ref: 2b9be99c2a6a3b7e27e4043685475ac06f5951ab
dir: /src/cff/t2gload.c/
/***************************************************************************/ /* */ /* t2gload.c */ /* */ /* OpenType Glyph Loader (body). */ /* */ /* Copyright 1996-1999 by */ /* David Turner, Robert Wilhelm, and Werner Lemberg. */ /* */ /* This file is part of the FreeType project, and may only be used */ /* modified and distributed under the terms of the FreeType project */ /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ /* this file you indicate that you have read the license and */ /* understand and accept it fully. */ /* */ /***************************************************************************/ #include <freetype/internal/ftdebug.h> #include <freetype/internal/ftcalc.h> #include <freetype/internal/ftstream.h> #include <freetype/internal/sfnt.h> #include <freetype/tttags.h> #undef FT_COMPONENT #define FT_COMPONENT trace_t1gload #include <t2gload.h> typedef enum T2_Operator_ { t2_op_unknown = 0, t2_op_rmoveto, t2_op_hmoveto, t2_op_vmoveto, t2_op_rlineto, t2_op_hlineto, t2_op_vlineto, t2_op_rrcurveto, t2_op_hhcurveto, t2_op_hvcurveto, t2_op_rcurveline, t2_op_rlinecurve, t2_op_vhcurveto, t2_op_vvcurveto, t2_op_flex, t2_op_hflex, t2_op_hflex1, t2_op_flex1, t2_op_endchar, t2_op_hstem, t2_op_vstem, t2_op_hstemhm, t2_op_vstemhm, t2_op_hintmask, t2_op_cntrmask, t2_op_abs, t2_op_add, t2_op_sub, t2_op_div, t2_op_neg, t2_op_random, t2_op_mul, t2_op_sqrt, t2_op_blend, t2_op_drop, t2_op_exch, t2_op_index, t2_op_roll, t2_op_dup, t2_op_put, t2_op_get, t2_op_store, t2_op_load, t2_op_and, t2_op_or, t2_op_not, t2_op_eq, t2_op_ifelse, t2_op_callsubr, t2_op_callgsubr, t2_op_return, /* do not remove */ t2_op_max } T2_Operator; #define T2_COUNT_CHECK_WIDTH 0x80 #define T2_COUNT_EXACT 0x40 #define T2_COUNT_CLEAR_STACK 0x20 static const FT_Byte t2_argument_counts[] = { 0, /* unknown */ 2 | T2_COUNT_CHECK_WIDTH | T2_COUNT_EXACT, /* rmoveto */ 1 | T2_COUNT_CHECK_WIDTH | T2_COUNT_EXACT, 1 | T2_COUNT_CHECK_WIDTH | T2_COUNT_EXACT, 0 | T2_COUNT_CLEAR_STACK, /* rlineto */ 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, /* rrcurveto */ 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 0 | T2_COUNT_CLEAR_STACK, 13, /* flex */ 7, 9, 11, 0, /* enchar */ 2 | T2_COUNT_CHECK_WIDTH, /* hstem */ 2 | T2_COUNT_CHECK_WIDTH, 2 | T2_COUNT_CHECK_WIDTH, 2 | T2_COUNT_CHECK_WIDTH, 0, /* hintmask */ 0, /* cntrmask */ 1, /* abs */ 2, 2, 2, 1, 0, 2, 1, 1, /* blend */ 1, /* drop */ 2, 1, 2, 1, 2, /* put */ 1, 4, 3, 2, /* and */ 2, 1, 2, 4, 1, /* callsubr */ 1, 0 }; /* required for the tracing mode */ #undef FT_COMPONENT #define FT_COMPONENT trace_ttgload /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ /********** *********/ /********** *********/ /********** GENERIC CHARSTRINGS PARSING *********/ /********** *********/ /********** *********/ /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ /********************************************************************* * * <Function> * T2_Init_Builder * * <Description> * Initialise a given glyph builder. * * <Input> * builder :: glyph builder to initialise * face :: current face object * size :: current size object * glyph :: current glyph object * *********************************************************************/ static void T2_Init_Builder( T2_Builder* builder, TT_Face face, T2_Size size, T2_GlyphSlot glyph ) { builder->path_begun = 0; builder->load_points = 1; builder->face = face; builder->glyph = glyph; builder->memory = face->root.memory; if (glyph) { builder->base = glyph->root.outline; builder->max_points = glyph->max_points; builder->max_contours = glyph->max_contours; } if (size) { builder->scale_x = size->metrics.x_scale; builder->scale_y = size->metrics.y_scale; } builder->pos_x = 0; builder->pos_y = 0; builder->left_bearing.x = 0; builder->left_bearing.y = 0; builder->advance.x = 0; builder->advance.y = 0; builder->base.n_points = 0; builder->base.n_contours = 0; builder->current = builder->base; } /********************************************************************* * * <Function> * T2_Done_Builder * * <Description> * Finalise a given glyph builder. Its content can still be * used after the call, but the function saves important information * within the corresponding glyph slot. * * <Input> * builder :: glyph builder to initialise * *********************************************************************/ static void T2_Done_Builder( T2_Builder* builder ) { T2_GlyphSlot glyph = builder->glyph; if (glyph) { glyph->root.outline = builder->base; glyph->max_points = builder->max_points; glyph->max_contours = builder->max_contours; } } /********************************************************************* * * <Function> * T2_Init_Decoder * * <Description> * Initialise a given Type 2 decoder for parsing * * <Input> * decoder :: Type 1 decoder to initialise * funcs :: hinter functions interface * *********************************************************************/ static FT_Int t2_compute_bias( FT_UInt num_subrs ) { FT_Int result; if (num_subrs < 1240) result = 107; else if (num_subrs < 33900) result = 1131; else result = 32768; return result; } LOCAL_FUNC void T2_Init_Decoder( T2_Decoder* decoder, TT_Face face, T2_Size size, T2_GlyphSlot slot ) { CFF_Font* cff = (CFF_Font*)face->other; /* clear everything */ MEM_Set( decoder, 0, sizeof(*decoder) ); /* initialise builder */ T2_Init_Builder( &decoder->builder, face, size, slot ); /* initialise Type2 decoder */ decoder->num_locals = cff->num_local_subrs; decoder->num_globals = cff->num_global_subrs; decoder->locals = cff->local_subrs; decoder->globals = cff->global_subrs; decoder->locals_bias = t2_compute_bias( decoder->num_locals ); decoder->globals_bias = t2_compute_bias( decoder->num_globals ); decoder->glyph_width = cff->private_dict.default_width; decoder->nominal_width = cff->private_dict.nominal_width; } /* check that there is enough room for "count" more points */ static FT_Error check_points( T2_Builder* builder, FT_Int count ) { FT_Outline* base = &builder->base; FT_Outline* outline = &builder->current; if (!builder->load_points) return FT_Err_Ok; count += base->n_points + outline->n_points; /* realloc points table if necessary */ if ( count >= builder->max_points ) { FT_Error error; FT_Memory memory = builder->memory; FT_Int increment = outline->points - base->points; FT_Int current = builder->max_points; while ( builder->max_points < count ) builder->max_points += 8; if ( REALLOC_ARRAY( base->points, current, builder->max_points, FT_Vector ) || REALLOC_ARRAY( base->tags, current, builder->max_points, FT_Byte ) ) { builder->error = error; return error; } outline->points = base->points + increment; outline->tags = base->tags + increment; } return FT_Err_Ok; } /* add a new point, do not check room */ static void add_point( T2_Builder* builder, FT_Pos x, FT_Pos y, FT_Byte flag ) { FT_Outline* outline = &builder->current; if (builder->load_points) { FT_Vector* point = outline->points + outline->n_points; FT_Byte* control = (FT_Byte*)outline->tags + outline->n_points; point->x = x >> 16; point->y = y >> 16; *control = ( flag ? FT_Curve_Tag_On : FT_Curve_Tag_Cubic ); builder->last = *point; } outline->n_points++; } /* check room for a new on-curve point, then add it */ static FT_Error add_point1( T2_Builder* builder, FT_Pos x, FT_Pos y ) { FT_Error error; error = check_points(builder,1); if (!error) add_point( builder, x, y, 1 ); return error; } /* check room for a new contour, then add it */ static FT_Error add_contour( T2_Builder* builder ) { FT_Outline* base = &builder->base; FT_Outline* outline = &builder->current; if (!builder->load_points) { outline->n_contours++; return FT_Err_Ok; } /* realloc contours array if necessary */ if ( base->n_contours + outline->n_contours >= builder->max_contours && builder->load_points ) { FT_Error error; FT_Memory memory = builder->memory; FT_Int increment = outline->contours - base->contours; FT_Int current = builder->max_contours; builder->max_contours += 4; if ( REALLOC_ARRAY( base->contours, current, builder->max_contours, FT_Short ) ) { builder->error = error; return error; } outline->contours = base->contours + increment; } if (outline->n_contours > 0) outline->contours[ outline->n_contours-1 ] = outline->n_points-1; outline->n_contours++; return FT_Err_Ok; } /* if a path was begun, add its first on-curve point */ static FT_Error start_point( T2_Builder* builder, FT_Pos x, FT_Pos y ) { /* test wether we're building a new contour */ if (!builder->path_begun) { FT_Error error; builder->path_begun = 1; error = add_contour( builder ); if (error) return error; } return add_point1( builder, x, y ); } /* close the current contour */ static void close_contour( T2_Builder* builder ) { FT_Outline* outline = &builder->current; if ( outline->n_contours > 0 ) outline->contours[outline->n_contours-1] = outline->n_points-1; } /********************************************************************* * * <Function> * T2_Parse_CharStrings * * <Description> * Parses a given Type 1 charstrings program * * <Input> * decoder :: current Type 1 decoder * charstring_base :: base of the charstring stream * charstring_len :: length in bytes of the charstring stream * num_subrs :: number of sub-routines * subrs_base :: array of sub-routines addresses * subrs_len :: array of sub-routines lengths * * <Return> * Error code. 0 means success. * *********************************************************************/ #define USE_ARGS(n) top -= n; if (top < decoder->stack) goto Stack_Underflow LOCAL_FUNC FT_Error T2_Parse_CharStrings( T2_Decoder* decoder, FT_Byte* charstring_base, FT_Int charstring_len ) { FT_Error error; T2_Decoder_Zone* zone; FT_Byte* ip; FT_Byte* limit; T2_Builder* builder = &decoder->builder; FT_Outline* outline; FT_Pos x, y; FT_Fixed seed; FT_Fixed* stack; /* set default width */ decoder->num_hints = 0; decoder->read_width = 1; /* compute random seed from stack address of parameter */ seed = (FT_Fixed)(char*)&seed ^ (FT_Fixed)(char*)&decoder ^ (FT_Fixed)(char*)&charstring_base; seed = (seed ^ (seed >> 10) ^ (seed >> 20)) & 0xFFFF; if (seed == 0) seed = 0x7384; /* First of all, initialise the decoder */ decoder->top = decoder->stack; decoder->zone = decoder->zones; zone = decoder->zones; stack = decoder->top; builder->path_begun = 0; zone->base = charstring_base; limit = zone->limit = charstring_base + charstring_len; ip = zone->cursor = zone->base; error = FT_Err_Ok; outline = &builder->current; x = builder->pos_x; y = builder->pos_y; /* now, execute loop */ while ( ip < limit ) { T2_Operator op; FT_Byte v; FT_Byte count; /********************************************************************/ /* */ /* Decode operator or operand */ /* */ /* */ v = *ip++; if (v >= 32 || v == 28) { FT_Int shift = 16; FT_Long val; /* this is an operand, push it on the stack */ if ( v == 28) { if ( ip+1 >= limit ) goto Syntax_Error; val = (FT_Short)(((FT_Int)ip[0] << 8) + ip[1]); ip += 2; } else if ( v < 247 ) val = v - 139; else if ( v < 251 ) { if ( ip >= limit ) goto Syntax_Error; val = (v-247)*256 + *ip++ + 108; } else if ( v < 255 ) { if ( ip >= limit ) goto Syntax_Error; val = -((v-251)*256) - *ip++ - 108; } else { if ( ip + 3 >= limit ) goto Syntax_Error; val = ((FT_Long)ip[0] << 24) | ((FT_Long)ip[1] << 16) | ((FT_Long)ip[2] << 8) | ip[3]; ip += 4; shift = 0; } if (decoder->top - stack >= T2_MAX_OPERANDS) goto Stack_Overflow; val <<= shift; *decoder->top ++ = val; #ifdef FT_DEBUG_LEVEL_TRACE if (!(val & 0xFFFF)) FT_TRACE4(( " %d", (FT_Int)(val >> 16) )); else FT_TRACE4(( " %.2f", val/65536.0 )); #endif } else { FT_Fixed* args = decoder->top; FT_Int num_args = args - decoder->stack; FT_Int req_args; /* find operator */ op = t2_op_unknown; switch (v) { case 1: op = t2_op_hstem; break; case 3: op = t2_op_vstem; break; case 4: op = t2_op_vmoveto; break; case 5: op = t2_op_rlineto; break; case 6: op = t2_op_hlineto; break; case 7: op = t2_op_vlineto; break; case 8: op = t2_op_rrcurveto; break; case 10: op = t2_op_callsubr; break; case 11: op = t2_op_return; break; case 12: { if (ip >= limit) goto Syntax_Error; v = *ip++; switch (v) { case 3: op = t2_op_and; break; case 4: op = t2_op_or; break; case 5: op = t2_op_not; break; case 8: op = t2_op_store; break; case 9: op = t2_op_abs; break; case 10: op = t2_op_add; break; case 11: op = t2_op_sub; break; case 12: op = t2_op_div; break; case 13: op = t2_op_load; break; case 14: op = t2_op_neg; break; case 15: op = t2_op_eq; break; case 18: op = t2_op_drop; break; case 20: op = t2_op_put; break; case 21: op = t2_op_get; break; case 22: op = t2_op_ifelse; break; case 23: op = t2_op_random; break; case 24: op = t2_op_mul; break; case 26: op = t2_op_sqrt; break; case 27: op = t2_op_dup; break; case 28: op = t2_op_exch; break; case 29: op = t2_op_index; break; case 30: op = t2_op_roll; break; case 34: op = t2_op_hflex; break; case 35: op = t2_op_flex; break; case 36: op = t2_op_hflex1; break; case 37: op = t2_op_flex1; break; default: /* decrement ip for syntax error message */ ip--; } } break; case 14: op = t2_op_endchar; break; case 16: op = t2_op_blend; break; case 18: op = t2_op_hstemhm; break; case 19: op = t2_op_hintmask; break; case 20: op = t2_op_cntrmask; break; case 21: op = t2_op_rmoveto; break; case 22: op = t2_op_hmoveto; break; case 23: op = t2_op_vstemhm; break; case 24: op = t2_op_rcurveline; break; case 25: op = t2_op_rlinecurve; break; case 26: op = t2_op_vvcurveto; break; case 27: op = t2_op_hhcurveto; break; case 29: op = t2_op_callgsubr; break; case 30: op = t2_op_vhcurveto; break; case 31: op = t2_op_hvcurveto; break; default: ; } if ( op == t2_op_unknown ) goto Syntax_Error; /* check arguments */ req_args = count = t2_argument_counts[op]; if (req_args & T2_COUNT_CHECK_WIDTH) { args = stack; if ( decoder->read_width ) { decoder->glyph_width = decoder->nominal_width + (stack[0] >> 16); decoder->read_width = 0; num_args--; args++; } req_args = 0; } req_args &= 15; if (num_args < req_args) goto Stack_Underflow; args -= req_args; num_args -= req_args; switch (op) { case t2_op_hstem: case t2_op_vstem: case t2_op_hstemhm: case t2_op_vstemhm: { /* if the number of arguments is no even, the first one */ /* is simply the glyph width.. encoded as the difference */ /* to nominalWidthX */ FT_TRACE4(( op == t2_op_hstem ? " hstem" : op == t2_op_vstem ? " vstem" : op == t2_op_hstemhm ? " hstemhm" : " vstemhm" )); decoder->num_hints += num_args/2; args = stack; } break; case t2_op_hintmask: case t2_op_cntrmask: { FT_TRACE4(( op == t2_op_hintmask ? " hintmask" : " cntrmask" )); decoder->num_hints += num_args/2; ip += (decoder->num_hints+7) >> 3; if (ip >= limit) goto Syntax_Error; args = stack; } break; case t2_op_rmoveto: { FT_TRACE4(( " rmoveto" )); close_contour( builder ); builder->path_begun = 0; x += args[0]; y += args[1]; args = stack; } break; case t2_op_vmoveto: { FT_TRACE4(( " vmoveto" )); close_contour( builder ); builder->path_begun = 0; y += args[0]; args = stack; } break; case t2_op_hmoveto: { FT_TRACE4(( " vmoveto" )); close_contour( builder ); builder->path_begun = 0; x += args[0]; args = stack; } break; case t2_op_rlineto: { FT_TRACE4(( " rlineto" )); if ( start_point ( builder, x, y ) || check_points( builder, num_args/2 ) ) goto Memory_Error; if ( num_args < 2 || num_args & 1 ) goto Stack_Underflow; args = stack; while ( args < decoder->top ) { x += args[0]; y += args[1]; add_point( builder, x, y, 1 ); args += 2; } args = stack; } break; case t2_op_hlineto: case t2_op_vlineto: { FT_Int phase = ( op == t2_op_hlineto ); FT_TRACE4(( op == t2_op_hlineto ? " hlineto" : " vlineto" )); if ( start_point ( builder, x, y ) || check_points( builder, num_args ) ) goto Memory_Error; args = stack; while (args < decoder->top ) { if (phase) x += args[0]; else y += args[0]; if (add_point1( builder, x, y )) goto Memory_Error; args++; phase ^= 1; } args = stack; } break; case t2_op_rrcurveto: { FT_TRACE4(( " rrcurveto" )); /* check number of arguments, must be a multiple of 6 */ if (num_args % 6 != 0) goto Stack_Underflow; if ( start_point ( builder, x, y ) || check_points( builder, num_args/2 ) ) goto Memory_Error; args = stack; while (args < decoder->top) { x += args[0]; y += args[1]; add_point( builder, x, y, 0 ); x += args[2]; y += args[3]; add_point( builder, x, y, 0 ); x += args[4]; y += args[5]; add_point( builder, x, y, 1 ); args += 6; } args = stack; } break; case t2_op_vvcurveto: { FT_TRACE4(( " vvcurveto" )); if ( start_point ( builder, x, y ) ) goto Memory_Error; args = stack; if (num_args & 1) { x += args[0]; args++; num_args--; } if (num_args % 4 != 0) goto Stack_Underflow; if (check_points( builder, 3*(num_args/4) )) goto Memory_Error; while (args < decoder->top) { y += args[0]; add_point( builder, x, y, 0 ); x += args[1]; y += args[2]; add_point( builder, x, y, 0 ); y += args[3]; add_point( builder, x, y, 1 ); args += 4; } args = stack; } break; case t2_op_hhcurveto: { FT_TRACE4(( " hhcurveto" )); if ( start_point ( builder, x, y ) ) goto Memory_Error; args = stack; if (num_args & 1) { y += args[0]; args++; num_args--; } if (num_args % 4 != 0) goto Stack_Underflow; if (check_points( builder, 3*(num_args/4) )) goto Memory_Error; while (args < decoder->top) { x += args[0]; add_point( builder, x, y, 0 ); x += args[1]; y += args[2]; add_point( builder, x, y, 0 ); x += args[3]; add_point( builder, x, y, 1 ); args += 4; } args = stack; } break; case t2_op_vhcurveto: case t2_op_hvcurveto: { FT_Int phase; FT_TRACE4(( op == t2_op_vhcurveto ? " vhcurveto" : " hvcurveto" )); if ( start_point ( builder, x, y ) ) goto Memory_Error; args = stack; if (num_args < 4 || (num_args % 4) > 1 ) goto Stack_Underflow; if (check_points( builder, (num_args/4)*3 )) goto Stack_Underflow; phase = ( op == t2_op_hvcurveto ); while (num_args >= 4) { num_args -= 4; if (phase) { x += args[0]; add_point( builder, x, y, 0 ); x += args[1]; y += args[2]; add_point( builder, x, y, 0 ); y += args[3]; if (num_args == 1) x += args[4]; add_point( builder, x, y, 1 ); } else { y += args[0]; add_point( builder, x, y, 0 ); x += args[1]; y += args[2]; add_point( builder, x, y, 0 ); x += args[3]; if (num_args == 1) y += args[4]; add_point( builder, x, y, 1 ); } args += 4; phase ^= 1; } args = stack; } break; case t2_op_rlinecurve: case t2_op_rcurveline: { FT_Int mod6 = num_args % 6; FT_TRACE4(( op == t2_op_rcurveline ? " rcurveline" : " rlinecurve" )); if ( num_args < 8 || (mod6 != 0 && mod6 != 2) ) goto Stack_Underflow; if ( start_point ( builder, x, y ) || check_points( builder, (num_args/6)*3 + mod6/2 ) ) goto Memory_Error; args = stack; if (op == t2_op_rlinecurve && mod6) { x += args[0]; y += args[1]; add_point( builder, x, y, 1 ); args += 2; num_args -= 2; } while (num_args >= 6) { x += args[0]; y += args[1]; add_point( builder, x, y, 0 ); x += args[2]; y += args[3]; add_point( builder, x, y, 0 ); x += args[4]; y += args[5]; add_point( builder, x, y, 1 ); args += 6; num_args -= 6; } if ( op == t2_op_rcurveline && num_args) { x += args[0]; y += args[1]; add_point( builder, x, y, 1 ); } args = stack; } break; case t2_op_endchar: { FT_TRACE4(( " endchar" )); close_contour( builder ); /* add current outline to the glyph slot */ builder->base.n_points += builder->current.n_points; builder->base.n_contours += builder->current.n_contours; /* return now !! */ FT_TRACE4(( "\n\n" )); return FT_Err_Ok; } case t2_op_abs: { FT_TRACE4(( " abs" )); if (args[0] < 0) args[0] = -args[0]; args++; } break; case t2_op_add: { FT_TRACE4(( " add" )); args[0] += args[1]; args++; } break; case t2_op_sub: { FT_TRACE4(( " sub" )); args[0] -= args[1]; args++; } break; case t2_op_div: { FT_TRACE4(( " div" )); args[0] = FT_DivFix( args[0], args[1] ); args++; } break; case t2_op_neg: { FT_TRACE4(( " neg" )); args[0] = -args[0]; args++; } break; case t2_op_random: { FT_Fixed rand; FT_TRACE4(( " rand" )); rand = seed; if (rand >= 0x8000) rand++; args[0] = rand; seed = FT_MulFix( seed, 0x10000 - seed ); if (seed == 0) seed += 0x2873; args++; } break; case t2_op_mul: { FT_TRACE4(( " mul" )); args[0] = FT_MulFix( args[0], args[1] ); args++; } break; case t2_op_sqrt: { FT_TRACE4(( " sqrt" )); if (args[0] > 0) { FT_Int count = 9; FT_Fixed root = args[0]; FT_Fixed new_root; for (;;) { new_root = ( root + FT_DivFix(args[0],root) + 1 ) >> 1; if (new_root == root || count <= 0) break; root = new_root; } args[0] = new_root; } else args[0] = 0; args++; } break; case t2_op_drop: { /* nothing */ FT_TRACE4(( " drop" )); } break; case t2_op_exch: { FT_Fixed tmp; FT_TRACE4(( " exch" )); tmp = args[0]; args[0] = args[1]; args[1] = tmp; args += 2; } break; case t2_op_index: { FT_Int index = args[0] >> 16; FT_TRACE4(( " index" )); if (index < 0) index = 0; else if (index > num_args-2) index = num_args-2; args[0] = args[-(index+1)]; args++; } break; case t2_op_roll: { FT_Int count = (FT_Int)(args[0] >> 16); FT_Int index = (FT_Int)(args[1] >> 16); FT_TRACE4(( " roll" )); if (count <= 0) count = 1; args -= count; if (args < stack) goto Stack_Underflow; if (index >= 0) { while (index > 0) { FT_Fixed tmp = args[count-1]; FT_Int i; for ( i = count-2; i >= 0; i-- ) args[i+1] = args[i]; args[0] = tmp; index--; } } else { while (index < 0) { FT_Fixed tmp = args[0]; FT_Int i; for ( i = 0; i < count-1; i++ ) args[i] = args[i+1]; args[count-1] = tmp; index++; } } args += count; } break; case t2_op_dup: { FT_TRACE4(( " dup" )); args[1] = args[0]; args++; } break; case t2_op_put: { FT_Fixed val = args[0]; FT_Int index = (FT_Int)(args[1] >> 16); FT_TRACE4(( " put" )); if (index >= 0 && index < decoder->len_buildchar) decoder->buildchar[index] = val; } break; case t2_op_get: { FT_Int index = (FT_Int)(args[0] >> 16); FT_Fixed val = 0; FT_TRACE4(( " get" )); if (index >= 0 && index < decoder->len_buildchar) val = decoder->buildchar[index]; args[0] = val; args++; } break; case t2_op_store: FT_TRACE4(( " store ")); goto Unimplemented; case t2_op_load: FT_TRACE4(( " load" )); goto Unimplemented; case t2_op_and: { FT_Fixed cond = args[0] && args[1]; FT_TRACE4(( " and" )); args[0] = cond ? 0x10000 : 0; args++; } break; case t2_op_or: { FT_Fixed cond = args[0] || args[1]; FT_TRACE4(( " or" )); args[0] = cond ? 0x10000 : 0; args++; } break; case t2_op_eq: { FT_Fixed cond = !args[0]; FT_TRACE4(( " eq" )); args[0] = cond ? 0x10000 : 0; args++; } break; case t2_op_ifelse: { FT_Fixed cond = args[2] <= args[3]; FT_TRACE4(( " ifelse" )); if (!cond) args[0] = args[1]; args++; } break; case t2_op_callsubr: { FT_UInt index = (FT_UInt)((args[0] >> 16) + decoder->locals_bias); FT_TRACE4(( " callsubr(%d)", index )); if (index >= decoder->num_locals) { FT_ERROR(( "T2.Parse_Charstrings: invalid local subr index\n" )); goto Syntax_Error; } if ( zone - decoder->zones >= T2_MAX_SUBRS_CALLS ) { FT_ERROR(( "T2.Parse_CharStrings : too many nested subrs\n" )); goto Syntax_Error; } zone->cursor = ip; /* save current instruction pointer */ zone++; zone->base = decoder->locals[index]; zone->limit = decoder->locals[index+1]; zone->cursor = zone->base; if (!zone->base) { FT_ERROR(( "T2.Parse_CharStrings : invoking empty subrs !!\n" )); goto Syntax_Error; } decoder->zone = zone; ip = zone->base; limit = zone->limit; } break; case t2_op_callgsubr: { FT_UInt index = (FT_UInt)((args[0] >> 16) + decoder->globals_bias); FT_TRACE4(( " callgsubr(%d)", index )); if (index >= decoder->num_globals) { FT_ERROR(( "T2.Parse_Charstrings: invalid global subr index\n" )); goto Syntax_Error; } if ( zone - decoder->zones >= T2_MAX_SUBRS_CALLS ) { FT_ERROR(( "T2.Parse_CharStrings : too many nested subrs\n" )); goto Syntax_Error; } zone->cursor = ip; /* save current instruction pointer */ zone++; zone->base = decoder->globals[index]; zone->limit = decoder->globals[index+1]; zone->cursor = zone->base; if (!zone->base) { FT_ERROR(( "T2.Parse_CharStrings : invoking empty subrs !!\n" )); goto Syntax_Error; } decoder->zone = zone; ip = zone->base; limit = zone->limit; } break; case t2_op_return: { FT_TRACE4(( " return" )); if ( decoder->zone <= decoder->zones ) { FT_ERROR(( "T2.Parse_CharStrings : unexpected return\n" )); goto Syntax_Error; } decoder->zone--; zone = decoder->zone; ip = zone->cursor; limit = zone->limit; } break; default: Unimplemented: FT_ERROR(( "Unimplemented opcode: %d", ip[-1] )); if (ip[-1] == 12) { FT_ERROR(( " %d", ip[0] )); } FT_ERROR(( "\n" )); return FT_Err_Unimplemented_Feature; } decoder->top = args; } /* general operator processing */ } /* while ip < limit */ FT_TRACE4(( "..end..\n\n" )); return error; Syntax_Error: return FT_Err_Invalid_File_Format; Stack_Underflow: return T2_Err_Too_Few_Arguments; Stack_Overflow: return T2_Err_Stack_Overflow; Memory_Error: return builder->error; } /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ /********** *********/ /********** *********/ /********** COMPUTE THE MAXIMUM ADVANCE WIDTH *********/ /********** *********/ /********** The following code is in charge of computing *********/ /********** the maximum advance width of the font. It *********/ /********** quickly process each glyph charstring to *********/ /********** extract the value from either a "sbw" or "seac" *********/ /********** operator. *********/ /********** *********/ /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ #if 0 /* unused until we support pure CFF fonts */ LOCAL_FUNC FT_Error T2_Compute_Max_Advance( TT_Face face, FT_Int *max_advance ) { FT_Error error = 0; T2_Decoder decoder; FT_Int glyph_index; CFF_Font* cff = (CFF_Font*)face->other; *max_advance = 0; /* Initialise load decoder */ T2_Init_Decoder( &decoder, face, 0, 0 ); decoder.builder.metrics_only = 1; decoder.builder.load_points = 0; /* For each glyph, parse the glyph charstring and extract */ /* the advance width.. */ for ( glyph_index = 0; glyph_index < face->root.num_glyphs; glyph_index++ ) { FT_Byte* charstring; FT_ULong charstring_len; /* now get load the unscaled outline */ error = T2_Access_Element( &cff->charstrings_index, glyph_index, &charstring, &charstring_len ); if (!error) { error = T2_Parse_CharStrings( &decoder, charstring, charstring_len ); T2_Forget_Element( &cff->charstrings_index, &charstring ); } /* ignore the error if one occured - skip to next glyph */ error = 0; } *max_advance = decoder.builder.advance.x; return FT_Err_Ok; } #endif /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ /********** *********/ /********** *********/ /********** UNHINTED GLYPH LOADER *********/ /********** *********/ /********** The following code is in charge of loading a *********/ /********** single outline. It completely ignores hinting *********/ /********** and is used when FT_LOAD_NO_HINTING is set. *********/ /********** *********/ /**********************************************************************/ /**********************************************************************/ /**********************************************************************/ LOCAL_FUNC FT_Error T2_Load_Glyph( T2_GlyphSlot glyph, T2_Size size, FT_Int glyph_index, FT_Int load_flags ) { FT_Error error; T2_Decoder decoder; TT_Face face = (TT_Face)glyph->root.face; FT_Bool hinting; CFF_Font* cff = (CFF_Font*)face->other; if (load_flags & FT_LOAD_NO_RECURSE) load_flags |= FT_LOAD_NO_SCALE | FT_LOAD_NO_HINTING; glyph->x_scale = size->metrics.x_scale; glyph->y_scale = size->metrics.y_scale; glyph->root.outline.n_points = 0; glyph->root.outline.n_contours = 0; hinting = ( load_flags & FT_LOAD_NO_SCALE ) == 0 && ( load_flags & FT_LOAD_NO_HINTING ) == 0; glyph->root.format = ft_glyph_format_none; { FT_Byte* charstring; FT_ULong charstring_len; T2_Init_Decoder( &decoder, face, size, glyph ); decoder.builder.no_recurse = (FT_Bool)!!(load_flags & FT_LOAD_NO_RECURSE); /* now load the unscaled outline */ error = T2_Access_Element( &cff->charstrings_index, glyph_index, &charstring, &charstring_len ); if (!error) { error = T2_Parse_CharStrings( &decoder, charstring, charstring_len ); T2_Forget_Element( &cff->charstrings_index, &charstring ); } /* save new glyph tables */ T2_Done_Builder( &decoder.builder ); } /* Now, set the metrics.. - this is rather simple, as : */ /* the left side bearing is the xMin, and the top side */ /* bearing the yMax.. */ if (!error) { /* for composite glyphs, return only the left side bearing and the */ /* advance width.. */ if ( load_flags & FT_LOAD_NO_RECURSE ) { #if 0 glyph->root.metrics.horiBearingX = decoder.builder.left_bearing.x; glyph->root.metrics.horiAdvance = decoder.builder.advance.x; #else glyph->root.metrics.horiBearingX = decoder.builder.left_bearing.x; glyph->root.metrics.horiAdvance = decoder.glyph_width; #endif } else { FT_BBox cbox; FT_Glyph_Metrics* metrics = &glyph->root.metrics; /* copy the _unscaled_ advance width */ #if 0 metrics->horiAdvance = decoder.builder.advance.x; #else metrics->horiAdvance = decoder.glyph_width; #endif /* make up vertical metrics */ metrics->vertBearingX = 0; metrics->vertBearingY = 0; metrics->vertAdvance = 0; glyph->root.format = ft_glyph_format_outline; glyph->root.outline.flags &= ft_outline_owner; if ( size && size->metrics.y_ppem < 24 ) glyph->root.outline.flags |= ft_outline_high_precision; glyph->root.outline.flags |= ft_outline_reverse_fill; /* glyph->root.outline.second_pass = TRUE; glyph->root.outline.high_precision = ( size->root.metrics.y_ppem < 24 ); glyph->root.outline.dropout_mode = 2; */ if ( (load_flags & FT_LOAD_NO_SCALE) == 0 ) { /* scale the outline and the metrics */ FT_Int n; FT_Outline* cur = &decoder.builder.base; FT_Vector* vec = cur->points; FT_Fixed x_scale = glyph->x_scale; FT_Fixed y_scale = glyph->y_scale; /* First of all, scale the points */ for ( n = cur->n_points; n > 0; n--, vec++ ) { vec->x = FT_MulFix( vec->x, x_scale ); vec->y = FT_MulFix( vec->y, y_scale ); } FT_Outline_Get_CBox( &glyph->root.outline, &cbox ); /* Then scale the metrics */ metrics->horiAdvance = FT_MulFix( metrics->horiAdvance, x_scale ); metrics->vertBearingX = FT_MulFix( metrics->vertBearingX, x_scale ); metrics->vertBearingY = FT_MulFix( metrics->vertBearingY, y_scale ); metrics->vertAdvance = FT_MulFix( metrics->vertAdvance, x_scale ); } /* apply the font matrix */ /* FT_Outline_Transform( &glyph->root.outline, cff->font_matrix ); */ /* compute the other metrics */ FT_Outline_Get_CBox( &glyph->root.outline, &cbox ); /* grid fit the bounding box if necessary */ if (hinting) { cbox.xMin &= -64; cbox.yMin &= -64; cbox.xMax = ( cbox.xMax+63 ) & -64; cbox.yMax = ( cbox.yMax+63 ) & -64; } metrics->width = cbox.xMax - cbox.xMin; metrics->height = cbox.yMax - cbox.yMin; metrics->horiBearingX = cbox.xMin; metrics->horiBearingY = cbox.yMax; } } return error; } /* END */