ref: 271106133a2e3e3e434f21fb81a3599381fd047f
dir: /demos/src/ftgrays.c/
/*****************************************************************************/ /* */ /* ftgrays.c - a new 'perfect' anti-aliasing renderer for FreeType 2 */ /* */ /* (c) 2000 David Turner - <[email protected]> */ /* */ /* Beware, this code is still in heavy beta.. */ /* */ /* This is a new anti-aliasing scan-converter for FreeType 2. The */ /* algorithm used here is _very_ different from the one in the standard */ /* "ftraster.c". Actually, "ftgrays.c" computes the _exact_ coverage of */ /* the outline on each pixel cell. */ /* */ /* It is based on ideas that I initially found in Raph Levien's excellent */ /* LibArt graphics library (see www.levien.com/libart for more information, */ /* though the web pages do not tell anything about the renderer, you'll */ /* have to dive in the source code to understand how it works..) */ /* */ /* Note however that this is a _very_ different implementation from */ /* Raph's. Coverage information is stored in a very different way, */ /* and I don't use sorted vector paths. Also, it doesn't use floating */ /* point values.. */ /* */ /* This renderer has the following advantages: */ /* */ /* - doesn't need an intermediate bitmap. Instead, one can supply */ /* a callback fuction that will be called by the renderer to */ /* draw gray spans on any target surface.. You can thus do direct */ /* composition on any kind of bitmap, provided that you give the */ /* renderer the right callback.. */ /* */ /* - perfect anti-aliaser, i.e. computes the _exact_ coverage on */ /* each pixel cell */ /* */ /* - performs a single pass on the outline (the 'standard' FT2 */ /* renderer performs two passes). */ /* */ /* - can easily be modified to render to _any_ number of gray levels */ /* cheaply.. */ /* */ /* - faster than the standard renderer for small (< 20) pixel sizes */ /* */ /* It has the following disadvantages (for now): */ /* */ /* - need more memory than the standard scan-converter to render */ /* a single outline. Note that this may be changed in a near */ /* future (we might be able to pack the data in the TCell structure) */ /* */ /* - a bit slower than the standard renderer for large glyphs (whose */ /* size is typically > 100 pixels), but faster for smaller sizes.. */ /* */ /* - apparently, glyphs rendered with this module are very slightly */ /* more "fuzzy" than those produced with the standard renderer. */ /* */ /* */ #include <ftimage.h> #if 1 #include <string.h> #endif #define ErrRaster_Invalid_Outline -1 #include "ftgrays.h" #ifdef _STANDALONE_ #error "implementation of FT_Outline_Decompose missing !!!" #else #include <freetype.h> /* to link to FT_Outline_Decompose */ #endif /* define this to dump debugging information */ #define xxxDEBUG_GRAYS /* as usual, for the speed hungry :-) */ #ifndef FT_STATIC_RASTER #define RAS_ARG PRaster raster #define RAS_ARG_ PRaster raster, #define RAS_VAR raster #define RAS_VAR_ raster, #define ras (*raster) #else #define RAS_ARG #define RAS_ARG_ #define RAS_VAR #define RAS_VAR_ static TRaster ras; #endif /* must be at least 6 bits !! */ #define PIXEL_BITS 8 #define ONE_PIXEL (1L << PIXEL_BITS) #define PIXEL_MASK (-1L << PIXEL_BITS) #define TRUNC(x) ((x) >> PIXEL_BITS) #define SUBPIXELS(x) ((x) << PIXEL_BITS) #define FLOOR(x) ((x) & -ONE_PIXEL) #define CEILING(x) (((x)+ONE_PIXEL-1) & -ONE_PIXEL) #define ROUND(x) (((x)+ONE_PIXEL/2) & -ONE_PIXEL) #if PIXEL_BITS >= 6 #define UPSCALE(x) ((x) << (PIXEL_BITS-6)) #define DOWNSCALE(x) ((x) >> (PIXEL_BITS-6)) #else #define UPSCALE(x) ((x) >> (6-PIXEL_BITS)) #define DOWNSCALE(x) ((x) << (6-PIXEL_BITS)) #endif /* define if you want to use more compact storage, this increases the number */ /* of cells available in the render pool but slows down the rendering a bit */ /* useful when you have a really tiny render pool */ #define xxxGRAYS_COMPACT /****************************************************************************/ /* */ /* TYPE DEFINITIONS */ /* */ typedef int TScan; /* integer scanline/pixel coordinate */ typedef long TPos; /* sub-pixel coordinate */ /* maximum number of gray spans in a call to the span callback */ #define FT_MAX_GRAY_SPANS 32 #ifdef GRAYS_COMPACT typedef struct TCell_ { short x : 14; short y : 14; int cover : PIXEL_BITS+2; int area : PIXEL_BITS*2+2; } TCell, *PCell; #else typedef struct TCell_ { TScan x; TScan y; int cover; int area; } TCell, *PCell; #endif typedef struct TRaster_ { PCell cells; int max_cells; int num_cells; TScan min_ex, max_ex; TScan min_ey, max_ey; int area; int cover; int invalid; TScan ex, ey; TScan cx, cy; TPos x, y; TScan last_ey; FT_Vector bez_stack[32*3]; int lev_stack[32]; FT_Outline outline; FT_Bitmap target; FT_Span gray_spans[ FT_MAX_GRAY_SPANS ]; int num_gray_spans; FT_Raster_Span_Func render_span; void* render_span_data; int span_y; int band_size; int band_shoot; int conic_level; int cubic_level; void* memory; } TRaster, *PRaster; /****************************************************************************/ /* */ /* INITIALIZE THE CELLS TABLE */ /* */ static void init_cells( RAS_ARG_ void* buffer, long byte_size ) { ras.cells = (PCell)buffer; ras.max_cells = byte_size / sizeof(TCell); ras.num_cells = 0; ras.area = 0; ras.cover = 0; ras.invalid = 1; } /****************************************************************************/ /* */ /* COMPUTE THE OUTLINE BOUNDING BOX */ /* */ static void compute_cbox( RAS_ARG_ FT_Outline* outline ) { FT_Vector* vec = outline->points; FT_Vector* limit = vec + outline->n_points; if ( outline->n_points <= 0 ) { ras.min_ex = ras.max_ex = 0; ras.min_ey = ras.max_ey = 0; return; } ras.min_ex = ras.max_ex = vec->x; ras.min_ey = ras.max_ey = vec->y; vec++; for ( ; vec < limit; vec++ ) { TPos x = vec->x; TPos y = vec->y; if ( x < ras.min_ex ) ras.min_ex = x; if ( x > ras.max_ex ) ras.max_ex = x; if ( y < ras.min_ey ) ras.min_ey = y; if ( y > ras.max_ey ) ras.max_ey = y; } /* truncate the bounding box to integer pixels */ ras.min_ex = ras.min_ex >> 6; ras.min_ey = ras.min_ey >> 6; ras.max_ex = ( ras.max_ex+63 ) >> 6; ras.max_ey = ( ras.max_ey+63 ) >> 6; } /****************************************************************************/ /* */ /* RECORD THE CURRENT CELL IN THE TABLE */ /* */ static int record_cell( RAS_ARG ) { PCell cell; if (!ras.invalid && (ras.area | ras.cover)) { if ( ras.num_cells >= ras.max_cells ) return 1; cell = ras.cells + ras.num_cells++; cell->x = (ras.ex - ras.min_ex); cell->y = (ras.ey - ras.min_ey); cell->area = ras.area; cell->cover = ras.cover; } return 0; } /****************************************************************************/ /* */ /* SET THE CURRENT CELL TO A NEW POSITION */ /* */ static int set_cell( RAS_ARG_ TScan ex, TScan ey ) { int invalid, record, clean; /* move the cell pointer to a new position. We set the "invalid" */ /* flag to indicate that the cell isn't part of those we're interested */ /* in during the render phase.. This means that: */ /* */ /* the new vertical position must be within min_ey..max_ey-1. */ /* the new horizontal position must be strictly less than max_ey */ /* */ /* Note that we a cell is to the left of the clipping region, it is */ /* actually set to the (min_ex-1) horizontal position */ /* */ record = 0; clean = 1; invalid = ( ey < ras.min_ey || ey >= ras.max_ey || ex >= ras.max_ex ); if (!invalid) { /* all cells that are on the left of the clipping region go to the */ /* min_ex-1 horizontal position.. */ if (ex < ras.min_ex) ex = ras.min_ex-1; /* if our position is new, then record the previous cell */ if (ex != ras.ex || ey != ras.ey) record = 1; else clean = ras.invalid; /* do not clean if we didn't move from */ /* a valid cell.. */ } /* record the previous cell if needed (i.e. if we changed the cell */ /* position, of changed the 'invalid' flag..) */ if ( (ras.invalid != invalid || record) && record_cell( RAS_VAR ) ) return 1; if (clean) { ras.area = 0; ras.cover = 0; } ras.invalid = invalid; ras.ex = ex; ras.ey = ey; return 0; } /****************************************************************************/ /* */ /* START A NEW CONTOUR AT A GIVEN CELL */ /* */ static void start_cell( RAS_ARG_ TScan ex, TScan ey ) { if (ex < ras.min_ex) ex = ras.min_ex-1; ras.area = 0; ras.cover = 0; ras.ex = ex; ras.ey = ey; ras.last_ey = SUBPIXELS(ey); ras.invalid = 0; (void)set_cell( RAS_VAR_ ex, ey ); } /****************************************************************************/ /* */ /* RENDER A SCANLINE AS ONE OR MORE CELLS */ /* */ static int render_scanline( RAS_ARG_ TScan ey, TPos x1, TScan y1, TPos x2, TScan y2 ) { TScan ex1, ex2, fx1, fx2, delta; long p, first, dx; int incr, lift, mod, rem; dx = x2-x1; ex1 = TRUNC(x1); /* if (ex1 >= ras.max_ex) ex1 = ras.max_ex-1; */ ex2 = TRUNC(x2); /* if (ex2 >= ras.max_ex) ex2 = ras.max_ex-1; */ fx1 = x1 - SUBPIXELS(ex1); fx2 = x2 - SUBPIXELS(ex2); /* trivial case. Happens often */ if (y1 == y2) return set_cell( RAS_VAR_ ex2, ey ); /* everything is located in a single cell, that is easy ! */ /* */ if ( ex1 == ex2 ) { delta = y2-y1; ras.area += (fx1+fx2)*delta; ras.cover += delta; return 0; } /* ok, we'll have to render a run of adjacent cells on the same */ /* scanline.. */ /* */ p = (ONE_PIXEL-fx1)*(y2-y1); first = ONE_PIXEL; incr = 1; if ( dx < 0 ) { p = fx1*(y2-y1); first = 0; incr = -1; dx = -dx; } delta = p / dx; mod = p % dx; if (mod < 0) { delta--; mod += dx; } ras.area += (fx1+first)*delta; ras.cover += delta; ex1 += incr; if (set_cell( RAS_VAR_ ex1, ey )) goto Error; y1 += delta; if (ex1 != ex2) { p = ONE_PIXEL*(y2-y1); lift = p / dx; rem = p % dx; if (rem < 0) { lift--; rem += dx; } mod -= dx; while (ex1 != ex2) { delta = lift; mod += rem; if (mod >= 0) { mod -= dx; delta++; } ras.area += ONE_PIXEL*delta; ras.cover += delta; y1 += delta; ex1 += incr; if (set_cell( RAS_VAR_ ex1, ey )) goto Error; } } delta = y2-y1; ras.area += (fx2+ONE_PIXEL-first)*delta; ras.cover += delta; return 0; Error: return 1; } /****************************************************************************/ /* */ /* RENDER A GIVEN LINE AS A SERIES OF SCANLINES */ /* */ static int render_line( RAS_ARG_ TPos to_x, TPos to_y ) { TScan ey1, ey2, fy1, fy2; TPos dx, dy, x, x2; int p, rem, mod, lift, delta, first, incr; ey1 = TRUNC(ras.last_ey); ey2 = TRUNC(to_y); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ fy1 = ras.y - ras.last_ey; fy2 = to_y - SUBPIXELS(ey2); dx = to_x - ras.x; dy = to_y - ras.y; /* we should do something about the trivial case where dx == 0, */ /* as it happens very often !! ... XXXXX */ /* perform vertical clipping */ { TScan min, max; min = ey1; max = ey2; if (ey1 > ey2) { min = ey2; max = ey1; } if (min >= ras.max_ey || max < ras.min_ey) goto Fin; } /* everything is on a single scanline */ if ( ey1 == ey2 ) { if (render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 )) goto Error; goto Fin; } /* ok, we'll have to render several scanlines */ p = (ONE_PIXEL-fy1)*dx; first = ONE_PIXEL; incr = 1; if ( dy < 0 ) { p = fy1*dx; first = 0; incr = -1; dy = -dy; } delta = p / dy; mod = p % dy; if (mod < 0) { delta--; mod += dy; } x = ras.x + delta; if (render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first )) goto Error; ey1 += incr; if (set_cell( RAS_VAR_ TRUNC(x), ey1 )) goto Error; if (ey1 != ey2) { p = ONE_PIXEL*dx; lift = p / dy; rem = p % dy; if (rem < 0) { lift--; rem += dy; } mod -= dy; while (ey1 != ey2) { delta = lift; mod += rem; if (mod >= 0) { mod -= dy; delta++; } x2 = x + delta; if (render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL-first, x2, first )) goto Error; x = x2; ey1 += incr; if (set_cell( RAS_VAR_ TRUNC(x), ey1 )) goto Error; } } if (render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL-first, to_x, fy2 )) goto Error; Fin: ras.x = to_x; ras.y = to_y; ras.last_ey = SUBPIXELS(ey2); return 0; Error: return 1; } static void split_conic( FT_Vector* base ) { TPos a, b; base[4].x = base[2].x; b = base[1].x; a = base[3].x = ( base[2].x + b )/2; b = base[1].x = ( base[0].x + b )/2; base[2].x = ( a + b ) / 2; base[4].y = base[2].y; b = base[1].y; a = base[3].y = ( base[2].y + b )/2; b = base[1].y = ( base[0].y + b )/2; base[2].y = ( a + b ) / 2; } static int render_conic( RAS_ARG_ FT_Vector* control, FT_Vector* to ) { TPos dx, dy; int top, level; int* levels; FT_Vector* arc; dx = DOWNSCALE(ras.x) + to->x - (control->x << 1); if (dx < 0) dx = -dx; dy = DOWNSCALE(ras.y) + to->y - (control->y << 1); if (dy < 0) dy = -dy; if (dx < dy) dx = dy; level = 1; dx = dx/ras.conic_level; while ( dx > 0 ) { dx >>= 1; level++; } /* a shortcut to speed things up */ if (level <= 1) { /* we compute the mid-point directly in order to avoid */ /* calling split_conic().. */ TPos to_x, to_y, mid_x, mid_y; to_x = UPSCALE(to->x); to_y = UPSCALE(to->y); mid_x = (ras.x + to_x + 2*UPSCALE(control->x))/4; mid_y = (ras.y + to_y + 2*UPSCALE(control->y))/4; return render_line( RAS_VAR_ mid_x, mid_y ) || render_line( RAS_VAR_ to_x, to_y ); } arc = ras.bez_stack; levels = ras.lev_stack; top = 0; levels[0] = level; arc[0].x = UPSCALE(to->x); arc[0].y = UPSCALE(to->y); arc[1].x = UPSCALE(control->x); arc[1].y = UPSCALE(control->y); arc[2].x = ras.x; arc[2].y = ras.y; while (top >= 0) { level = levels[top]; if (level > 1) { /* check that the arc crosses the current band */ TPos min, max, y; min = max = arc[0].y; y = arc[1].y; if ( y < min ) min = y; if ( y > max ) max = y; y = arc[2].y; if ( y < min ) min = y; if ( y > max ) max = y; if ( TRUNC(min) >= ras.max_ey || TRUNC(max) < 0 ) goto Draw; split_conic(arc); arc += 2; top ++; levels[top] = levels[top-1] = level-1; continue; } Draw: { TPos to_x, to_y, mid_x, mid_y; to_x = arc[0].x; to_y = arc[0].y; mid_x = (ras.x + to_x + 2*arc[1].x)/4; mid_y = (ras.y + to_y + 2*arc[1].y)/4; if ( render_line( RAS_VAR_ mid_x, mid_y ) || render_line( RAS_VAR_ to_x, to_y ) ) return 1; top--; arc -= 2; } } return 0; } static void split_cubic( FT_Vector* base ) { TPos a, b, c, d; base[6].x = base[3].x; c = base[1].x; d = base[2].x; base[1].x = a = ( base[0].x + c ) / 2; base[5].x = b = ( base[3].x + d ) / 2; c = ( c + d ) / 2; base[2].x = a = ( a + c ) / 2; base[4].x = b = ( b + c ) / 2; base[3].x = ( a + b ) / 2; base[6].y = base[3].y; c = base[1].y; d = base[2].y; base[1].y = a = ( base[0].y + c ) / 2; base[5].y = b = ( base[3].y + d ) / 2; c = ( c + d ) / 2; base[2].y = a = ( a + c ) / 2; base[4].y = b = ( b + c ) / 2; base[3].y = ( a + b ) / 2; } static int render_cubic( RAS_ARG_ FT_Vector* control1, FT_Vector* control2, FT_Vector* to ) { TPos dx, dy, da, db; int top, level; int* levels; FT_Vector* arc; dx = DOWNSCALE(ras.x) + to->x - (control1->x << 1); if (dx < 0) dx = -dx; dy = DOWNSCALE(ras.y) + to->y - (control1->y << 1); if (dy < 0) dy = -dy; if (dx < dy) dx = dy; da = dx; dx = DOWNSCALE(ras.x) + to->x - 3*(control1->x + control2->x); if (dx < 0) dx = -dx; dy = DOWNSCALE(ras.y) + to->y - 3*(control1->x + control2->y); if (dy < 0) dy = -dy; if (dx < dy) dx = dy; db = dx; level = 1; da = da/ras.cubic_level; db = db/ras.conic_level; while ( da > 0 || db > 0 ) { da >>= 1; db >>= 2; level++; } if (level <= 1) { TPos to_x, to_y, mid_x, mid_y; to_x = UPSCALE(to->x); to_y = UPSCALE(to->y); mid_x = (ras.x + to_x + 3*UPSCALE(control1->x+control2->x))/8; mid_y = (ras.y + to_y + 3*UPSCALE(control1->y+control2->y))/8; return render_line( RAS_VAR_ mid_x, mid_y ) || render_line( RAS_VAR_ to_x, to_y ); } arc = ras.bez_stack; arc[0].x = UPSCALE(to->x); arc[0].y = UPSCALE(to->y); arc[1].x = UPSCALE(control2->x); arc[1].y = UPSCALE(control2->y); arc[2].x = UPSCALE(control1->x); arc[2].y = UPSCALE(control1->y); arc[3].x = ras.x; arc[3].y = ras.y; levels = ras.lev_stack; top = 0; levels[0] = level; while (top >= 0) { level = levels[top]; if (level > 1) { /* check that the arc crosses the current band */ TPos min, max, y; min = max = arc[0].y; y = arc[1].y; if ( y < min ) min = y; if ( y > max ) max = y; y = arc[2].y; if ( y < min ) min = y; if ( y > max ) max = y; y = arc[3].y; if ( y < min ) min = y; if ( y > max ) max = y; if ( TRUNC(min) >= ras.max_ey || TRUNC(max) < 0 ) goto Draw; split_cubic(arc); arc += 3; top ++; levels[top] = levels[top-1] = level-1; continue; } Draw: { TPos to_x, to_y, mid_x, mid_y; to_x = arc[0].x; to_y = arc[0].y; mid_x = (ras.x + to_x + 3*(arc[1].x+arc[2].x))/8; mid_y = (ras.y + to_y + 3*(arc[1].y+arc[2].y))/8; if ( render_line( RAS_VAR_ mid_x, mid_y ) || render_line( RAS_VAR_ to_x, to_y ) ) return 1; top --; arc -= 3; } } return 0; } /* a macro comparing two cell pointers. returns true if a <= b */ #if 1 #define PACK(a) ( ((long)(a)->y << 16) | (a)->x ) #define LESS_THAN(a,b) ( PACK(a) < PACK(b) ) #else #define LESS_THAN(a,b) ( (a)->y<(b)->y || ((a)->y==(b)->y && (a)->x < (b)->x) ) #endif #define SWAP_CELLS(a,b,temp) { temp = *(a); *(a) = *(b); *(b) = temp; } #define DEBUG_SORT #define QUICK_SORT #ifdef SHELL_SORT /* A simple shell sort algorithm that works directly on our */ /* cells table.. */ static void shell_sort ( PCell cells, int count ) { PCell i, j, limit = cells + count; TCell temp; int gap; /* compute initial gap */ for (gap = 0; ++gap < count; gap *=3 ); while ( gap /= 3 ) { for ( i = cells+gap; i < limit; i++ ) { for ( j = i-gap; ; j -= gap ) { PCell k = j+gap; if ( LESS_THAN(j,k) ) break; SWAP_CELLS(j,k,temp); if ( j < cells+gap ) break; } } } } #endif #ifdef QUICK_SORT /* this is a non-recursive quicksort that directly process our cells array */ /* it should be faster than calling the stdlib qsort(), and we can even */ /* tailor our insertion threshold... */ #define QSORT_THRESHOLD 9 /* below this size, a sub-array will be sorted */ /* through a normal insertion sort.. */ static void quick_sort( PCell cells, int count ) { PCell stack[40]; /* should be enough ;-) */ PCell* top; /* top of stack */ PCell base, limit; TCell temp; limit = cells + count; base = cells; top = stack; for (;;) { int len = limit-base; PCell i, j, pivot; if ( len > QSORT_THRESHOLD) { /* we use base+len/2 as the pivot */ pivot = base + len/2; SWAP_CELLS( base, pivot, temp ); i = base + 1; j = limit-1; /* now ensure that *i <= *base <= *j */ if (LESS_THAN(j,i)) SWAP_CELLS( i, j, temp ); if (LESS_THAN(base,i)) SWAP_CELLS( base, i, temp ); if (LESS_THAN(j,base)) SWAP_CELLS( base, j, temp ); for (;;) { do i++; while (LESS_THAN(i,base)); do j--; while (LESS_THAN(base,j)); if (i > j) break; SWAP_CELLS( i,j, temp ); } SWAP_CELLS( base, j, temp ); /* now, push the largest sub-array */ if ( j - base > limit -i ) { top[0] = base; top[1] = j; base = i; } else { top[0] = i; top[1] = limit; limit = j; } top += 2; } else { /* the sub-array is small, perform insertion sort */ j = base; i = j+1; for ( ; i < limit; j = i, i++ ) { for ( ; LESS_THAN(j+1,j); j-- ) { SWAP_CELLS( j+1, j, temp ); if (j == base) break; } } if (top > stack) { top -= 2; base = top[0]; limit = top[1]; } else break; } } } #endif #ifdef DEBUG_GRAYS #ifdef DEBUG_SORT static int check_sort( PCell cells, int count ) { PCell p, q; for ( p = cells + count-2; p >= cells; p-- ) { q = p+1; if (!LESS_THAN(p,q)) return 0; } return 1; } #endif #endif static int Move_To( FT_Vector* to, FT_Raster raster ) { TPos x, y; /* record current cell, if any */ record_cell( (PRaster)raster ); /* start to a new position */ x = UPSCALE(to->x); y = UPSCALE(to->y); start_cell( (PRaster)raster, TRUNC(x), TRUNC(y) ); ((PRaster)raster)->x = x; ((PRaster)raster)->y = y; return 0; } static int Line_To( FT_Vector* to, FT_Raster raster ) { return render_line( (PRaster)raster, UPSCALE(to->x), UPSCALE(to->y) ); } static int Conic_To( FT_Vector* control, FT_Vector* to, FT_Raster raster ) { return render_conic( (PRaster)raster, control, to ); } static int Cubic_To( FT_Vector* control1, FT_Vector* control2, FT_Vector* to, FT_Raster raster ) { return render_cubic( (PRaster)raster, control1, control2, to ); } static void grays_render_span( int y, int count, FT_Span* spans, PRaster raster ) { unsigned char *p; FT_Bitmap* map = &raster->target; /* first of all, compute the scanline offset */ p = (unsigned char*)map->buffer - y*map->pitch; if (map->pitch >= 0) p += (map->rows-1)*map->pitch; for ( ; count > 0; count--, spans++ ) { if (spans->coverage) #if 1 memset( p + spans->x, (spans->coverage+1) >> 1, spans->len ); #else { q = p + spans->x; limit = q + spans->len; for ( ; q < limit; q++ ) q[0] = (spans->coverage+1) >> 1; } #endif } } #ifdef DEBUG_GRAYS #include <stdio.h> static void dump_cells( RAS_ARG ) { PCell cell, limit; int y = -1; cell = ras.cells; limit = cell + ras.num_cells; for ( ; cell < limit; cell++ ) { if ( cell->y != y ) { fprintf( stderr, "\n%2d: ", cell->y ); y = cell->y; } fprintf( stderr, "[%d %d %d]", cell->x, cell->area, cell->cover ); } fprintf(stderr, "\n" ); } #endif static void grays_hline( RAS_ARG_ TScan x, TScan y, TPos area, int acount ) { FT_Span* span; int count; int coverage; /* compute the coverage line's coverage, depending on the */ /* outline fill rule.. */ /* */ /* The coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */ /* */ coverage = area >> (PIXEL_BITS*2+1-8); /* use range 0..256 */ if ( ras.outline.flags & ft_outline_even_odd_fill ) { if (coverage < 0) coverage = -coverage; while (coverage >= 512) coverage -= 512; if (coverage > 256) coverage = 0; else if (coverage == 256) coverage = 255; } else { /* normal non-zero winding rule */ if (coverage < 0) coverage = -coverage; if (coverage >= 256) coverage = 255; } y += ras.min_ey; if (coverage) { /* see if we can add this span to the current list */ count = ras.num_gray_spans; span = ras.gray_spans + count-1; if (count > 0 && ras.span_y == y && (int)span->x + span->len == (int)x && span->coverage == coverage) { span->len += acount; return; } if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS) { if (ras.render_span) ras.render_span( ras.span_y, count, ras.gray_spans, ras.render_span_data ); /* ras.render_span( span->y, ras.gray_spans, count ); */ #ifdef DEBUG_GRAYS if (ras.span_y >= 0) { int n; fprintf( stderr, "y=%3d ", ras.span_y ); span = ras.gray_spans; for (n = 0; n < count; n++, span++) fprintf( stderr, "[%d..%d]:%02x ", span->x, span->x + span->len-1, span->coverage ); fprintf( stderr, "\n" ); } #endif ras.num_gray_spans = 0; ras.span_y = y; count = 0; span = ras.gray_spans; } else span++; /* add a gray span to the current list */ span->x = (short)x; span->len = (unsigned short)acount; span->coverage = (unsigned char)coverage; ras.num_gray_spans++; } } static void grays_sweep( RAS_ARG_ FT_Bitmap* target ) { TScan x, y, cover, area; PCell start, cur, limit; cur = ras.cells; limit = cur + ras.num_cells; cover = 0; ras.span_y = -1; ras.num_gray_spans = 0; for (;;) { start = cur; y = start->y; x = start->x; area = start->area; cover += start->cover; /* accumulate all start cells */ for (;;) { ++cur; if (cur >= limit || cur->y != start->y || cur->x != start->x) break; area += cur->area; cover += cur->cover; } /* if the start cell has a non-null area, we must draw an */ /* individual gray pixel there.. */ if (area && x >= 0) { grays_hline( RAS_VAR_ x, y, cover*(ONE_PIXEL*2)-area, 1 ); x++; } if (x < 0) x = 0; if (cur < limit && start->y == cur->y) { /* draw a gray span between the start cell and the current one */ if (cur->x > x) grays_hline( RAS_VAR_ x, y, cover*(ONE_PIXEL*2), cur->x - x ); } else { /* draw a gray span until the end of the clipping region */ if (cover && x < ras.max_ex) grays_hline( RAS_VAR_ x, y, cover*(ONE_PIXEL*2), ras.max_ex - x ); cover = 0; } if (cur >= limit) break; } if (ras.render_span && ras.num_gray_spans > 0) ras.render_span( ras.span_y, ras.num_gray_spans, ras.gray_spans, ras.render_span_data ); #ifdef DEBUG_GRAYS { int n; FT_Span* span; fprintf( stderr, "y=%3d ", ras.span_y ); span = ras.gray_spans; for (n = 0; n < ras.num_gray_spans; n++, span++) fprintf( stderr, "[%d..%d]:%02x ", span->x, span->x+span->len-1,span->coverage ); fprintf( stderr, "\n" ); } #endif } typedef struct TBand_ { FT_Pos min, max; } TBand; static int grays_convert_glyph( RAS_ARG_ FT_Outline* outline ) { static FT_Outline_Funcs interface = { (FT_Outline_MoveTo_Func)Move_To, (FT_Outline_LineTo_Func)Line_To, (FT_Outline_ConicTo_Func)Conic_To, (FT_Outline_CubicTo_Func)Cubic_To }; TBand bands[40], *band; int n, num_bands; TPos min, max, max_y; /* Set up state in the raster object */ compute_cbox( RAS_VAR_ outline ); /* clip to target bitmap, exit if nothing to do */ if ( ras.max_ex <= 0 || ras.min_ex >= ras.target.width || ras.max_ey <= 0 || ras.min_ey >= ras.target.rows ) return 0; if (ras.min_ex < 0) ras.min_ex = 0; if (ras.min_ey < 0) ras.min_ey = 0; if (ras.max_ex > ras.target.width) ras.max_ex = ras.target.width; if (ras.max_ey > ras.target.rows) ras.max_ey = ras.target.rows; /* simple heuristic used to speed-up the bezier decomposition */ /* see the code in render_conic and render_cubic for more details */ ras.conic_level = 32; ras.cubic_level = 16; { int level = 0; if (ras.max_ex > 24 || ras.max_ey > 24) level++; if (ras.max_ex > 120 || ras.max_ey > 120) level+=2; ras.conic_level <<= level; ras.cubic_level <<= level; } /* setup vertical bands */ num_bands = (ras.max_ey - ras.min_ey)/ras.band_size; if (num_bands == 0) num_bands = 1; if (num_bands >= 39) num_bands = 39; ras.band_shoot = 0; min = ras.min_ey; max_y = ras.max_ey; for ( n = 0; n < num_bands; n++, min = max ) { max = min + ras.band_size; if (n == num_bands-1 || max > max_y) max = max_y; bands[0].min = min; bands[0].max = max; band = bands; while (band >= bands) { FT_Pos bottom, top, middle; int error; ras.num_cells = 0; ras.invalid = 1; ras.min_ey = band->min; ras.max_ey = band->max; error = FT_Outline_Decompose( outline, &interface, &ras ) || record_cell( RAS_VAR ); if (!error) { #ifdef SHELL_SORT shell_sort( ras.cells, ras.num_cells ); #else quick_sort( ras.cells, ras.num_cells ); #endif #ifdef DEBUG_GRAYS check_sort( ras.cells, ras.num_cells ); dump_cells( RAS_VAR ); #endif grays_sweep( RAS_VAR_ &ras.target ); band--; continue; } /* render pool overflow, we will reduce the render band by half */ bottom = band->min; top = band->max; middle = bottom + ((top-bottom) >> 1); /* waoow !! this is too complex for a single scanline, something */ /* must be really rotten here !! */ if (middle == bottom) { #ifdef DEBUG_GRAYS fprintf( stderr, "Rotten glyph !!\n" ); #endif return 1; } if (bottom-top >= ras.band_size) ras.band_shoot++; band[1].min = bottom; band[1].max = middle; band[0].min = middle; band[0].max = top; band++; } } if (ras.band_shoot > 8 && ras.band_size > 16) ras.band_size = ras.band_size/2; return 0; } extern int grays_raster_render( PRaster raster, FT_Raster_Params* params ) { FT_Outline* outline = (FT_Outline*)params->source; FT_Bitmap* target_map = params->target; if ( !raster || !raster->cells || !raster->max_cells ) return -1; /* return immediately if the outline is empty */ if ( outline->n_points == 0 || outline->n_contours <= 0 ) return 0; if ( !outline || !outline->contours || !outline->points ) return -1; if ( outline->n_points != outline->contours[outline->n_contours - 1] + 1 ) return -1; if ( !target_map || !target_map->buffer ) return -1; /* XXXX: this version does not support monochrome rendering yet ! */ if ( !(params->flags & ft_raster_flag_aa) ) return -1; ras.outline = *outline; ras.target = *target_map; ras.num_cells = 0; ras.invalid = 1; ras.render_span = (FT_Raster_Span_Func)grays_render_span; ras.render_span_data = &ras; if ( params->flags & ft_raster_flag_direct ) { ras.render_span = (FT_Raster_Span_Func)params->gray_spans; ras.render_span_data = params->user; } return grays_convert_glyph( (PRaster)raster, outline ); } /**** RASTER OBJECT CREATION : in standalone mode, we simply use *****/ /**** a static object .. *****/ #ifdef _STANDALONE_ static int grays_raster_new( void* memory, FT_Raster *araster ) { static FT_RasterRec_ the_raster; *araster = &the_raster; memset( &the_raster, sizeof(the_raster), 0 ); return 0; } static void grays_raster_done( FT_Raster raster ) { /* nothing */ (void)raster; } #else #include "ftobjs.h" static int grays_raster_new( FT_Memory memory, FT_Raster* araster ) { FT_Error error; PRaster raster; *araster = 0; if ( !ALLOC( raster, sizeof(TRaster) )) { raster->memory = memory; *araster = (FT_Raster)raster; } return error; } static void grays_raster_done( FT_Raster raster ) { FT_Memory memory = (FT_Memory)((PRaster)raster)->memory; FREE( raster ); } #endif static void grays_raster_reset( FT_Raster raster, const char* pool_base, long pool_size ) { PRaster rast = (PRaster)raster; if (raster && pool_base && pool_size >= 4096) init_cells( rast, (char*)pool_base, pool_size ); rast->band_size = (pool_size / sizeof(TCell))/8; } FT_Raster_Funcs ft_grays_raster = { ft_glyph_format_outline, (FT_Raster_New_Func) grays_raster_new, (FT_Raster_Reset_Func) grays_raster_reset, (FT_Raster_Set_Mode_Func) 0, (FT_Raster_Render_Func) grays_raster_render, (FT_Raster_Done_Func) grays_raster_done };