ref: 6afe00774a82c60ea90dc1abefb2b5efd2f53e94
dir: /src/type1/t1hinter.c/
/******************************************************************* * * t1hinter.c 1.2 * * Type1 hinter. * * Copyright 1996-1999 by * David Turner, Robert Wilhelm, and Werner Lemberg. * * This file is part of the FreeType project, and may only be used * modified and distributed under the terms of the FreeType project * license, LICENSE.TXT. By continuing to use, modify, or distribute * this file you indicate that you have read the license and * understand and accept it fully. * * * The Hinter is in charge of fitting th scaled outline to the * pixel grid in order to considerably improve the quality of * the Type 1 font driver's output.. * ******************************************************************/ #include <ftdebug.h> #include <t1objs.h> #include <t1hinter.h> #undef FT_COMPONENT #define FT_COMPONENT trace_t1hint /* for debugging/tracing */ #undef ONE_PIXEL #define ONE_PIXEL 64 #undef ROUND #define ROUND(x) (( x + ONE_PIXEL/2 ) & -ONE_PIXEL) #undef SCALE #define SCALE(val) FT_MulFix( val, scale ) /* various constants used to describe the alignment of a horizontal */ /* stem with regards to the blue zones */ #define T1_ALIGN_NONE 0 #define T1_ALIGN_BOTTOM 1 #define T1_ALIGN_TOP 2 #define T1_ALIGN_BOTH 3 /************************************************************************ * * <Function> * t1_set_blue_zones * * <Description> * Set a size object's blue zones during reset. This will compute * the "snap" zone corresponding to each blue zone. * * <Input> * size :: handle to target size object * * <Return> * Error code. 0 means success * * <Note> * This functions does the following : * * 1. It extracts the bottom and top blue zones from the * face object. * * 2. Each zone is then grown by BlueFuzz, overlapping * is eliminated by adjusting the zone edges appropriately * * 3. For each zone, we keep its original font units position, its * original scaled position, as well as its grown/adjusted * edges. * ************************************************************************/ /* ultra simple bubble sort (not a lot of elements, mostly */ /* pre-sorted, no need for quicksort) */ static void t1_sort_blues( T1_Int* blues, T1_Int count ) { T1_Int i, swap; T1_Int* cur; for ( i = 2; i < count; i += 2 ) { cur = blues + i; do { if ( cur[-1] < cur[0] ) break; swap = cur[-2]; cur[-2] = cur[0]; cur[0] = swap; swap = cur[-1]; cur[-1] = cur[1]; cur[1] = swap; cur -= 2; } while ( cur > blues ); } } static T1_Error t1_set_blue_zones( T1_Size size ) { T1_Face face = (T1_Face)size->root.face; T1_Private* priv = &face->private_dict; T1_Int n; T1_Int blues[24]; T1_Int num_bottom; T1_Int num_top; T1_Int num_blues; T1_Size_Hints* hints = size->hints; T1_Snap_Zone* zone; T1_Pos pix, orus; T1_Pos min, max, threshold; T1_Fixed scale; T1_Bool is_bottom; /**********************************************************************/ /* */ /* COPY BOTTOM AND TOP BLUE ZONES IN LOCAL ARRAYS */ /* */ /* */ /* First of all, check the sizes of the /BlueValues and /OtherBlues */ /* tables. They all must contain an even number of arguments */ if ( priv->num_other_blues & 1 || priv->num_blues & 1 ) { FT_ERROR(( "T1.Copy_Blues : odd number of blue values\n" )); return T1_Err_Syntax_Error; } /* copy the bottom blue zones from /OtherBlues */ num_top = 0; num_bottom = priv->num_other_blues; for ( n = 0; n < num_bottom; n ++ ) blues[n] = priv->other_blues[n]; /* Add the first blue zone in /BlueValues to the table */ num_top = priv->num_blues - 2; if ( num_top >= 0 ) { blues[ num_bottom ] = priv->blue_values[0]; blues[num_bottom+1] = priv->blue_values[1]; num_bottom += 2; } /* sort the bottom blue zones */ t1_sort_blues( blues, num_bottom ); hints->num_bottom_zones = num_bottom >> 1; /* now copy the /BlueValues to the top of the blues array */ if ( num_top > 0 ) { for ( n = 0; n < num_top; n++ ) blues[ num_bottom+n ] = priv->blue_values[n+2]; /* sort the top blue zones */ t1_sort_blues( blues + num_bottom, num_top ); } else num_top = 0; num_blues = num_top + num_bottom; hints->num_blue_zones = ( num_blues ) >> 1; /**********************************************************************/ /* */ /* BUILD BLUE SNAP ZONES FROM THE LOCAL BLUES ARRAYS */ /* */ /* */ scale = size->root.metrics.y_scale; zone = hints->blue_zones; threshold = ONE_PIXEL/4; /* 0.25 pixels */ for ( n = 0; n < num_blues; n += 2, zone ++ ) { is_bottom = ( n < num_bottom ? 1 : 0 ); orus = blues[n+is_bottom]; /* get alignement coordinate */ pix = SCALE( orus ); /* scale it */ min = SCALE( blues[ n ] - priv->blue_fuzz ); max = SCALE( blues[n+1] + priv->blue_fuzz ); if ( min > pix - threshold ) min = pix - threshold; if ( max < pix + threshold ) max = pix + threshold; zone->orus = orus; zone->pix = pix; zone->min = min; zone->max = max; } /* adjust edges in case of overlap */ zone = hints->blue_zones; for ( n = 0; n < num_blues-2; n += 2, zone ++ ) { if ( n != num_bottom-2 && zone[0].max > zone[1].min ) { zone[0].max = zone[1].min = (zone[0].pix+zone[1].pix)/2; } } /* Compare the current pixel size with the BlueScale value */ /* to know wether to supress overshoots.. */ hints->supress_overshoots = ( size->root.metrics.y_ppem < FT_MulFix(1000,priv->blue_scale) ); /* Now print the new blue values in tracing mode */ #ifdef FT_DEBUG_LEVEL_TRACE FT_TRACE2(( "Blue Zones for size object at $%08lx :\n", (long)size )); FT_TRACE2(( " orus pix min max\n" )); FT_TRACE2(( "-------------------------------\n" )); zone = hints->blue_zones; for ( n = 0; n < hints->num_blue_zones; n++ ) { FT_TRACE2(( " %3d %.2f %.2f %.2f\n", zone->orus, zone->pix/64.0, zone->min/64.0, zone->max/64.0 )); zone++; } FT_TRACE2(( "\nOver shoots are %s\n\n", hints->supress_overshoots ? "supressed" : "active" )); #endif /* DEBUG_LEVEL_TRACE */ return T1_Err_Ok; } /************************************************************************ * * <Function> * t1_set_snap_zones * * <Description> * This function set a size object's stem snap zones. * * <Input> * size :: handle to target size object * * <Return> * Error code. 0 means success * * <Note> * This function performs the following : * * 1. It reads and scales the stem snap widths from the parent face * * 2. A "snap zone" is computed for each snap width, by "growing" * it with a threshold of a 1/2 pixel. Overlapping is avoided * through proper edge adjustment. * * 3. Each width whose zone contain the scaled standard set width * is removed from the table * * 4. Finally, the standard set width is scaled, and its correponding * "snap zone" is inserted into the sorted snap zones table * ************************************************************************/ static T1_Error t1_set_snap_zones( T1_Size size ) { T1_Int n, direction, n_zones, num_zones; T1_Snap_Zone* zone; T1_Snap_Zone* base_zone; T1_Short* orgs; T1_Pos standard_width; T1_Fixed scale; T1_Face face = (T1_Face)size->root.face; T1_Private* priv = &face->private_dict; T1_Size_Hints* hints = size->hints; /* start with horizontal snap zones */ direction = 0; standard_width = priv->standard_width; n_zones = priv->num_snap_widths; base_zone = hints->snap_widths; orgs = priv->stem_snap_widths; scale = size->root.metrics.x_scale; while (direction < 2) { /*****************************************************************/ /* */ /* Read and scale stem snap widths table from the physical */ /* font record. */ /* */ T1_Pos prev, orus, pix, min, max, threshold; threshold = ONE_PIXEL/4; zone = base_zone; if ( n_zones > 0 ) { orus = *orgs++; pix = SCALE( orus ); min = pix-threshold; max = pix+threshold; zone->orus = orus; zone->pix = pix; zone->min = min; prev = pix; for ( n = 1; n < n_zones; n++ ) { orus = *orgs++; pix = SCALE( orus ); if ( pix-prev < 2*threshold ) { min = max = (pix+prev)/2; } else min = pix-threshold; zone->max = max; zone++; zone->orus = orus; zone->pix = pix; zone->min = min; max = pix+threshold; prev = pix; } zone->max = max; } /* print the scaled stem snap values in tracing modes */ #ifdef FT_DEBUG_LEVEL_TRACE FT_TRACE2(( "Set_Snap_Zones : first %s pass\n", direction ? "vertical" : "horizontal" )); FT_TRACE2(( "Scaled original stem snap zones :\n" )); FT_TRACE2(( " orus pix min max\n" )); FT_TRACE2(( "-----------------------------\n" )); zone = base_zone; for ( n = 0; n < n_zones; n++, zone++ ) FT_TRACE2(( " %3d %.2f %.2f %.2f\n", zone->orus, zone->pix/64.0, zone->min/64.0, zone->max/64.0 )); FT_TRACE2(( "\n" )); FT_TRACE2(( "Standard width = %d\n", standard_width )); #endif /*****************************************************************/ /* */ /* Now, each snap width which is in the range of the standard */ /* set width will be removed from the list.. */ /* */ if ( standard_width > 0 ) { T1_Snap_Zone* parent; T1_Pos std_pix, std_min, std_max; std_pix = SCALE( standard_width ); std_min = std_pix-threshold; std_max = std_pix+threshold; num_zones = 0; zone = base_zone; parent = base_zone; for ( n = 0; n < n_zones; n++ ) { if ( zone->pix >= std_min && zone->pix <= std_max ) { /* this zone must be removed from the list */ if ( std_min > zone->min ) std_min = zone->min; if ( std_max < zone->max ) std_max = zone->max; } else { *parent++ = *zone; num_zones++; } zone++; } /**********************************************/ /* Now, insert the standard width zone */ zone = base_zone+num_zones; while ( zone > base_zone && zone[-1].pix > std_max ) { zone[0] = zone[-1]; zone --; } /* check border zones */ if ( zone > base_zone && zone[-1].max > std_min ) zone[-1].max = std_min; if ( zone < base_zone+num_zones && zone[1].min < std_max ) zone[1].min = std_max; zone->orus = standard_width; zone->pix = std_pix; zone->min = std_min; zone->max = std_max; num_zones++; } else num_zones = n_zones; /* save total number of stem snaps now */ if (direction) hints->num_snap_heights = num_zones; else hints->num_snap_widths = num_zones; /* print the scaled stem snap values in tracing modes */ #ifdef FT_DEBUG_LEVEL_TRACE FT_TRACE2(( "Set_Snap_Zones : second %s pass\n", direction ? "vertical" : "horizontal" )); FT_TRACE2(( "Scaled clipped stem snap zones :\n" )); FT_TRACE2(( " orus pix min max\n" )); FT_TRACE2(( "-----------------------------\n" )); zone = base_zone; for ( n = 0; n < num_zones; n++, zone++ ) FT_TRACE2(( " %3d %.2f %.2f %.2f\n", zone->orus, zone->pix/64.0, zone->min/64.0, zone->max/64.0 )); FT_TRACE2(( "\n" )); FT_TRACE2(( "Standard width = %d\n", standard_width )); #endif /* continue with vertical snap zone */ direction++; standard_width = priv->standard_height; n_zones = priv->num_snap_heights; base_zone = hints->snap_heights; orgs = priv->stem_snap_heights; scale = size->root.metrics.y_scale; } return T1_Err_Ok; } /************************************************************************ * * <Function> * T1_New_Size_Hinter * * <Description> * Allocates a new hinter structure for a given size object * * <Input> * size :: handle to target size object * * <Return> * Error code. 0 means success * ************************************************************************/ LOCAL_FUNC T1_Error T1_New_Size_Hinter( T1_Size size ) { FT_Memory memory = size->root.face->memory; return MEM_Alloc( size->hints, sizeof(*size->hints) ); } /************************************************************************ * * <Function> * T1_Done_Size_Hinter * * <Description> * Releases a given size object's hinter structure * * <Input> * size :: handle to target size object * ************************************************************************/ LOCAL_FUNC void T1_Done_Size_Hinter( T1_Size size ) { FT_Memory memory = size->root.face->memory; FREE( size->hints ); } /************************************************************************ * * <Function> * T1_Reset_Size_Hinter * * <Description> * Recomputes hinting information when a given size object has * changed its resolutions/char sizes/pixel sizes * * <Input> * size :: handle to size object * * <Return> * Error code. 0 means success * ************************************************************************/ LOCAL_FUNC T1_Error T1_Reset_Size_Hinter( T1_Size size ) { return t1_set_blue_zones(size) || t1_set_snap_zones(size); } /************************************************************************ * * <Function> * T1_New_Glyph_Hinter * * <Description> * Allocates a new hinter structure for a given glyph slot * * <Input> * glyph :: handle to target glyph slot * * <Return> * Error code. 0 means success * ************************************************************************/ LOCAL_FUNC T1_Error T1_New_Glyph_Hinter( T1_GlyphSlot glyph ) { FT_Memory memory = glyph->root.face->memory; return MEM_Alloc( glyph->hints, sizeof(*glyph->hints) ); } /************************************************************************ * * <Function> * T1_Done_Glyph_Hinter * * <Description> * Releases a given glyph slot's hinter structure * * <Input> * glyph :: handle to glyph slot * ************************************************************************/ LOCAL_FUNC void T1_Done_Glyph_Hinter( T1_GlyphSlot glyph ) { FT_Memory memory = glyph->root.face->memory; FREE( glyph->hints ); } /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ /********** *********/ /********** *********/ /********** HINTED GLYPH LOADER *********/ /********** *********/ /********** The following code is in charge of the first *********/ /********** and second pass when loading a single outline *********/ /********** *********/ /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ static T1_Error t1_hinter_ignore( void ) { /* do nothing, used for "dotsection" which is unsupported for now */ return 0; } static T1_Error t1_hinter_stem( T1_Builder* builder, T1_Pos pos, T1_Int width, T1_Bool vertical ) { T1_Stem_Table* stem_table; T1_Stem_Hint* stems; T1_Stem_Hint* cur_stem; T1_Int min, max, n, num_stems; T1_Bool new_stem; T1_Glyph_Hints* hinter = builder->glyph->hints; /* select the appropriate stem array */ stem_table = vertical ? &hinter->vert_stems : &hinter->hori_stems; stems = stem_table->stems; num_stems = stem_table->num_stems; /* Compute minimum and maximum orus for the stem */ min = pos + ( vertical ? builder->left_bearing.x : builder->left_bearing.y ); if ( width >= 0 ) max = min + width; else { /* a negative width indicates a ghost stem */ if ( width == -21 ) min += width; max = min; } /* now scan the array. If we find a stem with the same borders */ /* simply activate it.. */ cur_stem = stems; new_stem = 1; for ( n = 0; n < num_stems; n++, cur_stem++ ) { if ( cur_stem->min_edge.orus == min && cur_stem->max_edge.orus == max ) { /* This stem is already in the table, simply activate it */ if ( (cur_stem->hint_flags & T1_HINT_FLAG_ACTIVE) == 0) { cur_stem->hint_flags |= T1_HINT_FLAG_ACTIVE; stem_table->num_active ++; } new_stem = 0; break; } } /* add a new stem to the array when necessary */ if (new_stem) { if (cur_stem >= stems + T1_HINTER_MAX_EDGES) { FT_ERROR(( "T1.Hinter : too many stems in glyph charstring\n" )); return T1_Err_Syntax_Error; } /* on the first pass, we record the stem, otherwise, this is */ /* a bug in the glyph loader !! */ if ( builder->pass == 0 ) { cur_stem->min_edge.orus = min; cur_stem->max_edge.orus = max; cur_stem->hint_flags = T1_HINT_FLAG_ACTIVE; stem_table->num_stems++; stem_table->num_active++; } else { FT_ERROR(( "T1.Hinter : fatal glyph loader bug - pass2-stem\n" )); return T1_Err_Syntax_Error; } } return T1_Err_Ok; } static T1_Error t1_hinter_stem3( T1_Builder* builder, T1_Pos pos0, T1_Int width0, T1_Pos pos1, T1_Int width1, T1_Pos pos2, T1_Int width2, T1_Bool vertical ) { /* For now, don't be elitist and simply call "stem" 3 times */ return t1_hinter_stem( builder, pos0, width0, vertical ) || t1_hinter_stem( builder, pos1, width1, vertical ) || t1_hinter_stem( builder, pos2, width2, vertical ); } static T1_Error t1_hinter_changehints( T1_Builder* builder ) { T1_Int dimension; T1_Stem_Table* stem_table; T1_Glyph_Hints* hinter = builder->glyph->hints; /* if we're in the second pass of glyph hinting, we must */ /* call the function T1_Hint_Points on the builder in order */ /* to force the fit the latest points to the pixel grid */ if ( builder->pass == 1 ) T1_Hint_Points( builder ); /* Simply de-activate all hints in all arrays */ stem_table = &hinter->hori_stems; for ( dimension = 2; dimension > 0; dimension-- ) { T1_Stem_Hint* cur = stem_table->stems; T1_Stem_Hint* limit = cur + stem_table->num_stems; for ( ; cur < limit; cur++ ) cur->hint_flags &= ~T1_HINT_FLAG_ACTIVE; stem_table->num_active = 0; stem_table = &hinter->vert_stems; } return T1_Err_Ok; } LOCAL_FUNC const T1_Hinter_Funcs t1_hinter_funcs = { (T1_Hinter_ChangeHints) t1_hinter_changehints, (T1_Hinter_DotSection) t1_hinter_ignore, (T1_Hinter_Stem) t1_hinter_stem, (T1_Hinter_Stem3) t1_hinter_stem3 }; /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ /********** *********/ /********** *********/ /********** STEM HINTS MANAGEMENT *********/ /********** *********/ /********** The following code is in charge of computing *********/ /********** the placement of each scaled stem hint.. *********/ /********** *********/ /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ /************************************************************************ * * <Function> * t1_sort_hints * * <Description> * Sort the list of active stems in increasing order, through * the "sort" indexing table * * <Input> * table :: a stem hints table * ************************************************************************/ static void t1_sort_hints( T1_Stem_Table* table ) { T1_Int num_stems = table->num_stems; T1_Int num_active = 0; T1_Int* sort = table->sort; T1_Stem_Hint* stems = table->stems; T1_Int n; /* record active stems in sort table */ for ( n = 0; n < num_stems; n++ ) { if ( stems[n].hint_flags & T1_HINT_FLAG_ACTIVE ) sort[num_active++] = n; } /* now sort the indices. There are usually very few stems, */ /* and they are pre-sorted in 90% cases, so we choose a */ /* simple bubble sort (quicksort would be slower).. */ for ( n = 1; n < num_active; n++ ) { T1_Int p = n-1; T1_Stem_Hint* cur = stems + sort[n]; do { T1_Int swap; T1_Stem_Hint* prev = stems + sort[p]; /* note that by definition, the active stems cannot overlap */ /* so we simply compare their "min" to sort them.. */ /* (we could compare their max, this wouldn't change anything) */ if ( prev->min_edge.orus <= cur->min_edge.orus ) break; /* swap elements */ swap = sort[ p ]; sort[ p ] = sort[p+1]; sort[p+1] = swap; p--; } while ( p >= 0 ); } table->num_active = num_active; } /************************************************************************ * * <Function> * t1_hint_horizontal_stems * * <Description> * Compute the location of each scaled horizontal stem hint. * This takes care of the blue zones and the horizontal stem * snap table * * <Input> * table :: the horizontal stem hints table * hints :: the current size's hint structure * blueShift :: the value of the /BlueShift as taken from the * face object. * scale :: the 16.16 scale used to convert outline * units to 26.6 pixels * * <Note> * For now, all stems are hinted independently from each other. * It might be necessary, for better performance, to introduce * the notion of "controlled" hints describing things like * counter-stems, stem3 as well as overlapping stems control. * ************************************************************************/ static void t1_hint_horizontal_stems( T1_Stem_Table* table, T1_Size_Hints* hints, T1_Pos blueShift, T1_Fixed scale ) { T1_Stem_Hint* stem = table->stems; T1_Stem_Hint* limit = stem + table->num_stems; /* first of all, scale the blueShift */ blueShift = SCALE(blueShift); /* then scan the horizontal stem table */ for ( ; stem < limit; stem++ ) { T1_Pos bottom_orus = stem->min_edge.orus; T1_Pos top_orus = stem->max_edge.orus; T1_Pos top_pix = SCALE( top_orus ); T1_Pos bottom_pix = SCALE( bottom_orus ); T1_Pos width_pix = top_pix - bottom_pix; T1_Pos bottom = bottom_pix; T1_Pos top = top_pix; T1_Int align = T1_ALIGN_NONE; /******************************************************************/ /* Snap pixel width if in stem snap range */ { T1_Snap_Zone* zone = hints->snap_heights; T1_Snap_Zone* zone_limit = zone + hints->num_snap_heights; for ( ; zone < zone_limit; zone++ ) { if ( width_pix < zone->min ) break; if ( width_pix <= zone->max ) { width_pix = zone->pix; break; } } } /******************************************************************/ /* round width - minimum 1 pixel if this isn't a ghost stem */ if ( width_pix > 0 ) width_pix = ( width_pix < ONE_PIXEL ? ONE_PIXEL : ROUND(width_pix) ); /******************************************************************/ /* Now check for bottom blue zones alignement */ { T1_Int num_blues = hints->num_bottom_zones; T1_Snap_Zone* blue = hints->blue_zones; T1_Snap_Zone* blue_limit = blue + num_blues; for ( ; blue < blue_limit; blue++ ) { if ( bottom_pix < blue->min ) break; if ( bottom_pix <= blue->max ) { align = T1_ALIGN_BOTTOM; bottom = ROUND( blue->pix ); /* implements blue shift */ if (!hints->supress_overshoots) { T1_Pos delta = blue->pix - bottom_pix; delta = ( delta < blueShift ? 0 : ROUND( delta ) ); bottom -= delta; } } } } /******************************************************************/ /* Check for top blue zones alignement */ { T1_Int num_blues = hints->num_blue_zones - hints->num_bottom_zones; T1_Snap_Zone* blue = hints->blue_zones + hints->num_bottom_zones; T1_Snap_Zone* blue_limit = blue + num_blues; for ( ; blue < blue_limit; blue++ ) { if ( top_pix < blue->min ) break; if ( top_pix <= blue->max ) { align |= T1_ALIGN_TOP; top = ROUND( blue->pix ); /* implements blue shift */ if (!hints->supress_overshoots) { T1_Pos delta = top - blue->pix; delta = ( delta < blueShift ? 0 : ROUND( delta ) ); top += delta; } } } } /******************************************************************/ /* compute the hinted stem position, according to its alignment */ switch (align) { case T1_ALIGN_BOTTOM: /* bottom zone alignement */ bottom_pix = bottom; top_pix = bottom + width_pix; break; case T1_ALIGN_TOP: /* top zone alignement */ top_pix = top; bottom_pix = top - width_pix; break; case T1_ALIGN_BOTH: /* bottom+top zone alignement */ bottom_pix = bottom; top_pix = top; break; default: /* no alignement */ /* XXXX : TODO : Add management of controlled stems */ bottom = ( SCALE(bottom_orus+top_orus) - width_pix )/2; bottom_pix = ROUND(bottom); top_pix = bottom_pix + width_pix; } stem->min_edge.pix = bottom_pix; stem->max_edge.pix = top_pix; } } /************************************************************************ * * <Function> * t1_hint_vertical_stems * * <Description> * Compute the location of each scaled vertical stem hint. * This takes care of the vertical stem snap table * * <Input> * table :: the vertical stem hints table * hints :: the current size's hint structure * scale :: the 16.16 scale used to convert outline * units to 26.6 pixels * * <Note> * For now, all stems are hinted independently from each other. * It might be necessary, for better performance, to introduce * the notion of "controlled" hints describing things like * counter-stems, stem3 as well as overlapping stems control. * ************************************************************************/ /* compute the location of each scaled vertical stem hint. */ /* Take care of blue zones and stem snap table */ static void t1_hint_vertical_stems( T1_Stem_Table* table, T1_Size_Hints* hints, T1_Fixed scale ) { T1_Stem_Hint* stem = table->stems; T1_Stem_Hint* limit = stem + table->num_stems; for ( ; stem < limit; stem++ ) { T1_Pos stem_left = stem->min_edge.orus; T1_Pos stem_right = stem->max_edge.orus; T1_Pos width_pix, left; width_pix = SCALE( stem_right - stem_left ); /* Snap pixel width if in stem snap range */ { T1_Snap_Zone* zone = hints->snap_widths; T1_Snap_Zone* zone_limit = zone + hints->num_snap_widths; for ( ; zone < zone_limit; zone++ ) { if ( width_pix < zone->min ) break; if ( width_pix <= zone->max ) { width_pix = zone->pix; break; } } } /* round width - minimum 1 pixel if this isn't a ghost stem */ if ( width_pix > 0 ) width_pix = ( width_pix < ONE_PIXEL ? ONE_PIXEL : ROUND( width_pix ) ); /* now place the snapped and rounded stem */ /* XXXX : TODO : implement controlled stems for the overlapping */ /* cases.. */ left = ( SCALE(stem_left+stem_right) - width_pix )/2; stem->min_edge.pix = ROUND(left); stem->max_edge.pix = stem->min_edge.pix + width_pix; } } /************************************************************************ * * <Function> * t1_hint_point * * <Description> * Grid-fit a coordinate with regards to a given stem hints table * * <Input> * table :: the source stem hints table * coord :: original coordinate, expressed in font units * scale :: the 16.16 scale used to convert font units into * 26.6 pixels * * <Return> * the hinted/scaled value in 26.6 pixels * * <Note> * For now, all stems are hinted independently from each other. * It might be necessary, for better performance, to introduce * the notion of "controlled" hints describing things like * counter-stems, stem3 as well as overlapping stems control. * ************************************************************************/ static T1_Pos t1_hint_point( T1_Stem_Table* table, T1_Pos coord, T1_Fixed scale ) { T1_Int num_active = table->num_active; T1_Int n; T1_Stem_Hint* prev = 0; T1_Stem_Hint* cur = 0; T1_Edge* min; T1_Edge* max; T1_Pos delta; /* only hint when there is at least one stem defined */ if (num_active <= 0) return SCALE(coord); /* scan the stem table to determine placement of coordinate */ /* relative to the list of sorted and stems */ for ( n = 0; n < num_active; n++, prev = cur ) { cur = table->stems + table->sort[n]; /* is it on the left of the current edge ? */ delta = cur->min_edge.orus - coord; if ( delta == 0 ) return cur->min_edge.pix; if (delta > 0) { /* if this is the left of the first edge, simply shift */ if (!prev) return cur->min_edge.pix - SCALE(delta); /* otherwise, interpolate between the maximum of the */ /* previous stem, and the minimum of the current one */ min = &prev->max_edge; max = &cur->min_edge; goto Interpolate; } /* is it within the current edge ? */ delta = cur->max_edge.orus - coord; if ( delta == 0 ) return cur->max_edge.pix; if (delta > 0) { /* interpolate within the stem */ min = &cur->min_edge; max = &cur->max_edge; goto Interpolate; } } /* apparently, this coordinate is on the right of the last stem */ delta = coord - cur->max_edge.orus; return cur->max_edge.pix + SCALE(delta); Interpolate: return min->pix + FT_MulDiv( coord - min->orus, max->pix - min->pix, max->orus - min->orus ); } #if 1 /************************************************************************ * * <Function> * T1_Hint_Points * * <Description> * this function grid-fits several points in a given Type 1 builder * at once. * * <Input> * builder :: handle to target Type 1 builder * first :: first point to hint in builder's current outline * last :: last point to hint in builder's current outline * ************************************************************************/ LOCAL_FUNC void T1_Hint_Points( T1_Builder* builder ) { T1_Int first = builder->hint_point; T1_Int last = builder->current.n_points-1; T1_Size size = builder->size; T1_Fixed scale_x = size->root.metrics.x_scale; T1_Fixed scale_y = size->root.metrics.y_scale; T1_Glyph_Hints* hints = builder->glyph->hints; T1_Stem_Table* hori_stems = &hints->hori_stems; T1_Stem_Table* vert_stems = &hints->vert_stems; T1_Vector* cur = builder->current.points + first; T1_Vector* limit = cur + last - first + 1; /* first of all, sort the active stem hints */ t1_sort_hints( hori_stems ); t1_sort_hints( vert_stems ); for ( ; cur < limit; cur++ ) { cur->x = t1_hint_point( vert_stems, cur->x, scale_x ); cur->y = t1_hint_point( hori_stems, cur->y, scale_y ); } builder->hint_point = builder->current.n_points; } /************************************************************************ * * <Function> * T1_Hint_Stems * * <Description> * This function is used to compute the location of each stem hint * between the first and second passes of the glyph loader on the * charstring. * * <Input> * builder :: handle to target builder * ************************************************************************/ LOCAL_FUNC void T1_Hint_Stems( T1_Builder* builder ) { T1_Glyph_Hints* hints = builder->glyph->hints; T1_Private* priv = &builder->face->private_dict; T1_Size size = builder->size; T1_Fixed scale_x = size->root.metrics.x_scale; T1_Fixed scale_y = size->root.metrics.y_scale; t1_hint_horizontal_stems( &hints->hori_stems, builder->size->hints, priv->blue_shift, scale_y ); t1_hint_vertical_stems( &hints->vert_stems, builder->size->hints, scale_x ); } #endif