ref: 48721c11b549480e9d3eaa3671866d9aa9d01ab1
dir: /src/cid/cidparse.c/
/***************************************************************************/ /* */ /* cidparse.c */ /* */ /* CID-keyed Type1 parser (body). */ /* */ /* Copyright 1996-2000 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used, */ /* modified, and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ #include <freetype/internal/ftdebug.h> #include <freetype/internal/ftcalc.h> #include <freetype/internal/ftobjs.h> #include <freetype/internal/ftstream.h> #include <freetype/internal/t1errors.h> #ifdef FT_FLAT_COMPILE #include "cidparse.h" #else #include <cid/cidparse.h> #endif #include <string.h> /* for strncmp() */ /*************************************************************************/ /* */ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ /* messages during execution. */ /* */ #undef FT_COMPONENT #define FT_COMPONENT trace_cidparse #if 0 /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /***** *****/ /***** IMPLEMENTATION OF CID_TABLE OBJECT *****/ /***** *****/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /* */ /* <Function> */ /* CID_New_Table */ /* */ /* <Description> */ /* Initializes a CID_Table. */ /* */ /* <InOut> */ /* table :: The address of the target table. */ /* */ /* <Input> */ /* count :: The table size, i.e., the maximal number of elements. */ /* */ /* memory :: The memory object to be used for all subsequent */ /* reallocations. */ /* */ /* <Return> */ /* FreeType error code. 0 means success. */ /* */ LOCAL_FUNC FT_Error CID_New_Table( CID_Table* table, FT_Int count, FT_Memory memory ) { FT_Error error; table->memory = memory; if ( ALLOC_ARRAY( table->elements, count, FT_Byte* ) || ALLOC_ARRAY( table->lengths, count, FT_Byte* ) ) goto Exit; table->max_elems = count; table->init = 0xDEADBEEFL; table->num_elems = 0; table->block = 0; table->capacity = 0; table->cursor = 0; Exit: if ( error ) FREE( table->elements ); return error; } static void shift_elements( CID_Table* table, FT_Byte* old_base ) { FT_Long delta = table->block - old_base; FT_Byte** offset = table->elements; FT_Byte** limit = offset + table->max_elems; if ( delta ) for ( ; offset < limit; offset++ ) { if ( offset[0] ) offset[0] += delta; } } static FT_Error reallocate_t1_table( CID_Table* table, FT_Int new_size ) { FT_Memory memory = table->memory; FT_Byte* old_base = table->block; FT_Error error; /* realloc the base block */ if ( REALLOC( table->block, table->capacity, new_size ) ) return error; table->capacity = new_size; /* shift all offsets when needed */ if ( old_base ) shift_elements( table, old_base ); return T1_Err_Ok; } /*************************************************************************/ /* */ /* <Function> */ /* CID_Add_Table */ /* */ /* <Description> */ /* Adds an object to a CID_Table, possibly growing its memory block. */ /* */ /* <InOut> */ /* table :: The target table. */ /* */ /* <Input> */ /* index :: The index of the object in the table. */ /* */ /* object :: The address of the object to copy in the memory. */ /* */ /* length :: The length in bytes of the source object. */ /* */ /* <Return> */ /* FreeType error code. 0 means success. An error is returned if */ /* reallocation fails. */ /* */ LOCAL_FUNC FT_Error CID_Add_Table( CID_Table* table, FT_Int index, void* object, FT_Int length ) { if ( index < 0 || index > table->max_elems ) { FT_ERROR(( "CID_Add_Table: invalid index\n" )); return T1_Err_Syntax_Error; } /* grow the base block if needed */ if ( table->cursor + length > table->capacity ) { FT_Error error; FT_Int new_size = table->capacity; while ( new_size < table->cursor + length ) new_size += 1024; error = reallocate_t1_table( table, new_size ); if ( error ) return error; } /* add the object to the base block and adjust offset */ table->elements[index] = table->block + table->cursor; table->lengths [index] = length; MEM_Copy( table->block + table->cursor, object, length ); table->cursor += length; return T1_Err_Ok; } /*************************************************************************/ /* */ /* <Function> */ /* CID_Done_Table */ /* */ /* <Description> */ /* Finalizes a CID_Table (reallocate it to its current cursor). */ /* */ /* <InOut> */ /* table :: The target table. */ /* */ /* <Note> */ /* This function does NOT release the heap's memory block. It is up */ /* to the caller to clean it, or reference it in its own structures. */ /* */ LOCAL_FUNC void CID_Done_Table( CID_Table* table ) { FT_Memory memory = table->memory; FT_Error error; FT_Byte* old_base; /* should never fail, as rec.cursor <= rec.size */ old_base = table->block; if ( !old_base ) return; (void)REALLOC( table->block, table->capacity, table->cursor ); table->capacity = table->cursor; if ( old_base != table->block ) shift_elements( table, old_base ); } LOCAL_FUNC void CID_Release_Table( CID_Table* table ) { FT_Memory memory = table->memory; if ( table->init == 0xDEADBEEFL ) { FREE( table->block ); FREE( table->elements ); FREE( table->lengths ); table->init = 0; } } #endif /* 0 */ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /***** *****/ /***** INPUT STREAM PARSER *****/ /***** *****/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ #define IS_CID_WHITESPACE( c ) ( (c) == ' ' || (c) == '\t' ) #define IS_CID_LINESPACE( c ) ( (c) == '\r' || (c) == '\n' ) #define IS_CID_SPACE( c ) ( IS_CID_WHITESPACE( c ) || IS_CID_LINESPACE( c ) ) LOCAL_FUNC void CID_Skip_Spaces( CID_Parser* parser ) { FT_Byte* cur = parser->cursor; FT_Byte* limit = parser->limit; while ( cur < limit ) { FT_Byte c = *cur; if ( !IS_CID_SPACE( c ) ) break; cur++; } parser->cursor = cur; } LOCAL_FUNC void CID_ToToken( CID_Parser* parser, CID_Token_Rec* token ) { FT_Byte* cur; FT_Byte* limit; FT_Byte starter, ender; FT_Int embed; token->type = t1_token_none; token->start = 0; token->limit = 0; /* first of all, skip space */ CID_Skip_Spaces( parser ); cur = parser->cursor; limit = parser->limit; if ( cur < limit ) { switch ( *cur ) { /************* check for strings ***********************/ case '(': token->type = t1_token_string; ender = ')'; goto Lookup_Ender; /************* check for programs/array ****************/ case '{': token->type = t1_token_array; ender = '}'; goto Lookup_Ender; /************* check for table/array ******************/ case '[': token->type = t1_token_array; ender = ']'; Lookup_Ender: embed = 1; starter = *cur++; token->start = cur; while ( cur < limit ) { if ( *cur == starter ) embed++; else if ( *cur == ender ) { embed--; if ( embed <= 0 ) { token->limit = cur++; break; } } cur++; } break; /* **************** otherwise, it is any token **********/ default: token->start = cur++; token->type = t1_token_any; while ( cur < limit && !IS_CID_SPACE( *cur ) ) cur++; token->limit = cur; } if ( !token->limit ) { token->start = 0; token->type = t1_token_none; } parser->cursor = cur; } } LOCAL_FUNC void CID_ToTokenArray( CID_Parser* parser, CID_Token_Rec* tokens, FT_UInt max_tokens, FT_Int* pnum_tokens ) { CID_Token_Rec master; *pnum_tokens = -1; CID_ToToken( parser, &master ); if ( master.type == t1_token_array ) { FT_Byte* old_cursor = parser->cursor; FT_Byte* old_limit = parser->limit; CID_Token_Rec* cur = tokens; CID_Token_Rec* limit = cur + max_tokens; parser->cursor = master.start; parser->limit = master.limit; while ( parser->cursor < parser->limit ) { CID_Token_Rec token; CID_ToToken( parser, &token ); if ( !token.type ) break; if ( cur < limit ) *cur = token; cur++; } *pnum_tokens = cur - tokens; parser->cursor = old_cursor; parser->limit = old_limit; } } static FT_Long t1_toint( FT_Byte** cursor, FT_Byte* limit ) { FT_Long result = 0; FT_Byte* cur = *cursor; FT_Byte c = '\0', d; for ( ; cur < limit; cur++ ) { c = *cur; d = (FT_Byte)( c - '0' ); if ( d < 10 ) break; if ( c == '-' ) { cur++; break; } } if ( cur < limit ) { do { d = (FT_Byte)( cur[0] - '0' ); if ( d >= 10 ) break; result = result * 10 + d; cur++; } while ( cur < limit ); if ( c == '-' ) result = -result; } *cursor = cur; return result; } static FT_Long t1_tofixed( FT_Byte** cursor, FT_Byte* limit, FT_Long power_ten ) { FT_Byte* cur = *cursor; FT_Long num, divider, result; FT_Int sign = 0; FT_Byte d; if ( cur >= limit ) return 0; /* first of all, read the integer part */ result = t1_toint( &cur, limit ) << 16; num = 0; divider = 1; if ( result < 0 ) { sign = 1; result = -result; } if ( cur >= limit ) goto Exit; /* read decimal part, if any */ if ( *cur == '.' && cur + 1 < limit ) { cur++; for (;;) { d = (FT_Byte)( *cur - '0' ); if ( d >= 10 ) break; if ( divider < 10000000L ) { num = num * 10 + d; divider *= 10; } cur++; if ( cur >= limit ) break; } } /* read exponent, if any */ if ( cur + 1 < limit && ( *cur == 'e' || *cur == 'E' ) ) { cur++; power_ten += t1_toint( &cur, limit ); } Exit: /* raise to power of ten if needed */ while ( power_ten > 0 ) { result = result * 10; num = num * 10; power_ten--; } while ( power_ten < 0 ) { result = result / 10; divider = divider * 10; power_ten++; } if ( num ) result += FT_DivFix( num, divider ); if ( sign ) result = -result; *cursor = cur; return result; } static int t1_tobool( FT_Byte** cursor, FT_Byte* limit ) { FT_Byte* cur = *cursor; FT_Bool result = 0; /* return 1 if we find a "true", 0 otherwise */ if ( cur + 3 < limit && cur[0] == 't' && cur[1] == 'r' && cur[2] == 'u' && cur[3] == 'e' ) { result = 1; cur += 5; } else if ( cur + 4 < limit && cur[0] == 'f' && cur[1] == 'a' && cur[2] == 'l' && cur[3] == 's' && cur[4] == 'e' ) { result = 0; cur += 6; } *cursor = cur; return result; } static FT_Int t1_tocoordarray( FT_Byte** cursor, FT_Byte* limit, FT_Int max_coords, FT_Short* coords ) { FT_Byte* cur = *cursor; FT_Int count = 0; FT_Byte c, ender; if ( cur >= limit ) goto Exit; /* check for the beginning of an array. */ /* If not, only one number will be read */ c = *cur; ender = 0; if ( c == '[' ) ender = ']'; if ( c == '{' ) ender = '}'; if ( ender ) cur++; /* now, read the coordinates */ for ( ; cur < limit; ) { /* skip whitespace in front of data */ for (;;) { c = *cur; if ( c != ' ' && c != '\t' ) break; cur++; if ( cur >= limit ) goto Exit; } if ( count >= max_coords || c == ender ) break; coords[count] = (FT_Short)( t1_tofixed( &cur, limit, 0 ) >> 16 ); count++; if ( !ender ) break; } Exit: *cursor = cur; return count; } static FT_Int t1_tofixedarray( FT_Byte** cursor, FT_Byte* limit, FT_Int max_values, FT_Fixed* values, FT_Int power_ten ) { FT_Byte* cur = *cursor; FT_Int count = 0; FT_Byte c, ender; if ( cur >= limit ) goto Exit; /* check for the beginning of an array. */ /* If not, only one number will be read */ c = *cur; ender = 0; if ( c == '[' ) ender = ']'; if ( c == '{' ) ender = '}'; if ( ender ) cur++; /* now, read the values */ for ( ; cur < limit; ) { /* skip whitespace in front of data */ for (;;) { c = *cur; if ( c != ' ' && c != '\t' ) break; cur++; if ( cur >= limit ) goto Exit; } if ( count >= max_values || c == ender ) break; values[count] = t1_tofixed( &cur, limit, power_ten ); count++; if ( !ender ) break; } Exit: *cursor = cur; return count; } /* Loads a simple field (i.e. non-table) into the current */ /* list of objects */ LOCAL_FUNC FT_Error CID_Load_Field( CID_Parser* parser, const CID_Field_Rec* field, void* object ) { CID_Token_Rec token; FT_Byte* cur; FT_Byte* limit; FT_UInt count; FT_UInt index; FT_Error error; CID_ToToken( parser, &token ); if ( !token.type ) goto Fail; count = 1; index = 0; cur = token.start; limit = token.limit; { FT_Byte* q = (FT_Byte*)object + field->offset; FT_Long val; FT_String* string; switch ( field->type ) { case t1_field_bool: val = t1_tobool( &cur, limit ); goto Store_Integer; case t1_field_fixed: val = t1_tofixed( &cur, limit, 0 ); goto Store_Integer; case t1_field_integer: val = t1_toint( &cur, limit ); Store_Integer: switch ( field->size ) { case 1: *(FT_Byte*)q = (FT_Byte)val; break; case 2: *(FT_UShort*)q = (FT_UShort)val; break; case 4: *(FT_Int32*)q = (FT_Int)val; break; default: /* for 64-bit systems */ *(FT_Long*)q = val; } break; case t1_field_string: { FT_Memory memory = parser->memory; FT_UInt len = limit-cur; if ( ALLOC( string, len + 1 ) ) goto Exit; MEM_Copy( string, cur, len ); string[len] = 0; *(FT_String**)q = string; } break; default: /* an error occurred */ goto Fail; } } error = 0; Exit: return error; Fail: error = T1_Err_Invalid_File_Format; goto Exit; } #define T1_MAX_TABLE_ELEMENTS 32 LOCAL_FUNC FT_Error CID_Load_Field_Table( CID_Parser* parser, const CID_Field_Rec* field, void* object ) { CID_Token_Rec elements[T1_MAX_TABLE_ELEMENTS]; CID_Token_Rec* token; FT_Int num_elements; FT_Error error = 0; FT_Byte* old_cursor; FT_Byte* old_limit; CID_Field_Rec fieldrec = *(CID_Field_Rec*)field; fieldrec.type = t1_field_integer; if ( field->type == t1_field_fixed_array ) fieldrec.type = t1_field_fixed; CID_ToTokenArray( parser, elements, 32, &num_elements ); if ( num_elements < 0 ) goto Fail; if ( num_elements > T1_MAX_TABLE_ELEMENTS ) num_elements = T1_MAX_TABLE_ELEMENTS; old_cursor = parser->cursor; old_limit = parser->limit; /* we store the elements count */ if ( field->count_offset ) *(FT_Byte*)( (FT_Byte*)object + field->count_offset ) = num_elements; /* we now load each element, adjusting the field.offset on each one */ token = elements; for ( ; num_elements > 0; num_elements--, token++ ) { parser->cursor = token->start; parser->limit = token->limit; CID_Load_Field( parser, &fieldrec, object ); fieldrec.offset += fieldrec.size; } parser->cursor = old_cursor; parser->limit = old_limit; Exit: return error; Fail: error = T1_Err_Invalid_File_Format; goto Exit; } LOCAL_FUNC FT_Long CID_ToInt( CID_Parser* parser ) { return t1_toint( &parser->cursor, parser->limit ); } LOCAL_FUNC FT_Int CID_ToCoordArray( CID_Parser* parser, FT_Int max_coords, FT_Short* coords ) { return t1_tocoordarray( &parser->cursor, parser->limit, max_coords, coords ); } LOCAL_FUNC FT_Int CID_ToFixedArray( CID_Parser* parser, FT_Int max_values, FT_Fixed* values, FT_Int power_ten ) { return t1_tofixedarray( &parser->cursor, parser->limit, max_values, values, power_ten ); } #if 0 /* return the value of an hexadecimal digit */ static int hexa_value( char c ) { unsigned int d; d = (unsigned int)( c - '0' ); if ( d <= 9 ) return (int)d; d = (unsigned int)( c - 'a' ); if ( d <= 5 ) return (int)( d + 10 ); d = (unsigned int)( c - 'A' ); if ( d <= 5 ) return (int)( d + 10 ); return -1; } #endif /* 0 */ LOCAL_FUNC FT_Error CID_New_Parser( CID_Parser* parser, FT_Stream stream, FT_Memory memory ) { FT_Error error; FT_ULong base_offset, offset, ps_len; FT_Byte buffer[256 + 10]; FT_Int buff_len; MEM_Set( parser, 0, sizeof ( *parser ) ); parser->stream = stream; parser->memory = memory; base_offset = FILE_Pos(); /* first of all, check the font format in the header */ if ( ACCESS_Frame( 31 ) ) goto Exit; if ( strncmp( (char *)stream->cursor, "%!PS-Adobe-3.0 Resource-CIDFont", 31 ) ) { FT_TRACE2(( "[not a valid CID-keyed font]\n" )); error = FT_Err_Unknown_File_Format; } FORGET_Frame(); if ( error ) goto Exit; /* now, read the rest of the file, until we find a `StartData' */ buff_len = 256; for (;;) { FT_Byte *p, *limit = buffer + 256; /* fill input buffer */ buff_len -= 256; if ( buff_len > 0 ) MEM_Move( buffer, limit, buff_len ); if ( FILE_Read( buffer, 256 + 10 - buff_len ) ) goto Exit; buff_len = 256 + 10; /* look for `StartData' */ for ( p = buffer; p < limit; p++ ) { if ( p[0] == 'S' && strncmp( (char*)p, "StartData", 9 ) == 0 ) { /* save offset of binary data after `StartData' */ offset = FILE_Pos() - ( limit - p ) + 10; goto Found; } } } Found: /* we have found the start of the binary data. We will now */ /* rewind and extract the frame of corresponding to the Postscript */ /* section */ ps_len = offset - base_offset; if ( FILE_Seek( base_offset ) || EXTRACT_Frame( ps_len, parser->postscript ) ) goto Exit; parser->data_offset = offset; parser->postscript_len = ps_len; parser->cursor = parser->postscript; parser->limit = parser->cursor + ps_len; parser->num_dict = -1; Exit: return error; } LOCAL_FUNC void CID_Done_Parser( CID_Parser* parser ) { /* always free the private dictionary */ if ( parser->postscript ) { FT_Stream stream = parser->stream; RELEASE_Frame( parser->postscript ); } } /* END */