_shift != num_segs || search_range != (1 << entry_selector) ) INVALID_DATA; } ends = table + 14; starts = table + 16 + num_segs*2; deltas = starts + num_segs*2; offsets = deltas + num_segs*2; glyph_ids = offsets + num_segs*2; if ( glyph_ids >= table + length ) TOO_SHORT; /* check last segment, its end count must be FFFF */ if ( valid->level >= FT_VALIDATE_PARANOID ) { p = ends + (num_segs-1)*2; if ( TT_PEEK_USHORT(p) != 0xFFFFU ) INVALID_DATA; } /* check that segments are sorted in increasing order and do not overlap */ /* check also the offsets.. */ { FT_UInt start, end, last = 0,offset, n; FT_Int delta; for ( n = 0; n < num_segs; n++ ) { p = starts + n*2; start = TT_PEEK_USHORT(p); p = ends + n*2; end = TT_PEEK_USHORT(p); p = deltas + n*2; delta = TT_PEEK_SHORT(p); p = offsets + n*2; offset = TT_PEEK_USHORT(p); if ( end > start ) INVALID_DATA; if ( n > 0 && start <= last ) INVALID_DATA; if ( offset ) { p += offset; /* start of glyph id array */ /* check that we point within the glyph ids table only */ if ( p < glyph_ids || p + (end - start + 1)*2 > table + length ) INVALID_DATA; /* check glyph indices within the segment range */ if ( valid->level >= FT_VALIDATE_TIGHT ) { FT_UInt index; for ( ; start < end; ) { index = NEXT_USHORT(p); if ( index != 0 ) { index = (FT_UInt)(index + delta) & 0xFFFFU; if ( index >= valid->num_glyphs ) INVALID_GLYPH_ID; } } } } last = end; } } } FT_CALLBACK_DEF FT_UInt tt_cmap4_char_index( TT_CMap cmap, FT_UInt32 char_code ) { FT_Byte* table = cmap->data; FT_UInt result = 0; if ( char_code < 0x10000U ) { FT_Byte* p; FT_UInt start, end, index, num_segs2; FT_Int delta, segment; FT_UInt code = (FT_UInt)char_code; p = table + 6; num_segs2 = TT_PEEK_USHORT(p) & -2; /* be paranoid !! */ p = table + 14; /* ends table */ q = table + 16 + num_segs2; /* starts table */ for ( n = 0; n < num_segs2; n += 2 ) { FT_UInt end = TT_NEXT_USHORT(p); FT_UInt start = TT_NEXT_USHORT(q); if ( code < start ) break; if ( code <= end ) { index = (FT_UInt)( char_code - start ); p = q + num_segs2 - 2; delta = TT_PEEK_SHORT(p); p += num_segs2; offset = TT_PEEK_USHORT(p); if ( offset != 0 ) { p += offset + 2*index; index = TT_PEEK_USHORT(p); } if ( index != 0 ) result = (FT_UInt)( index + delta ) & 0xFFFFU; } } } return result; } FT_CALLBACK_DEF FT_UInt32 tt_cmap4_char_next( TT_CMap cmap, FT_UInt32 char_code, FT_UInt *agindex ) { FT_Byte* table = cmap->data; FT_UInt32 result = 0; FT_UInt gindex = 0; FT_Byte* p; FT_UInt code, num_segs2; ++char_code; if ( char_code >= 0x10000U ) goto Exit; code = (FT_UInt)char_code; p = table + 6; num_segs2 = TT_PEEK_USHORT(p) & -2; /* ensure even-ness */ for (;;) { FT_UInt start, end, index, n; FT_Int delta; p = table + 14; /* ends table */ q = table + 16 + num_segs2; /* starts table */ for ( n = 0; n < num_segs2; n += 2 ) { FT_UInt end = TT_NEXT_USHORT(p); FT_UInt start = TT_NEXT_USHORT(q); if ( code < start ) code = start; if ( code <= end ) { p = q + num_segs2 - 2; delta = TT_PEEK_SHORT(p); p += num_segs2; offset = TT_PEEK_USHORT(p); if ( offset != 0 ) { /* parse the glyph ids array for non-0 index */ p += offset + (code - start)*2; while ( code <= end ) { gindex = TT_NEXT_USHORT(p); if ( gindex != 0 ) { gindex = (FT_UInt)( gindex + delta ) & 0xFFFFU; if ( gindex != 0 ) break; } code++; } } else gindex = (FT_UInt)( code + delta ) & 0xFFFFU; if ( gindex == 0 ) break; result = code; goto Exit; } } /* loop to next trial charcode */ if ( code >= 0xFFFFU ) break; code++; } return result; Exit: if ( agindex ) *agindex = gindex; return result; } FT_CALLBACK_TABLE const TT_CMap_ClassRec tt_cmap4_class_rec = { { sizeof( FT_CMapRec ), (FT_CMap_InitFunc) tt_cmap_init, (FT_CMap_DoneFunc) NULL, (FT_CMap_CharIndexFunc) tt_cmap4_char_index, (FT_CMap_CharNextFunc) tt_cmap4_char_next }, 4, (TT_CMap_ValidateFunc) tt_cmap4_validate }; static TT_CMap_Class tt_cmap4_class = &tt_cmap4_class_rec; #endif /* TT_CONFIG_CMAP_FORMAT_4 */ /************************************************************************/ /************************************************************************/ /***** *****/ /***** FORMAT 6 *****/ /***** *****/ /************************************************************************/ /************************************************************************/ /************************************************************************* * * TABLE OVERVIEW: * --------------- * * NAME OFFSET TYPE DESCRIPTION * * format 0 USHORT must be 4 * length 2 USHORT table length in bytes * language 4 USHORT Mac language code * * first 6 USHORT first segment code * count 8 USHORT segment size in chars * glyphIds 10 USHORT[count] glyph ids * * * A very simplified segment mapping */ #ifdef TT_CONFIG_CMAP_FORMAT_6 FT_CALLBACK_DEF void tt_cmap6_validate( FT_Byte* table, FT_Validator valid ) { FT_Byte* p; FT_UInt length, start, count; if ( table + 10 > valid->limit ) INVALID_TOO_SHORT; p = table + 2; length = TT_NEXT_USHORT(p); p = table + 6; /* skip language */ start = TT_NEXT_USHORT(p); count = TT_NEXT_USHORT(p); if ( table + length > valid->limit || length < 10 + count*2 ) INVALID_TOO_SHORT; /* check glyph indices */ if ( valid->level >= FT_VALIDATE_TIGHT ) { FT_UInt gindex; for ( ; count > 0; count-- ) { gindex = TT_NEXT_USHORT(p); if ( gindex >= valid->num_glyphs ) INVALID_GLYPH_ID; } } } FT_CALLBACK_DEF FT_UInt tt_cmap6_char_index( TT_CMap cmap, FT_UInt32 char_code ) { FT_Byte* table = cmap->data; FT_UInt result = 0; FT_Byte* p = table + 6; FT_UInt start = TT_NEXT_USHORT(p); FT_UInt count = TT_NEXT_USHORT(p); FT_UInt index = (FT_UInt)( char_code - start ); if ( index < count ) { p += 2*index; result = TT_PEEK_USHORT(p); } return result; } FT_CALLBACK_DEF FT_UInt32 tt_cmap6_char_next( TT_CMap cmap, FT_UInt32 char_code, FT_UInt *agindex ) { FT_Byte* table = cmap->data; FT_UInt32 result = 0; FT_UInt gindex = 0; FT_Byte* p = table + 6; FT_UInt start = TT_NEXT_USHORT(p); FT_UInt count = TT_NEXT_USHORT(p); FT_UInt code, index; char_code++; if ( char_code >= 0x10000U ) goto Exit; if ( char_code < start ) char_code = start; index = (FT_UInt)( char_code - start ); p += 2*index; for ( ; index < count; index++ ) { gindex = TT_NEXT_USHORT(p); if ( gindex != 0 ) { result = char_code; break; } char_code++; } Exit: if ( agindex ) *agindex = gindex; return result; } FT_CALLBACK_TABLE const TT_CMap_ClassRec tt_cmap6_class_rec = { { sizeof( FT_CMapRec ), (FT_CMap_InitFunc) tt_cmap_init, (FT_CMap_DoneFunc) NULL, (FT_CMap_CharIndexFunc) tt_cmap6_char_index, (FT_CMap_CharNextFunc) tt_cmap6_char_next }, 6, (TT_CMap_ValidateFunc) tt_cmap6_validate }; FT_LOCAL_DEF( TT_CMap_Class ) tt_cmap6_class = &tt_cmap6_class_rec; #endif /* TT_CONFIG_CMAP_FORMAT_6 */ /************************************************************************/ /************************************************************************/ /***** *****/ /***** FORMAT 8 *****/ /***** *****/ /***** It's hard to completely understand what the OpenType *****/ /***** spec says about this format, but here are my conclusion *****/ /***** *****/ /***** the purpose of this format is to easily map UTF-16 text *****/ /***** to glyph indices. Basically, the 'char_code' must be in *****/ /***** one of the following formats: *****/ /***** *****/ /***** - a 16-bit value that isn't part of the Unicode *****/ /***** Surrogates Area (i.e. U+D800-U+DFFF) *****/ /***** *****/ /***** - a 32-bit value, made of two surrogate values, i.e. *****/ /***** if "char_code = (char_hi << 16) | char_lo", then *****/ /***** both 'char_hi' and 'char_lo' must be in the Surrogates *****/ /***** Area. *****/ /***** *****/ /***** The 'is32' table embedded in the charmap indicates *****/ /***** wether a given 16-bit value is in the surrogates area *****/ /***** or not.. *****/ /***** *****/ /***** so, for any given "char_code", we can assert the following *****/ /***** *****/ /***** if 'char_hi == 0' then we must have 'is32[char_lo] == 0' *****/ /***** *****/ /***** if 'char_hi != 0' then we must have both *****/ /***** 'is32[char_hi] != 0' and 'is32[char_lo] != 0' *****/ /***** *****/ /***** *****/ /************************************************************************/ /************************************************************************/ /************************************************************************* * * TABLE OVERVIEW: * --------------- * * NAME OFFSET TYPE DESCRIPTION * * format 0 USHORT must be 8 * reseved 2 USHORT reserved * length 4 ULONG length in bytes * language 8 ULONG Mac language code * is32 12 BYTE[8192] 32-bitness bitmap * count 8204 ULONG number of groups * * this header is followed by 'count' groups of the following format: * * start 0 ULONG first charcode * end 4 ULONG last charcode * startId 8 ULONG start glyph id for * the group */ #ifdef TT_CONFIG_CMAP_FORMAT_8 FT_CALLBACK_DEF void tt_cmap8_validate( FT_Byte* table, FT_Validator valid ) { FT_Byte* p = table + 4; FT_Byte* is32; FT_UInt32 length; FT_UInt32 num_groups; if ( table + 16 + 8192 > valid->limit ) INVALID_TOO_SHORT; length = TT_NEXT_ULONG(p); if ( table + length > valid->limit || length < 8208 ) INVALID_TOO_SHORT; is32 = table + 12; p = is32 + 8192; /* skip 'is32' array */ num_groups = TT_NEXT_ULONG(p); if ( p + num_groups*12 > valid->limit ) INVALID_TOO_SHORT; /* check groups, they must be in increasing order */ { FT_UInt32 n, start, end, start_id, count, last = 0; for ( n = 0; n < num_groups; n++ ) { FT_Bytes* q; FT_UInt hi, lo; start = TT_NEXT_ULONG(p); end = TT_NEXT_ULONG(p); start_id = TT_NEXT_ULONG(p); if ( start > end ) INVALID_DATA; if ( n > 0 && start <= last ) INVALID_DATA; if ( valid->level >= FT_VALIDATE_TIGHT ) { if ( start_id + end - start >= valid->num_glyphs ) INVALID_GLYPH_ID; count = (FT_UInt32)(end - start + 1); if ( start & ~0xFFFFU ) { /* start_hi != 0, check that is32[i] is 1 for each i in */ /* the 'hi' and 'lo' of the range [start..end] */ for ( ; count > 0; count--, start++ ) { hi = (FT_UInt)(start >> 16); lo = (FT_UInt)(start & 0xFFFFU); if ( is32[ hi >> 3 ] & (0x80 >> (hi & 7)) == 0 ) INVALID_DATA; if ( is32[ lo >> 3 ] & (0x80 >> (lo & 7)) == 0 ) INVALID_DATA; } } else { /* start_hi == 0, check that is32[i] is 0 for each i in */ /* the range [start..end] */ /* end_hi cannot be != 0 !! */ if ( end & ~0xFFFFU ) INVALID_DATA; for ( ; count > 0; count--, start++ ) { lo = (FT_UInt)(start & 0xFFFFU); if ( is32[ lo >> 3 ] & (0x80 >> (lo & 7)) != 0 ) INVALID_DATA; } } } last = end; } } } FT_CALLBACK_DEF FT_UInt tt_cmap8_char_index( TT_CMap cmap, FT_UInt32 char_code ) { FT_Byte* table = cmap->data; FT_UInt result = 0; FT_Byte* p = table + 8204; FT_UInt32 num_groups = TT_NEXT_ULONG(p); FT_UInt32 n, start, end, start_id; for ( ; num_groups > 0; num_groups-- ) { start = TT_NEXT_ULONG(p); end = TT_NEXT_ULONG(p); start_id = TT_NEXT_ULONG(p); if ( char_code < start ) break; if ( char_code <= end ) { result = start_id + char_code - start; break; } } return result; } FT_CALLBACK_DEF FT_UInt32 tt_cmap8_char_next( TT_CMap cmap, FT_UInt32 char_code, FT_UInt *agindex ) { FT_UInt32 result = 0; FT_UInt gindex = 0; FT_Byte* p = table + 8204; FT_UInt32 num_groups = TT_NEXT_ULONG(p); FT_UInt32 n, start, end, start_id; ++char_code; p = table + 8208; for ( n = 0; n < num_groups++; n++ ) { start = TT_NEXT_ULONG(p); end = TT_NEXT_ULONG(p); start_id = TT_NEXT_ULONG(p); if ( char_code < start ) char_code = start; if ( char_code <= end ) { gindex = (FT_UInt)(char_code - start + start_id); if ( gindex != 0 ) { result = char_code; goto Exit; } } } Exit: if ( agindex ) *agindex = gindex; return result; } FT_CALLBACK_TABLE const TT_CMap_ClassRec tt_cmap8_class_rec = { { sizeof( FT_CMapRec ), (FT_CMap_InitFunc) tt_cmap_init, (FT_CMap_DoneFunc) NULL, (FT_CMap_CharIndexFunc) tt_cmap8_char_index, (FT_CMap_CharNextFunc) tt_cmap8_char_next }, 8, (TT_CMap_ValidateFunc) tt_cmap8_validate }; FT_LOCAL_DEF( TT_CMap_Class ) tt_cmap8_class = &tt_cmap8_class_rec; #endif /* TT_CONFIG_CMAP_FORMAT_8 */ /************************************************************************/ /************************************************************************/ /***** *****/ /***** FORMAT 10 *****/ /***** *****/ /************************************************************************/ /************************************************************************/ /************************************************************************* * * TABLE OVERVIEW: * --------------- * * NAME OFFSET TYPE DESCRIPTION * * format 0 USHORT must be 10 * reseved 2 USHORT reserved * length 4 ULONG length in bytes * language 8 ULONG Mac language code * * start 12 ULONG first char in range * count 16 ULONG number of chars in range * glyphIds 20 USHORT[count] glyph indices covered */ #ifdef TT_CONFIG_CMAP_FORMAT_10 FT_CALLBACK_DEF void tt_cmap10_validate( FT_Byte* table, FT_Validator valid ) { FT_Byte* p = table + 4; FT_ULong length, start, count; if ( table + 20 > valid->limit ) INVALID_TOO_SHORT; length = TT_NEXT_ULONG(p); p = table + 12; start = TT_NEXT_ULONG(p); count = TT_NEXT_ULONG(p); if ( table + length > valid->limit || length < 20 + count*2 ) INVALID_TOO_SHORT; /* check glyph indices */ if ( valid->level >= FT_VALIDATE_TIGHT ) { FT_UInt gindex; for ( ; count > 0; count-- ) { gindex = TT_NEXT_USHORT(p); if ( gindex >= valid->num_glyphs ) INVALID_GLYPH_ID; } } } FT_CALLBACK_DEF FT_UInt tt_cmap10_char_index( TT_CMap cmap, FT_UInt32 char_code ) { FT_Byte* table = cmap->data; FT_UInt result = 0; FT_Byte* p = table + 12; FT_UInt32 start = TT_NEXT_ULONG(p); FT_UInt32 count = TT_NEXT_ULONG(p); FT_UInt32 index = (FT_ULong)( char_code - start ); if ( index < count ) { p += 2*index; result = TT_PEEK_USHORT(p); } return result; } FT_CALLBACK_DEF FT_UInt32 tt_cmap10_char_next( TT_CMap cmap, FT_UInt32 char_code, FT_UInt *agindex ) { FT_Byte* table = cmap->data; FT_UInt32 result = 0; FT_UInt gindex = 0; FT_Byte* p = table + 12; FT_UInt32 start = TT_NEXT_ULONG(p); FT_UInt32 count = TT_NEXT_ULONG(p); FT_UInt32 index; char_code++; if ( char_code < start ) char_code = start; index = (FT_UInt32)( char_code - start ); p += 2*index; for ( ; index < count; index++ ) { gindex = TT_NEXT_USHORT(p); if ( gindex != 0 ) { result = char_code; break; } char_code++; } Exit: if ( agindex ) *agindex = gindex; return result; } FT_CALLBACK_TABLE const TT_CMap_ClassRec tt_cmap10_class_rec = { { sizeof( FT_CMapRec ), (FT_CMap_InitFunc) tt_cmap_init, (FT_CMap_DoneFunc) NULL, (FT_CMap_CharIndexFunc) tt_cmap10_char_index, (FT_CMap_CharNextFunc) tt_cmap10_char_next }, 10, (TT_CMap_ValidateFunc) tt_cmap10_validate }; FT_LOCAL_DEF( TT_CMap_Class ) tt_cmap10_class = &tt_cmap10_class_rec; #endif /* TT_CONFIG_CMAP_FORMAT_10 */ /************************************************************************/ /************************************************************************/ /***** *****/ /***** FORMAT 12 *****/ /***** *****/ /************************************************************************/ /************************************************************************/ /************************************************************************* * * TABLE OVERVIEW: * --------------- * * NAME OFFSET TYPE DESCRIPTION * * format 0 USHORT must be 12 * reseved 2 USHORT reserved * length 4 ULONG length in bytes * language 8 ULONG Mac language code * count 12 ULONG number of groups * 16 * * this header is followed by 'count' groups of the following format: * * start 0 ULONG first charcode * end 4 ULONG last charcode * startId 8 ULONG start glyph id for * the group */ #ifdef TT_CONFIG_CMAP_FORMAT_12 FT_CALLBACK_DEF void tt_cmap12_validate( FT_Byte* table, FT_Validator valid ) { FT_Byte* p; FT_ULong length; FT_ULong num_groups; if ( table + 16 > valid->limit ) INVALID_TOO_SHORT; p = table + 4; length = TT_NEXT_ULONG(p); p = table + 12; num_groups = TT_NEXT_ULONG(p); if ( table + length > valid->limit || length < 16 + 12*num_groups ) INVALID_TOO_SHORT; /* check groups, they must be in increasing order */ { FT_ULong n, start, end, start_id, count, last = 0; for ( n = 0; n < num_groups; n++ ) { FT_Bytes* q; FT_UInt hi, lo; start = TT_NEXT_ULONG(p); end = TT_NEXT_ULONG(p); start_id = TT_NEXT_ULONG(p); if ( start > end ) INVALID_DATA; if ( n > 0 && start <= last ) INVALID_DATA; if ( valid->level >= FT_VALIDATE_TIGHT ) { if ( start_id + end - start >= valid->num_glyphs ) INVALID_GLYPH_ID; } last = end; } } } FT_CALLBACK_DEF FT_UInt tt_cmap12_char_index( TT_CMap cmap, FT_UInt32 char_code ) { FT_UInt result = 0; FT_Byte* p = table + 12; FT_UInt32 num_groups = TT_NEXT_ULONG(p); FT_UInt32 n, start, end, start_id; for ( ; num_groups > 0; num_groups-- ) { start = TT_NEXT_ULONG(p); end = TT_NEXT_ULONG(p); start_id = TT_NEXT_ULONG(p); if ( char_code < start ) break; if ( char_code <= end ) { result = start_id + char_code - start; break; } } return result; } FT_CALLBACK_DEF FT_UInt32 tt_cmap12_char_next( TT_CMap cmap, FT_UInt32 char_code, FT_UInt *agindex ) { FT_Byte* table = cmap->data; FT_UInt32 result = 0; FT_UInt gindex = 0; FT_Byte* p = table + 12; FT_UInt32 num_groups = TT_NEXT_ULONG(p); FT_UInt32 n, start, end, start_id; ++char_code; p = table + 8208; for ( n = 0; n < num_groups++; n++ ) { start = TT_NEXT_ULONG(p); end = TT_NEXT_ULONG(p); start_id = TT_NEXT_ULONG(p); if ( char_code < start ) char_code = start; if ( char_code <= end ) { gindex = (FT_UInt)(char_code - start + start_id); if ( gindex != 0 ) { result = char_code; goto Exit; } } } Exit: if ( agindex ) *agindex = gindex; return result; } FT_CALLBACK_TABLE const TT_CMap_ClassRec tt_cmap12_class_rec = { { sizeof( FT_CMapRec ), (FT_CMap_InitFunc) tt_cmap_init, (FT_CMap_DoneFunc) NULL, (FT_CMap_CharIndexFunc) tt_cmap12_char_index, (FT_CMap_CharNextFunc) tt_cmap12_char_next }, 12, (TT_CMap_ValidateFunc) tt_cmap12_validate }; FT_LOCAL_DEF( TT_CMap_Class ) tt_cmap12_class = &tt_cmap12_class_rec; #endif /* TT_CONFIG_CMAP_FORMAT_12 */ static TT_CMap_Class tt_cmap_classes[] = { #ifdef TT_CONFIG_CMAP_FORMAT_0 tt_cmap0_class, #endif #ifdef TT_CONFIG_CMAP_FORMAT_2 tt_cmap2_class, #endif #ifdef TT_CONFIG_CMAP_FORMAT_4 tt_cmap4_class, #endif #ifdef TT_CONFIG_CMAP_FORMAT_6 tt_cmap6_class, #endif #ifdef TT_CONFIG_CMAP_FORMAT_8 tt_cmap8_class, #endif #ifdef TT_CONFIG_CMAP_FORMAT_10 tt_cmap10_class, #endif #ifdef TT_CONFIG_CMAP_FORMAT_12 tt_cmap12_class, #endif NULL, }; /* parse the 'cmap' table and build the corresponding TT_CMap objects */ /* in the current face.. */ /* */ FT_LOCAL_DEF( FT_Error ) TT_Build_CMaps( TT_Face face ) { TT_CMap_Class clazz; FT_ValidatorRec valid; FT_UInt num_cmaps; FT_Byte* table = face->cmap_table; FT_Byte* limit = table + face->cmap_size; FT_Byte* p = table; FT_UInt format; if ( p + 4 < limit ) return FT_Err_Invalid_Table; /* only recognize format 0 */ if ( NEXT_UShort(p) != 0 ) return FT_Err_Invalid_Table; num_cmaps = NEXT_UShort(p); for ( ; num_cmaps > 0 && p + 8 <= limit; num_cmaps-- ) { FT_CharMapRec charmap; FT_UInt32 offset; charmap.platform_id = NEXT_UShort(p); charmap.encoding_id = NEXT_UShort(p); offset = NEXT_ULong(p); if ( offset && table + offset + 2 < limit ) { FT_Byte* cmap = table + offset; FT_UInt format = PEEK_UShort(cmap); TT_CMap_Class* pclazz = tt_cmap_classes; TT_CMap_Class clazz; for ( ; *pclazz; pclazz++ ) { clazz = *pclazz; if ( clazz->format == format ) { volatile FT_Validator valid; ft_validator_init( &valid, cmap, limit, FT_VALIDATE_LEVEL_DEFAULT ); if ( setjmp( valid.jump_buffer ) == 0 ) clazz->validate( cmap, &valid ); if ( valid.error == 0 ) (void)FT_CMap_New( clazz, cmap, face, NULL ); else FT_ERROR(( "TT_Build_CMaps: broken cmap sub-table ignored !!\n" )); } } } } return 0; } /* END */