ref: 55b7403b586a4a6d3e2562b802b34f3328bf4377
dir: /src/cff/t2gload.c/
/***************************************************************************/ /* */ /* t2gload.c */ /* */ /* OpenType Glyph Loader (body). */ /* */ /* Copyright 1996-2000 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ #include <ft2build.h> #include FT_INTERNAL_DEBUG_H #include FT_INTERNAL_CALC_H #include FT_INTERNAL_STREAM_H #include FT_INTERNAL_SFNT_H #include FT_OUTLINE_H #include FT_TRUETYPE_TAGS_H #include FT_SOURCE_FILE(cff,cffload.h) #include FT_SOURCE_FILE(cff,t2gload.h) #include FT_INTERNAL_CFF_ERRORS_H /*************************************************************************/ /* */ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ /* messages during execution. */ /* */ #undef FT_COMPONENT #define FT_COMPONENT trace_t2gload typedef enum T2_Operator_ { t2_op_unknown = 0, t2_op_rmoveto, t2_op_hmoveto, t2_op_vmoveto, t2_op_rlineto, t2_op_hlineto, t2_op_vlineto, t2_op_rrcurveto, t2_op_hhcurveto, t2_op_hvcurveto, t2_op_rcurveline, t2_op_rlinecurve, t2_op_vhcurveto, t2_op_vvcurveto, t2_op_flex, t2_op_hflex, t2_op_hflex1, t2_op_flex1, t2_op_endchar, t2_op_hstem, t2_op_vstem, t2_op_hstemhm, t2_op_vstemhm, t2_op_hintmask, t2_op_cntrmask, t2_op_abs, t2_op_add, t2_op_sub, t2_op_div, t2_op_neg, t2_op_random, t2_op_mul, t2_op_sqrt, t2_op_blend, t2_op_drop, t2_op_exch, t2_op_index, t2_op_roll, t2_op_dup, t2_op_put, t2_op_get, t2_op_store, t2_op_load, t2_op_and, t2_op_or, t2_op_not, t2_op_eq, t2_op_ifelse, t2_op_callsubr, t2_op_callgsubr, t2_op_return, /* do not remove */ t2_op_max } T2_Operator; #define T2_COUNT_CHECK_WIDTH 0x80 #define T2_COUNT_EXACT 0x40 #define T2_COUNT_CLEAR_STACK 0x20 static const FT_Byte t2_argument_counts[] = { 0, /* unknown */ 2 | T2_COUNT_CHECK_WIDTH | T2_COUNT_EXACT, /* rmoveto */ 1 | T2_COUNT_CHECK_WIDTH | T2_COUNT_EXACT, 1 | T2_COUNT_CHECK_WIDTH | T2_COUNT_EXACT, 0 | T2_COUNT_CLEAR_STACK, /* rlineto */ 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, /* rrcurveto */ 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 13, /* flex */ 7, 9, 11, 0 | T2_COUNT_CHECK_WIDTH, /* endchar */ 2 | T2_COUNT_CHECK_WIDTH, /* hstem */ 2 | T2_COUNT_CHECK_WIDTH, 2 | T2_COUNT_CHECK_WIDTH, 2 | T2_COUNT_CHECK_WIDTH, 0, /* hintmask */ 0, /* cntrmask */ 1, /* abs */ 2, 2, 2, 1, 0, 2, 1, 1, /* blend */ 1, /* drop */ 2, 1, 2, 1, 2, /* put */ 1, 4, 3, 2, /* and */ 2, 1, 2, 4, 1, /* callsubr */ 1, 0 }; /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /********** *********/ /********** *********/ /********** GENERIC CHARSTRING PARSING *********/ /********** *********/ /********** *********/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /* */ /* <Function> */ /* T2_Init_Builder */ /* */ /* <Description> */ /* Initializes a given glyph builder. */ /* */ /* <InOut> */ /* builder :: A pointer to the glyph builder to initialize. */ /* */ /* <Input> */ /* face :: The current face object. */ /* */ /* size :: The current size object. */ /* */ /* glyph :: The current glyph object. */ /* */ static void T2_Init_Builder( T2_Builder* builder, TT_Face face, T2_Size size, T2_GlyphSlot glyph ) { builder->path_begun = 0; builder->load_points = 1; builder->face = face; builder->glyph = glyph; builder->memory = face->root.memory; if ( glyph ) { FT_GlyphLoader* loader = glyph->root.internal->loader; builder->loader = loader; builder->base = &loader->base.outline; builder->current = &loader->current.outline; FT_GlyphLoader_Rewind( loader ); } if ( size ) { builder->scale_x = size->metrics.x_scale; builder->scale_y = size->metrics.y_scale; } builder->pos_x = 0; builder->pos_y = 0; builder->left_bearing.x = 0; builder->left_bearing.y = 0; builder->advance.x = 0; builder->advance.y = 0; } /*************************************************************************/ /* */ /* <Function> */ /* T2_Done_Builder */ /* */ /* <Description> */ /* Finalizes a given glyph builder. Its contents can still be used */ /* after the call, but the function saves important information */ /* within the corresponding glyph slot. */ /* */ /* <Input> */ /* builder :: A pointer to the glyph builder to finalize. */ /* */ static void T2_Done_Builder( T2_Builder* builder ) { T2_GlyphSlot glyph = builder->glyph; if ( glyph ) glyph->root.outline = *builder->base; } /*************************************************************************/ /* */ /* <Function> */ /* t2_compute_bias */ /* */ /* <Description> */ /* Computes the bias value in dependence of the number of glyph */ /* subroutines. */ /* */ /* <Input> */ /* num_subrs :: The number of glyph subroutines. */ /* */ /* <Return> */ /* The bias value. */ static FT_Int t2_compute_bias( FT_UInt num_subrs ) { FT_Int result; if ( num_subrs < 1240 ) result = 107; else if ( num_subrs < 33900 ) result = 1131; else result = 32768; return result; } /*************************************************************************/ /* */ /* <Function> */ /* T2_Init_Decoder */ /* */ /* <Description> */ /* Initializes a given glyph decoder. */ /* */ /* <InOut> */ /* decoder :: A pointer to the glyph builder to initialize. */ /* */ /* <Input> */ /* face :: The current face object. */ /* */ /* size :: The current size object. */ /* */ /* slot :: The current glyph object. */ /* */ FT_LOCAL_DEF void T2_Init_Decoder( T2_Decoder* decoder, TT_Face face, T2_Size size, T2_GlyphSlot slot ) { CFF_Font* cff = (CFF_Font*)face->extra.data; /* clear everything */ MEM_Set( decoder, 0, sizeof ( *decoder ) ); /* initialize builder */ T2_Init_Builder( &decoder->builder, face, size, slot ); /* initialize Type2 decoder */ decoder->num_globals = cff->num_global_subrs; decoder->globals = cff->global_subrs; decoder->globals_bias = t2_compute_bias( decoder->num_globals ); } /* this function is used to select the locals subrs array */ FT_LOCAL_DEF void T2_Prepare_Decoder( T2_Decoder* decoder, FT_UInt glyph_index ) { CFF_Font* cff = (CFF_Font*)decoder->builder.face->extra.data; CFF_SubFont* sub = &cff->top_font; /* manage CID fonts */ if ( cff->num_subfonts >= 1 ) { FT_Byte fd_index = CFF_Get_FD( &cff->fd_select, glyph_index ); sub = cff->subfonts[fd_index]; } decoder->num_locals = sub->num_local_subrs; decoder->locals = sub->local_subrs; decoder->locals_bias = t2_compute_bias( decoder->num_locals ); decoder->glyph_width = sub->private_dict.default_width; decoder->nominal_width = sub->private_dict.nominal_width; } /* check that there is enough room for `count' more points */ static FT_Error check_points( T2_Builder* builder, FT_Int count ) { return FT_GlyphLoader_Check_Points( builder->loader, count, 0 ); } /* add a new point, do not check space */ static void add_point( T2_Builder* builder, FT_Pos x, FT_Pos y, FT_Byte flag ) { FT_Outline* outline = builder->current; if ( builder->load_points ) { FT_Vector* point = outline->points + outline->n_points; FT_Byte* control = (FT_Byte*)outline->tags + outline->n_points; point->x = x >> 16; point->y = y >> 16; *control = flag ? FT_Curve_Tag_On : FT_Curve_Tag_Cubic; builder->last = *point; } outline->n_points++; } /* check space for a new on-curve point, then add it */ static FT_Error add_point1( T2_Builder* builder, FT_Pos x, FT_Pos y ) { FT_Error error; error = check_points( builder, 1 ); if ( !error ) add_point( builder, x, y, 1 ); return error; } /* check room for a new contour, then add it */ static FT_Error add_contour( T2_Builder* builder ) { FT_Outline* outline = builder->current; FT_Error error; if ( !builder->load_points ) { outline->n_contours++; return T2_Err_Ok; } error = FT_GlyphLoader_Check_Points( builder->loader, 0, 1 ); if ( !error ) { if ( outline->n_contours > 0 ) outline->contours[outline->n_contours - 1] = outline->n_points - 1; outline->n_contours++; } return error; } /* if a path was begun, add its first on-curve point */ static FT_Error start_point( T2_Builder* builder, FT_Pos x, FT_Pos y ) { FT_Error error = 0; /* test whether we are building a new contour */ if ( !builder->path_begun ) { builder->path_begun = 1; error = add_contour( builder ); if ( !error ) error = add_point1( builder, x, y ); } return error; } /* close the current contour */ static void close_contour( T2_Builder* builder ) { FT_Outline* outline = builder->current; /* XXXX: We must not include the last point in the path if it */ /* is located on the first point. */ if ( outline->n_points > 1 ) { FT_Int first = 0; FT_Vector* p1 = outline->points + first; FT_Vector* p2 = outline->points + outline->n_points - 1; FT_Byte* control = (FT_Byte*)outline->tags + outline->n_points - 1; if ( outline->n_contours > 1 ) { first = outline->contours[outline->n_contours - 2] + 1; p1 = outline->points + first; } /* `delete' last point only if it coincides with the first */ /* point and it is not a control point (which can happen). */ if ( p1->x == p2->x && p1->y == p2->y ) if ( *control == FT_Curve_Tag_On ) outline->n_points--; } if ( outline->n_contours > 0 ) outline->contours[outline->n_contours - 1] = outline->n_points - 1; } /*************************************************************************/ /* */ /* <Function> */ /* T2_Parse_CharStrings */ /* */ /* <Description> */ /* Parses a given Type 2 charstrings program. */ /* */ /* <InOut> */ /* decoder :: The current Type 1 decoder. */ /* */ /* <Input> */ /* charstring_base :: The base of the charstring stream. */ /* */ /* charstring_len :: The length in bytes of the charstring stream. */ /* */ /* <Return> */ /* FreeType error code. 0 means success. */ /* */ FT_LOCAL_DEF FT_Error T2_Parse_CharStrings( T2_Decoder* decoder, FT_Byte* charstring_base, FT_Int charstring_len ) { FT_Error error; T2_Decoder_Zone* zone; FT_Byte* ip; FT_Byte* limit; T2_Builder* builder = &decoder->builder; FT_Outline* outline; FT_Pos x, y; FT_Fixed seed; FT_Fixed* stack; /* set default width */ decoder->num_hints = 0; decoder->read_width = 1; /* compute random seed from stack address of parameter */ seed = (FT_Fixed)(char*)&seed ^ (FT_Fixed)(char*)&decoder ^ (FT_Fixed)(char*)&charstring_base; seed = ( seed ^ ( seed >> 10 ) ^ ( seed >> 20 ) ) & 0xFFFF; if ( seed == 0 ) seed = 0x7384; /* initialize the decoder */ decoder->top = decoder->stack; decoder->zone = decoder->zones; zone = decoder->zones; stack = decoder->top; builder->path_begun = 0; zone->base = charstring_base; limit = zone->limit = charstring_base + charstring_len; ip = zone->cursor = zone->base; error = T2_Err_Ok; outline = builder->current; x = builder->pos_x; y = builder->pos_y; /* now, execute loop */ while ( ip < limit ) { T2_Operator op; FT_Byte v; /********************************************************************/ /* */ /* Decode operator or operand */ /* */ v = *ip++; if ( v >= 32 || v == 28 ) { FT_Int shift = 16; FT_Int32 val; /* this is an operand, push it on the stack */ if ( v == 28 ) { if ( ip + 1 >= limit ) goto Syntax_Error; val = (FT_Short)( ( (FT_Short)ip[0] << 8 ) | ip[1] ); ip += 2; } else if ( v < 247 ) val = (FT_Long)v - 139; else if ( v < 251 ) { if ( ip >= limit ) goto Syntax_Error; val = ( (FT_Long)v - 247 ) * 256 + *ip++ + 108; } else if ( v < 255 ) { if ( ip >= limit ) goto Syntax_Error; val = -( (FT_Long)v - 251 ) * 256 - *ip++ - 108; } else { if ( ip + 3 >= limit ) goto Syntax_Error; val = ( (FT_Int32)ip[0] << 24 ) | ( (FT_Int32)ip[1] << 16 ) | ( (FT_Int32)ip[2] << 8 ) | ip[3]; ip += 4; shift = 0; } if ( decoder->top - stack >= T2_MAX_OPERANDS ) goto Stack_Overflow; val <<= shift; *decoder->top++ = val; #ifdef FT_DEBUG_LEVEL_TRACE if ( !( val & 0xFFFF ) ) FT_TRACE4(( " %d", (FT_Int32)( val >> 16 ) )); else FT_TRACE4(( " %.2f", val/65536.0 )); #endif } else { FT_Fixed* args = decoder->top; FT_Int num_args = args - decoder->stack; FT_Int req_args; /* find operator */ op = t2_op_unknown; switch ( v ) { case 1: op = t2_op_hstem; break; case 3: op = t2_op_vstem; break; case 4: op = t2_op_vmoveto; break; case 5: op = t2_op_rlineto; break; case 6: op = t2_op_hlineto; break; case 7: op = t2_op_vlineto; break; case 8: op = t2_op_rrcurveto; break; case 10: op = t2_op_callsubr; break; case 11: op = t2_op_return; break; case 12: { if ( ip >= limit ) goto Syntax_Error; v = *ip++; switch ( v ) { case 3: op = t2_op_and; break; case 4: op = t2_op_or; break; case 5: op = t2_op_not; break; case 8: op = t2_op_store; break; case 9: op = t2_op_abs; break; case 10: op = t2_op_add; break; case 11: op = t2_op_sub; break; case 12: op = t2_op_div; break; case 13: op = t2_op_load; break; case 14: op = t2_op_neg; break; case 15: op = t2_op_eq; break; case 18: op = t2_op_drop; break; case 20: op = t2_op_put; break; case 21: op = t2_op_get; break; case 22: op = t2_op_ifelse; break; case 23: op = t2_op_random; break; case 24: op = t2_op_mul; break; case 26: op = t2_op_sqrt; break; case 27: op = t2_op_dup; break; case 28: op = t2_op_exch; break; case 29: op = t2_op_index; break; case 30: op = t2_op_roll; break; case 34: op = t2_op_hflex; break; case 35: op = t2_op_flex; break; case 36: op = t2_op_hflex1; break; case 37: op = t2_op_flex1; break; default: /* decrement ip for syntax error message */ ip--; } } break; case 14: op = t2_op_endchar; break; case 16: op = t2_op_blend; break; case 18: op = t2_op_hstemhm; break; case 19: op = t2_op_hintmask; break; case 20: op = t2_op_cntrmask; break; case 21: op = t2_op_rmoveto; break; case 22: op = t2_op_hmoveto; break; case 23: op = t2_op_vstemhm; break; case 24: op = t2_op_rcurveline; break; case 25: op = t2_op_rlinecurve; break; case 26: op = t2_op_vvcurveto; break; case 27: op = t2_op_hhcurveto; break; case 29: op = t2_op_callgsubr; break; case 30: op = t2_op_vhcurveto; break; case 31: op = t2_op_hvcurveto; break; default: ; } if ( op == t2_op_unknown ) goto Syntax_Error; /* check arguments */ req_args = t2_argument_counts[op]; if ( req_args & T2_COUNT_CHECK_WIDTH ) { args = stack; if ( num_args > 0 && decoder->read_width ) { /* If `nominal_width' is non-zero, the number is really a */ /* difference against `nominal_width'. Else, the number here */ /* is truly a width, not a difference against `nominal_width'. */ /* If the font does not set `nominal_width', then */ /* `nominal_width' defaults to zero, and so we can set */ /* `glyph_width' to `nominal_width' plus number on the stack */ /* -- for either case. */ FT_Int set_width_ok; switch ( op ) { case t2_op_hmoveto: case t2_op_vmoveto: set_width_ok = num_args & 2; break; case t2_op_hstem: case t2_op_vstem: case t2_op_hstemhm: case t2_op_vstemhm: case t2_op_endchar: case t2_op_rmoveto: set_width_ok = num_args & 1; break; default: set_width_ok = 0; break; } if ( set_width_ok ) { decoder->glyph_width = decoder->nominal_width + ( stack[0] >> 16 ); num_args--; args++; } } decoder->read_width = 0; req_args = 0; } req_args &= 15; if ( num_args < req_args ) goto Stack_Underflow; args -= req_args; num_args -= req_args; switch ( op ) { case t2_op_hstem: case t2_op_vstem: case t2_op_hstemhm: case t2_op_vstemhm: /* if the number of arguments is not even, the first one */ /* is simply the glyph width, encoded as the difference */ /* to nominalWidthX */ FT_TRACE4(( op == t2_op_hstem ? " hstem" : op == t2_op_vstem ? " vstem" : op == t2_op_hstemhm ? " hstemhm" : " vstemhm" )); decoder->num_hints += num_args / 2; args = stack; break; case t2_op_hintmask: case t2_op_cntrmask: FT_TRACE4(( op == t2_op_hintmask ? " hintmask" : " cntrmask" )); decoder->num_hints += num_args / 2; ip += ( decoder->num_hints + 7 ) >> 3; if ( ip >= limit ) goto Syntax_Error; args = stack; break; case t2_op_rmoveto: FT_TRACE4(( " rmoveto" )); close_contour( builder ); builder->path_begun = 0; x += args[0]; y += args[1]; args = stack; break; case t2_op_vmoveto: FT_TRACE4(( " vmoveto" )); close_contour( builder ); builder->path_begun = 0; y += args[0]; args = stack; break; case t2_op_hmoveto: FT_TRACE4(( " hmoveto" )); close_contour( builder ); builder->path_begun = 0; x += args[0]; args = stack; break; case t2_op_rlineto: FT_TRACE4(( " rlineto" )); if ( start_point ( builder, x, y ) || check_points( builder, num_args / 2 ) ) goto Memory_Error; if ( num_args < 2 || num_args & 1 ) goto Stack_Underflow; args = stack; while ( args < decoder->top ) { x += args[0]; y += args[1]; add_point( builder, x, y, 1 ); args += 2; } args = stack; break; case t2_op_hlineto: case t2_op_vlineto: { FT_Int phase = ( op == t2_op_hlineto ); FT_TRACE4(( op == t2_op_hlineto ? " hlineto" : " vlineto" )); if ( start_point ( builder, x, y ) || check_points( builder, num_args ) ) goto Memory_Error; args = stack; while (args < decoder->top ) { if ( phase ) x += args[0]; else y += args[0]; if ( add_point1( builder, x, y ) ) goto Memory_Error; args++; phase ^= 1; } args = stack; } break; case t2_op_rrcurveto: FT_TRACE4(( " rrcurveto" )); /* check number of arguments; must be a multiple of 6 */ if ( num_args % 6 != 0 ) goto Stack_Underflow; if ( start_point ( builder, x, y ) || check_points( builder, num_args / 2 ) ) goto Memory_Error; args = stack; while ( args < decoder->top ) { x += args[0]; y += args[1]; add_point( builder, x, y, 0 ); x += args[2]; y += args[3]; add_point( builder, x, y, 0 ); x += args[4]; y += args[5]; add_point( builder, x, y, 1 ); args += 6; } args = stack; break; case t2_op_vvcurveto: FT_TRACE4(( " vvcurveto" )); if ( start_point ( builder, x, y ) ) goto Memory_Error; args = stack; if ( num_args & 1 ) { x += args[0]; args++; num_args--; } if ( num_args % 4 != 0 ) goto Stack_Underflow; if ( check_points( builder, 3 * ( num_args / 4 ) ) ) goto Memory_Error; while ( args < decoder->top ) { y += args[0]; add_point( builder, x, y, 0 ); x += args[1]; y += args[2]; add_point( builder, x, y, 0 ); y += args[3]; add_point( builder, x, y, 1 ); args += 4; } args = stack; break; case t2_op_hhcurveto: FT_TRACE4(( " hhcurveto" )); if ( start_point ( builder, x, y ) ) goto Memory_Error; args = stack; if ( num_args & 1 ) { y += args[0]; args++; num_args--; } if ( num_args % 4 != 0 ) goto Stack_Underflow; if ( check_points( builder, 3 * ( num_args / 4 ) ) ) goto Memory_Error; while ( args < decoder->top ) { x += args[0]; add_point( builder, x, y, 0 ); x += args[1]; y += args[2]; add_point( builder, x, y, 0 ); x += args[3]; add_point( builder, x, y, 1 ); args += 4; } args = stack; break; case t2_op_vhcurveto: case t2_op_hvcurveto: { FT_Int phase; FT_TRACE4(( op == t2_op_vhcurveto ? " vhcurveto" : " hvcurveto" )); if ( start_point ( builder, x, y ) ) goto Memory_Error; args = stack; if (num_args < 4 || ( num_args % 4 ) > 1 ) goto Stack_Underflow; if ( check_points( builder, ( num_args / 4 ) * 3 ) ) goto Stack_Underflow; phase = ( op == t2_op_hvcurveto ); while ( num_args >= 4 ) { num_args -= 4; if ( phase ) { x += args[0]; add_point( builder, x, y, 0 ); x += args[1]; y += args[2]; add_point( builder, x, y, 0 ); y += args[3]; if ( num_args == 1 ) x += args[4]; add_point( builder, x, y, 1 ); } else { y += args[0]; add_point( builder, x, y, 0 ); x += args[1]; y += args[2]; add_point( builder, x, y, 0 ); x += args[3]; if ( num_args == 1 ) y += args[4]; add_point( builder, x, y, 1 ); } args += 4; phase ^= 1; } args = stack; } break; case t2_op_rlinecurve: { FT_Int num_lines = ( num_args - 6 ) / 2; FT_TRACE4(( " rlinecurve" )); if ( num_args < 8 || ( num_args - 6 ) & 1 ) goto Stack_Underflow; if ( start_point( builder, x, y ) || check_points( builder, num_lines + 3 ) ) goto Memory_Error; args = stack; /* first, add the line segments */ while ( num_lines > 0 ) { x += args[0]; y += args[1]; add_point( builder, x, y, 1 ); args += 2; num_lines--; } /* then the curve */ x += args[0]; y += args[1]; add_point( builder, x, y, 0 ); x += args[2]; y += args[3]; add_point( builder, x, y, 0 ); x += args[4]; y += args[5]; add_point( builder, x, y, 1 ); args = stack; } break; case t2_op_rcurveline: { FT_Int num_curves = ( num_args - 2 ) / 6; FT_TRACE4(( " rcurveline" )); if ( num_args < 8 || ( num_args - 2 ) % 6 ) goto Stack_Underflow; if ( start_point ( builder, x, y ) || check_points( builder, num_curves*3 + 2 ) ) goto Memory_Error; args = stack; /* first, add the curves */ while ( num_curves > 0 ) { x += args[0]; y += args[1]; add_point( builder, x, y, 0 ); x += args[2]; y += args[3]; add_point( builder, x, y, 0 ); x += args[4]; y += args[5]; add_point( builder, x, y, 1 ); args += 6; num_curves--; } /* then the final line */ x += args[0]; y += args[1]; add_point( builder, x, y, 1 ); args = stack; } break; case t2_op_hflex1: { FT_Pos start_y; FT_TRACE4(( " hflex1" )); args = stack; /* adding five more points; 4 control points, 1 on-curve point */ /* make sure we have enough space for the start point if it */ /* needs to be added.. */ if ( start_point( builder, x, y ) || check_points( builder, 6 ) ) goto Memory_Error; /* Record the starting point's y postion for later use */ start_y = y; /* first control point */ x += args[0]; y += args[1]; add_point( builder, x, y, 0 ); /* second control point */ x += args[2]; y += args[3]; add_point( builder, x, y, 0 ); /* join point; on curve, with y-value the same as the last */ /* control point's y-value */ x += args[4]; add_point( builder, x, y, 1 ); /* third control point, with y-value the same as the join */ /* point's y-value */ x += args[5]; add_point( builder, x, y, 0 ); /* fourth control point */ x += args[6]; y += args[7]; add_point( builder, x, y, 0 ); /* ending point, with y-value the same as the start */ x += args[8]; y = start_y; add_point( builder, x, y, 1 ); args = stack; break; } case t2_op_hflex: { FT_Pos start_y; FT_TRACE4(( " hflex" )); args = stack; /* adding six more points; 4 control points, 2 on-curve points */ if ( start_point( builder, x, y ) || check_points ( builder, 6 ) ) goto Memory_Error; /* record the starting point's y-position for later use */ start_y = y; /* first control point */ x += args[0]; add_point( builder, x, y, 0 ); /* second control point */ x += args[1]; y += args[2]; add_point( builder, x, y, 0 ); /* join point; on curve, with y-value the same as the last */ /* control point's y-value */ x += args[3]; add_point( builder, x, y, 1 ); /* third control point, with y-value the same as the join */ /* point's y-value */ x += args[4]; add_point( builder, x, y, 0 ); /* fourth control point */ x += args[5]; y = start_y; add_point( builder, x, y, 0 ); /* ending point, with y-value the same as the start point's */ /* y-value -- we don't add this point, though */ x += args[6]; add_point( builder, x, y, 1 ); args = stack; break; } case t2_op_flex1: { FT_Pos start_x, start_y; /* record start x, y values for alter */ /* use */ FT_Int dx = 0, dy = 0; /* used in horizontal/vertical */ /* algorithm below */ FT_Int horizontal, count; FT_TRACE4(( " flex1" )); /* adding six more points; 4 control points, 2 on-curve points */ if ( start_point( builder, x, y ) || check_points( builder, 6 ) ) goto Memory_Error; /* record the starting point's x, y postion for later use */ start_x = x; start_y = y; /* XXX: figure out whether this is supposed to be a horizontal */ /* or vertical flex; the Type 2 specification is vague... */ args = stack; /* grab up to the last argument */ for ( count = 5; count > 0; count-- ) { dx += args[0]; dy += args[1]; args += 2; } /* rewind */ args = stack; if ( dx < 0 ) dx = -dx; if ( dy < 0 ) dy = -dy; /* strange test, but here it is... */ horizontal = ( dx > dy ); for ( count = 5; count > 0; count-- ) { x += args[0]; y += args[1]; add_point( builder, x, y, (FT_Bool)( count == 3 ) ); args += 2; } /* is last operand an x- or y-delta? */ if ( horizontal ) { x += args[0]; y = start_y; } else { x = start_x; y += args[0]; } add_point( builder, x, y, 1 ); args = stack; break; } case t2_op_flex: { FT_UInt count; FT_TRACE4(( " flex" )); if ( start_point( builder, x, y ) || check_points( builder, 6 ) ) goto Memory_Error; args = stack; for ( count = 6; count > 0; count-- ) { x += args[0]; y += args[1]; add_point( builder, x, y, (FT_Bool)( count == 3 || count == 0 ) ); args += 2; } args = stack; } break; case t2_op_endchar: FT_TRACE4(( " endchar" )); close_contour( builder ); /* add current outline to the glyph slot */ FT_GlyphLoader_Add( builder->loader ); /* return now! */ FT_TRACE4(( "\n\n" )); return T2_Err_Ok; case t2_op_abs: FT_TRACE4(( " abs" )); if ( args[0] < 0 ) args[0] = -args[0]; args++; break; case t2_op_add: FT_TRACE4(( " add" )); args[0] += args[1]; args++; break; case t2_op_sub: FT_TRACE4(( " sub" )); args[0] -= args[1]; args++; break; case t2_op_div: FT_TRACE4(( " div" )); args[0] = FT_DivFix( args[0], args[1] ); args++; break; case t2_op_neg: FT_TRACE4(( " neg" )); args[0] = -args[0]; args++; break; case t2_op_random: { FT_Fixed rand; FT_TRACE4(( " rand" )); rand = seed; if ( rand >= 0x8000 ) rand++; args[0] = rand; seed = FT_MulFix( seed, 0x10000L - seed ); if ( seed == 0 ) seed += 0x2873; args++; } break; case t2_op_mul: FT_TRACE4(( " mul" )); args[0] = FT_MulFix( args[0], args[1] ); args++; break; case t2_op_sqrt: FT_TRACE4(( " sqrt" )); if ( args[0] > 0 ) { FT_Int count = 9; FT_Fixed root = args[0]; FT_Fixed new_root; for (;;) { new_root = ( root + FT_DivFix(args[0],root) + 1 ) >> 1; if ( new_root == root || count <= 0 ) break; root = new_root; } args[0] = new_root; } else args[0] = 0; args++; break; case t2_op_drop: /* nothing */ FT_TRACE4(( " drop" )); break; case t2_op_exch: { FT_Fixed tmp; FT_TRACE4(( " exch" )); tmp = args[0]; args[0] = args[1]; args[1] = tmp; args += 2; } break; case t2_op_index: { FT_Int index = args[0] >> 16; FT_TRACE4(( " index" )); if ( index < 0 ) index = 0; else if ( index > num_args - 2 ) index = num_args - 2; args[0] = args[-( index + 1 )]; args++; } break; case t2_op_roll: { FT_Int count = (FT_Int)( args[0] >> 16 ); FT_Int index = (FT_Int)( args[1] >> 16 ); FT_TRACE4(( " roll" )); if ( count <= 0 ) count = 1; args -= count; if ( args < stack ) goto Stack_Underflow; if ( index >= 0 ) { while ( index > 0 ) { FT_Fixed tmp = args[count - 1]; FT_Int i; for ( i = count - 2; i >= 0; i-- ) args[i + 1] = args[i]; args[0] = tmp; index--; } } else { while ( index < 0 ) { FT_Fixed tmp = args[0]; FT_Int i; for ( i = 0; i < count - 1; i++ ) args[i] = args[i + 1]; args[count - 1] = tmp; index++; } } args += count; } break; case t2_op_dup: FT_TRACE4(( " dup" )); args[1] = args[0]; args++; break; case t2_op_put: { FT_Fixed val = args[0]; FT_Int index = (FT_Int)( args[1] >> 16 ); FT_TRACE4(( " put" )); if ( index >= 0 && index < decoder->len_buildchar ) decoder->buildchar[index] = val; } break; case t2_op_get: { FT_Int index = (FT_Int)( args[0] >> 16 ); FT_Fixed val = 0; FT_TRACE4(( " get" )); if ( index >= 0 && index < decoder->len_buildchar ) val = decoder->buildchar[index]; args[0] = val; args++; } break; case t2_op_store: FT_TRACE4(( " store ")); goto Unimplemented; case t2_op_load: FT_TRACE4(( " load" )); goto Unimplemented; case t2_op_and: { FT_Fixed cond = args[0] && args[1]; FT_TRACE4(( " and" )); args[0] = cond ? 0x10000L : 0; args++; } break; case t2_op_or: { FT_Fixed cond = args[0] || args[1]; FT_TRACE4(( " or" )); args[0] = cond ? 0x10000L : 0; args++; } break; case t2_op_eq: { FT_Fixed cond = !args[0]; FT_TRACE4(( " eq" )); args[0] = cond ? 0x10000L : 0; args++; } break; case t2_op_ifelse: { FT_Fixed cond = (args[2] <= args[3]); FT_TRACE4(( " ifelse" )); if ( !cond ) args[0] = args[1]; args++; } break; case t2_op_callsubr: { FT_UInt index = (FT_UInt)( ( args[0] >> 16 ) + decoder->locals_bias ); FT_TRACE4(( " callsubr(%d)", index )); if ( index >= decoder->num_locals ) { FT_ERROR(( "T2_Parse_CharStrings:" )); FT_ERROR(( " invalid local subr index\n" )); goto Syntax_Error; } if ( zone - decoder->zones >= T2_MAX_SUBRS_CALLS ) { FT_ERROR(( "T2_Parse_CharStrings: too many nested subrs\n" )); goto Syntax_Error; } zone->cursor = ip; /* save current instruction pointer */ zone++; zone->base = decoder->locals[index]; zone->limit = decoder->locals[index+1]; zone->cursor = zone->base; if ( !zone->base ) { FT_ERROR(( "T2_Parse_CharStrings: invoking empty subrs!\n" )); goto Syntax_Error; } decoder->zone = zone; ip = zone->base; limit = zone->limit; } break; case t2_op_callgsubr: { FT_UInt index = (FT_UInt)( ( args[0] >> 16 ) + decoder->globals_bias ); FT_TRACE4(( " callgsubr(%d)", index )); if ( index >= decoder->num_globals ) { FT_ERROR(( "T2_Parse_CharStrings:" )); FT_ERROR(( " invalid global subr index\n" )); goto Syntax_Error; } if ( zone - decoder->zones >= T2_MAX_SUBRS_CALLS ) { FT_ERROR(( "T2_Parse_CharStrings: too many nested subrs\n" )); goto Syntax_Error; } zone->cursor = ip; /* save current instruction pointer */ zone++; zone->base = decoder->globals[index]; zone->limit = decoder->globals[index+1]; zone->cursor = zone->base; if ( !zone->base ) { FT_ERROR(( "T2_Parse_CharStrings: invoking empty subrs!\n" )); goto Syntax_Error; } decoder->zone = zone; ip = zone->base; limit = zone->limit; } break; case t2_op_return: FT_TRACE4(( " return" )); if ( decoder->zone <= decoder->zones ) { FT_ERROR(( "T2_Parse_CharStrings: unexpected return\n" )); goto Syntax_Error; } decoder->zone--; zone = decoder->zone; ip = zone->cursor; limit = zone->limit; break; default: Unimplemented: FT_ERROR(( "Unimplemented opcode: %d", ip[-1] )); if ( ip[-1] == 12 ) FT_ERROR(( " %d", ip[0] )); FT_ERROR(( "\n" )); return T2_Err_Unimplemented_Feature; } decoder->top = args; } /* general operator processing */ } /* while ip < limit */ FT_TRACE4(( "..end..\n\n" )); return error; Syntax_Error: FT_TRACE4(( "T2_Parse_CharStrings: syntax error!" )); return T2_Err_Invalid_File_Format; Stack_Underflow: FT_TRACE4(( "T2_Parse_CharStrings: stack underflow!" )); return T2_Err_Too_Few_Arguments; Stack_Overflow: FT_TRACE4(( "T2_Parse_CharStrings: stack overflow!" )); return T2_Err_Stack_Overflow; Memory_Error: return builder->error; } /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /********** *********/ /********** *********/ /********** COMPUTE THE MAXIMUM ADVANCE WIDTH *********/ /********** *********/ /********** The following code is in charge of computing *********/ /********** the maximum advance width of the font. It *********/ /********** quickly processes each glyph charstring to *********/ /********** extract the value from either a `sbw' or `seac' *********/ /********** operator. *********/ /********** *********/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ #if 0 /* unused until we support pure CFF fonts */ FT_LOCAL_DEF FT_Error T2_Compute_Max_Advance( TT_Face face, FT_Int* max_advance ) { FT_Error error = 0; T2_Decoder decoder; FT_Int glyph_index; CFF_Font* cff = (CFF_Font*)face->other; *max_advance = 0; /* Initialize load decoder */ T2_Init_Decoder( &decoder, face, 0, 0 ); decoder.builder.metrics_only = 1; decoder.builder.load_points = 0; /* For each glyph, parse the glyph charstring and extract */ /* the advance width. */ for ( glyph_index = 0; glyph_index < face->root.num_glyphs; glyph_index++ ) { FT_Byte* charstring; FT_ULong charstring_len; /* now get load the unscaled outline */ error = T2_Access_Element( &cff->charstrings_index, glyph_index, &charstring, &charstring_len ); if ( !error ) { T2_Prepare_Decoder( &decoder, glyph_index ); error = T2_Parse_CharStrings( &decoder, charstring, charstring_len ); T2_Forget_Element( &cff->charstrings_index, &charstring ); } /* ignore the error if one has occurred -- skip to next glyph */ error = 0; } *max_advance = decoder.builder.advance.x; return T2_Err_Ok; } #endif /* 0 */ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /********** *********/ /********** *********/ /********** UNHINTED GLYPH LOADER *********/ /********** *********/ /********** The following code is in charge of loading a *********/ /********** single outline. It completely ignores hinting *********/ /********** and is used when FT_LOAD_NO_HINTING is set. *********/ /********** *********/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ FT_LOCAL_DEF FT_Error T2_Load_Glyph( T2_GlyphSlot glyph, T2_Size size, FT_Int glyph_index, FT_Int load_flags ) { FT_Error error; T2_Decoder decoder; TT_Face face = (TT_Face)glyph->root.face; FT_Bool hinting; CFF_Font* cff = (CFF_Font*)face->extra.data; if ( load_flags & FT_LOAD_NO_RECURSE ) load_flags |= FT_LOAD_NO_SCALE | FT_LOAD_NO_HINTING; glyph->x_scale = 0x10000L; glyph->y_scale = 0x10000L; if ( size ) { glyph->x_scale = size->metrics.x_scale; glyph->y_scale = size->metrics.y_scale; } glyph->root.outline.n_points = 0; glyph->root.outline.n_contours = 0; hinting = ( load_flags & FT_LOAD_NO_SCALE ) == 0 && ( load_flags & FT_LOAD_NO_HINTING ) == 0; glyph->root.format = ft_glyph_format_outline; /* by default */ { FT_Byte* charstring; FT_ULong charstring_len; T2_Init_Decoder( &decoder, face, size, glyph ); decoder.builder.no_recurse = (FT_Bool)( ( load_flags & FT_LOAD_NO_RECURSE ) != 0 ); /* now load the unscaled outline */ error = CFF_Access_Element( &cff->charstrings_index, glyph_index, &charstring, &charstring_len ); if ( !error ) { T2_Prepare_Decoder( &decoder, glyph_index ); error = T2_Parse_CharStrings( &decoder, charstring, charstring_len ); CFF_Forget_Element( &cff->charstrings_index, &charstring ); } /* save new glyph tables */ T2_Done_Builder( &decoder.builder ); } /* Now, set the metrics -- this is rather simple, as */ /* the left side bearing is the xMin, and the top side */ /* bearing the yMax. */ if ( !error ) { /* for composite glyphs, return only left side bearing and */ /* advance width */ if ( glyph->root.format == ft_glyph_format_composite ) { glyph->root.metrics.horiBearingX = decoder.builder.left_bearing.x; glyph->root.metrics.horiAdvance = decoder.glyph_width; } else { FT_BBox cbox; FT_Glyph_Metrics* metrics = &glyph->root.metrics; /* copy the _unscaled_ advance width */ metrics->horiAdvance = decoder.glyph_width; glyph->root.linearHoriAdvance = decoder.glyph_width; /* make up vertical metrics */ metrics->vertBearingX = 0; metrics->vertBearingY = 0; metrics->vertAdvance = 0; glyph->root.linearVertAdvance = 0; glyph->root.format = ft_glyph_format_outline; glyph->root.outline.flags = 0; if ( size && size->metrics.y_ppem < 24 ) glyph->root.outline.flags |= ft_outline_high_precision; glyph->root.outline.flags |= ft_outline_reverse_fill; if ( ( load_flags & FT_LOAD_NO_SCALE ) == 0 ) { /* scale the outline and the metrics */ FT_Int n; FT_Outline* cur = &glyph->root.outline; FT_Vector* vec = cur->points; FT_Fixed x_scale = glyph->x_scale; FT_Fixed y_scale = glyph->y_scale; /* First of all, scale the points */ for ( n = cur->n_points; n > 0; n--, vec++ ) { vec->x = FT_MulFix( vec->x, x_scale ); vec->y = FT_MulFix( vec->y, y_scale ); } FT_Outline_Get_CBox( &glyph->root.outline, &cbox ); /* Then scale the metrics */ metrics->horiAdvance = FT_MulFix( metrics->horiAdvance, x_scale ); metrics->vertAdvance = FT_MulFix( metrics->vertAdvance, y_scale ); metrics->vertBearingX = FT_MulFix( metrics->vertBearingX, x_scale ); metrics->vertBearingY = FT_MulFix( metrics->vertBearingY, y_scale ); } #if 0 /* apply the font matrix */ FT_Outline_Transform( &glyph->root.outline, cff->font_matrix ); #endif /* compute the other metrics */ FT_Outline_Get_CBox( &glyph->root.outline, &cbox ); /* grid fit the bounding box if necessary */ if ( hinting ) { cbox.xMin &= -64; cbox.yMin &= -64; cbox.xMax = ( cbox.xMax + 63 ) & -64; cbox.yMax = ( cbox.yMax + 63 ) & -64; } metrics->width = cbox.xMax - cbox.xMin; metrics->height = cbox.yMax - cbox.yMin; metrics->horiBearingX = cbox.xMin; metrics->horiBearingY = cbox.yMax; } } return error; } /* END */