ref: 0f644f38e939f3fa82a2a91e94d53c6e05750e44
dir: /src/sdf/ftbsdf.c/
#include <freetype/internal/ftobjs.h> #include <freetype/internal/ftdebug.h> #include <freetype/internal/ftmemory.h> #include <freetype/fttrigon.h> #include "ftsdf.h" #include "ftsdferrs.h" #include "ftsdfcommon.h" /************************************************************************** * * useful macros * */ #define ONE 65536 /* 1 in 16.16 */ /************************************************************************** * * structs * */ /************************************************************************** * * @Struct: * BSDF_TRaster * * @Description: * This struct is used in place of @FT_Raster and is stored within the * internal FreeType renderer struct. While rasterizing this is passed * to the @FT_Raster_RenderFunc function, which then can be used however * we want. * * @Fields: * memory :: * Used internally to allocate intermediate memory while raterizing. * */ typedef struct BSDF_TRaster_ { FT_Memory memory; } BSDF_TRaster; /************************************************************************** * * @Struct: * ED * * @Description: * Euclidean distance. It gets used for Euclidean distance transforms; * it can also be interpreted as an edge distance. * * @Fields: * dist :: * Vector length of the `near` parameter. Can be squared or absolute * depending on the `USE_SQUARED_DISTANCES` macro defined in file * `ftsdfcommon.h`. * * near :: * Vector to the nearest edge. Can also be interpreted as shortest * distance of a point. * * alpha :: * Alpha value of the original bitmap from which we generate SDF. * Needed for computing the gradient and determining the proper sign * of a pixel. * */ typedef struct ED_ { FT_16D16 dist; FT_16D16_Vec near; FT_Byte alpha; } ED; /************************************************************************** * * @Struct: * BSDF_Worker * * @Description: * A convenience struct that is passed to functions while generating * SDF; most of those functions require the same parameters. * * @Fields: * distance_map :: * A one-dimensional array that gets interpreted as two-dimensional * one. It contains the Euclidean distances of all points of the * bitmap. * * width :: * Width of the above `distance_map`. * * rows :: * Number of rows in the above `distance_map`. * * params :: * Internal parameters and properties required by the rasterizer. See * file `ftsdf.h` for more. * */ typedef struct BSDF_Worker_ { ED* distance_map; FT_Int width; FT_Int rows; SDF_Raster_Params params; } BSDF_Worker; /************************************************************************** * * initializer * */ static const ED zero_ed = { 0, { 0, 0 }, 0 }; /************************************************************************** * * rasterizer functions * */ /************************************************************************** * * @Function: * bsdf_is_edge * * @Description: * Check whether a pixel is an edge pixel, i.e., whether it is * surrounded by a completely black pixel (zero alpha), and the current * pixel is not a completely black pixel. * * @Input: * dm :: * Array of distances. The parameter must point to the current * pixel, i.e., the pixel that is to be checked for being an edge. * * x :: * The x position of the current pixel. * * y :: * The y position of the current pixel. * * w :: * Width of the bitmap. * * r :: * Number of rows in the bitmap. * * @Return: * 1~if the current pixel is an edge pixel, 0~otherwise. * */ #ifdef CHECK_NEIGHBOR #undef CHECK_NEIGHBOR #endif #define CHECK_NEIGHBOR( x_offset, y_offset ) \ if ( x + x_offset >= 0 && x + x_offset < w && \ y + y_offset >= 0 && y + y_offset < r ) \ { \ num_neighbors++; \ \ to_check = dm + y_offset * w + x_offset; \ if ( to_check->alpha == 0 ) \ { \ is_edge = 1; \ goto Done; \ } \ } static FT_Bool bsdf_is_edge( ED* dm, /* distance map */ FT_Int x, /* x index of point to check */ FT_Int y, /* y index of point to check */ FT_Int w, /* width */ FT_Int r ) /* rows */ { FT_Bool is_edge = 0; ED* to_check = NULL; FT_Int num_neighbors = 0; if ( dm->alpha == 0 ) goto Done; if ( dm->alpha > 0 && dm->alpha < 255 ) { is_edge = 1; goto Done; } /* up */ CHECK_NEIGHBOR( 0, -1 ); /* down */ CHECK_NEIGHBOR( 0, 1 ); /* left */ CHECK_NEIGHBOR( -1, 0 ); /* right */ CHECK_NEIGHBOR( 1, 0 ); /* up left */ CHECK_NEIGHBOR( -1, -1 ); /* up right */ CHECK_NEIGHBOR( 1, -1 ); /* down left */ CHECK_NEIGHBOR( -1, 1 ); /* down right */ CHECK_NEIGHBOR( 1, 1 ); if ( num_neighbors != 8 ) is_edge = 1; Done: return is_edge; } #undef CHECK_NEIGHBOR /************************************************************************** * * @Function: * compute_edge_distance * * @Description: * Approximate the outline and compute the distance from `current` * to the approximated outline. * * @Input: * current :: * Array of Euclidean distances. `current` must point to the position * for which the distance is to be caculated. We treat this array as * a two-dimensional array mapped to a one-dimensional array. * * x :: * The x coordinate of the `current` parameter in the array. * * y :: * The y coordinate of the `current` parameter in the array. * * w :: * The width of the distances array. * * r :: * Number of rows in the distances array. * * @Return: * A vector pointing to the approximate edge distance. * * @Note: * This is a computationally expensive function. Try to reduce the * number of calls to this function. Moreover, this must only be used * for edge pixel positions. * */ static FT_16D16_Vec compute_edge_distance( ED* current, FT_Int x, FT_Int y, FT_Int w, FT_Int r ) { /* * This function, based on the paper presented by Stefan Gustavson and * Robin Strand, gets used to approximate edge distances from * anti-aliased bitmaps. * * The algorithm is as follows. * * (1) In anti-aliased images, the pixel's alpha value is the coverage * of the pixel by the outline. For example, if the alpha value is * 0.5f we can assume that the outline passes through the center of * the pixel. * * (2) For this reason we can use that alpha value to approximate the real * distance of the pixel to edge pretty accurately. A simple * approximation is `(0.5f - alpha)`, assuming that the outline is * parallel to the x or y~axis. However, in this algorithm we use a * different approximation which is quite accurate even for * non-axis-aligned edges. * * (3) The only remaining piece of information that we cannot * approximate directly from the alpha is the direction of the edge. * This is where we use Sobel's operator to compute the gradient of * the pixel. The gradient give us a pretty good approximation of * the edge direction. We use a 3x3 kernel filter to compute the * gradient. * * (4) After the above two steps we have both the direction and the * distance to the edge which is used to generate the Signed * Distance Field. * * References: * * - Anti-Aliased Euclidean Distance Transform: * http://weber.itn.liu.se/~stegu/aadist/edtaa_preprint.pdf * - Sobel Operator: * https://en.wikipedia.org/wiki/Sobel_operator */ FT_16D16_Vec g = { 0, 0 }; FT_16D16 dist, current_alpha; FT_16D16 a1, temp; FT_16D16 gx, gy; FT_16D16 alphas[9]; /* Since our spread cannot be 0, this condition */ /* can never be true. */ if ( x <= 0 || x >= w - 1 || y <= 0 || y >= r - 1 ) return g; /* initialize the alphas */ alphas[0] = 256 * (FT_16D16)current[-w - 1].alpha; alphas[1] = 256 * (FT_16D16)current[-w ].alpha; alphas[2] = 256 * (FT_16D16)current[-w + 1].alpha; alphas[3] = 256 * (FT_16D16)current[ -1].alpha; alphas[4] = 256 * (FT_16D16)current[ 0].alpha; alphas[5] = 256 * (FT_16D16)current[ 1].alpha; alphas[6] = 256 * (FT_16D16)current[ w - 1].alpha; alphas[7] = 256 * (FT_16D16)current[ w ].alpha; alphas[8] = 256 * (FT_16D16)current[ w + 1].alpha; current_alpha = alphas[4]; /* Compute the gradient using the Sobel operator. */ /* In this case we use the following 3x3 filters: */ /* */ /* For x: | -1 0 -1 | */ /* | -root(2) 0 root(2) | */ /* | -1 0 1 | */ /* */ /* For y: | -1 -root(2) -1 | */ /* | 0 0 0 | */ /* | 1 root(2) 1 | */ /* */ /* [Note]: 92681 is root(2) in 16.16 format. */ g.x = -alphas[0] - FT_MulFix( alphas[3], 92681 ) - alphas[6] + alphas[2] + FT_MulFix( alphas[5], 92681 ) + alphas[8]; g.y = -alphas[0] - FT_MulFix( alphas[1], 92681 ) - alphas[2] + alphas[6] + FT_MulFix( alphas[7], 92681 ) + alphas[8]; FT_Vector_NormLen( &g ); /* The gradient gives us the direction of the */ /* edge for the current pixel. Once we have the */ /* approximate direction of the edge, we can */ /* approximate the edge distance much better. */ if ( g.x == 0 || g.y == 0 ) dist = ONE / 2 - alphas[4]; else { gx = g.x; gy = g.y; gx = FT_ABS( gx ); gy = FT_ABS( gy ); if ( gx < gy ) { temp = gx; gx = gy; gy = temp; } a1 = FT_DivFix( gy, gx ) / 2; if ( current_alpha < a1 ) dist = ( gx + gy ) / 2 - square_root( 2 * FT_MulFix( gx, FT_MulFix( gy, current_alpha ) ) ); else if ( current_alpha < ( ONE - a1 ) ) dist = FT_MulFix( ONE / 2 - current_alpha, gx ); else dist = -( gx + gy ) / 2 + square_root( 2 * FT_MulFix( gx, FT_MulFix( gy, ONE - current_alpha ) ) ); } g.x = FT_MulFix( g.x, dist ); g.y = FT_MulFix( g.y, dist ); return g; } /************************************************************************** * * @Function: * bsdf_approximate_edge * * @Description: * Loops over all the pixels and call `compute_edge_distance` only for * edge pixels. This maked the process a lot faster since * `compute_edge_distance` uses functions such as `FT_Vector_NormLen', * which are quite slow. * * @InOut: * worker :: * Contains the distance map as well as all the relevant parameters * required by the function. * * @Return: * FreeType error, 0 means success. * * @Note: * The function directly manipulates `worker->distance_map`. * */ static FT_Error bsdf_approximate_edge( BSDF_Worker* worker ) { FT_Error error = FT_Err_Ok; FT_Int i, j; FT_Int index; ED* ed; if ( !worker || !worker->distance_map ) { error = FT_THROW( Invalid_Argument ); goto Exit; } ed = worker->distance_map; for ( j = 0; j < worker->rows; j++ ) { for ( i = 0; i < worker->width; i++ ) { index = j * worker->width + i; if ( bsdf_is_edge( worker->distance_map + index, i, j, worker->width, worker->rows ) ) { /* approximate the edge distance for edge pixels */ ed[index].near = compute_edge_distance( ed + index, i, j, worker->width, worker->rows ); ed[index].dist = VECTOR_LENGTH_16D16( ed[index].near ); } else { /* for non-edge pixels assign far away distances */ ed[index].dist = 400 * ONE; ed[index].near.x = 200 * ONE; ed[index].near.y = 200 * ONE; } } } Exit: return error; } /* END */