ref: f38b711c73174786b1dbf8878fb0cb132a89794d
parent: a7431c0b7ce232f296ebcd70172ca64e58300105
author: Simon Tatham <[email protected]>
date: Sat Sep 6 11:19:47 EDT 2008
Completely re-engineered version of Loopy, courtesy of Lambros Lambrou. Now capable of handling triangular and hexagonal grids as well as square ones, and then a number of semiregular plane tilings and duals of semiregular ones. In fact, most of the solver code supports an _arbitrary_ planar graph (well, provided both the graph and its dual have no self-edges), so it could easily be extended further with only a little more effort. [originally from svn r8162]
--- /dev/null
+++ b/grid.c
@@ -1,0 +1,1348 @@
+/*
+ * (c) Lambros Lambrou 2008
+ *
+ * Code for working with general grids, which can be any planar graph
+ * with faces, edges and vertices (dots). Includes generators for a few
+ * types of grid, including square, hexagonal, triangular and others.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+#include "tree234.h"
+#include "grid.h"
+
+/* Debugging options */
+
+/*
+#define DEBUG_GRID
+*/
+
+/* ----------------------------------------------------------------------
+ * Deallocate or dereference a grid
+ */
+void grid_free(grid *g)
+{
+ assert(g->refcount);
+
+ g->refcount--;
+ if (g->refcount == 0) {
+ int i;
+ for (i = 0; i < g->num_faces; i++) {
+ sfree(g->faces[i].dots);
+ sfree(g->faces[i].edges);
+ }
+ for (i = 0; i < g->num_dots; i++) {
+ sfree(g->dots[i].faces);
+ sfree(g->dots[i].edges);
+ }
+ sfree(g->faces);
+ sfree(g->edges);
+ sfree(g->dots);
+ sfree(g);
+ }
+}
+
+/* Used by the other grid generators. Create a brand new grid with nothing
+ * initialised (all lists are NULL) */
+static grid *grid_new()
+{
+ grid *g = snew(grid);
+ g->faces = NULL;
+ g->edges = NULL;
+ g->dots = NULL;
+ g->num_faces = g->num_edges = g->num_dots = 0;
+ g->middle_face = NULL;
+ g->refcount = 1;
+ g->lowest_x = g->lowest_y = g->highest_x = g->highest_y = 0;
+ return g;
+}
+
+/* Helper function to calculate perpendicular distance from
+ * a point P to a line AB. A and B mustn't be equal here.
+ *
+ * Well-known formula for area A of a triangle:
+ * / 1 1 1 \
+ * 2A = determinant of matrix | px ax bx |
+ * \ py ay by /
+ *
+ * Also well-known: 2A = base * height
+ * = perpendicular distance * line-length.
+ *
+ * Combining gives: distance = determinant / line-length(a,b)
+ */
+static double point_line_distance(int px, int py,
+ int ax, int ay,
+ int bx, int by)
+{
+ int det = ax*by - bx*ay + bx*py - px*by + px*ay - ax*py;
+ det = max(det, -det);
+ double len = sqrt(SQ(ax - bx) + SQ(ay - by));
+ return det / len;
+}
+
+/* Determine nearest edge to where the user clicked.
+ * (x, y) is the clicked location, converted to grid coordinates.
+ * Returns the nearest edge, or NULL if no edge is reasonably
+ * near the position.
+ *
+ * This algorithm is nice and generic, and doesn't depend on any particular
+ * geometric layout of the grid:
+ * Start at any dot (pick one next to middle_face).
+ * Walk along a path by choosing, from all nearby dots, the one that is
+ * nearest the target (x,y). Hopefully end up at the dot which is closest
+ * to (x,y). Should work, as long as faces aren't too badly shaped.
+ * Then examine each edge around this dot, and pick whichever one is
+ * closest (perpendicular distance) to (x,y).
+ * Using perpendicular distance is not quite right - the edge might be
+ * "off to one side". So we insist that the triangle with (x,y) has
+ * acute angles at the edge's dots.
+ *
+ * edge1
+ * *---------*------
+ * |
+ * | *(x,y)
+ * edge2 |
+ * | edge2 is OK, but edge1 is not, even though
+ * | edge1 is perpendicularly closer to (x,y)
+ * *
+ *
+ */
+grid_edge *grid_nearest_edge(grid *g, int x, int y)
+{
+ grid_dot *cur;
+ grid_edge *best_edge;
+ double best_distance = 0;
+ int i;
+
+ cur = g->middle_face->dots[0];
+
+ for (;;) {
+ /* Target to beat */
+ int dist = SQ(cur->x - x) + SQ(cur->y - y);
+ /* Look for nearer dot - if found, store in 'new'. */
+ grid_dot *new = cur;
+ int i;
+ /* Search all dots in all faces touching this dot. Some shapes
+ * (such as in Cairo) don't quite work properly if we only search
+ * the dot's immediate neighbours. */
+ for (i = 0; i < cur->order; i++) {
+ grid_face *f = cur->faces[i];
+ int j;
+ if (!f) continue;
+ for (j = 0; j < f->order; j++) {
+ grid_dot *d = f->dots[j];
+ if (d == cur) continue;
+ int new_dist = SQ(d->x - x) + SQ(d->y - y);
+ if (new_dist < dist) {
+ new = d;
+ break; /* found closer dot */
+ }
+ }
+ if (new != cur)
+ break; /* found closer dot */
+ }
+
+ if (new == cur) {
+ /* Didn't find a closer dot among the neighbours of 'cur' */
+ break;
+ } else {
+ cur = new;
+ }
+ }
+
+ /* 'cur' is nearest dot, so find which of the dot's edges is closest. */
+ best_edge = NULL;
+
+ for (i = 0; i < cur->order; i++) {
+ grid_edge *e = cur->edges[i];
+ int e2; /* squared length of edge */
+ int a2, b2; /* squared lengths of other sides */
+ double dist;
+
+ /* See if edge e is eligible - the triangle must have acute angles
+ * at the edge's dots.
+ * Pythagoras formula h^2 = a^2 + b^2 detects right-angles,
+ * so detect acute angles by testing for h^2 < a^2 + b^2 */
+ e2 = SQ(e->dot1->x - e->dot2->x) + SQ(e->dot1->y - e->dot2->y);
+ a2 = SQ(e->dot1->x - x) + SQ(e->dot1->y - y);
+ b2 = SQ(e->dot2->x - x) + SQ(e->dot2->y - y);
+ if (a2 >= e2 + b2) continue;
+ if (b2 >= e2 + a2) continue;
+
+ /* e is eligible so far. Now check the edge is reasonably close
+ * to where the user clicked. Don't want to toggle an edge if the
+ * click was way off the grid.
+ * There is room for experimentation here. We could check the
+ * perpendicular distance is within a certain fraction of the length
+ * of the edge. That amounts to testing a rectangular region around
+ * the edge.
+ * Alternatively, we could check that the angle at the point is obtuse.
+ * That would amount to testing a circular region with the edge as
+ * diameter. */
+ dist = point_line_distance(x, y,
+ e->dot1->x, e->dot1->y,
+ e->dot2->x, e->dot2->y);
+ /* Is dist more than half edge length ? */
+ if (4 * SQ(dist) > e2)
+ continue;
+
+ if (best_edge == NULL || dist < best_distance) {
+ best_edge = e;
+ best_distance = dist;
+ }
+ }
+ return best_edge;
+}
+
+/* ----------------------------------------------------------------------
+ * Grid generation
+ */
+
+#ifdef DEBUG_GRID
+/* Show the basic grid information, before doing grid_make_consistent */
+static void grid_print_basic(grid *g)
+{
+ /* TODO: Maybe we should generate an SVG image of the dots and lines
+ * of the grid here, before grid_make_consistent.
+ * Would help with debugging grid generation. */
+ int i;
+ printf("--- Basic Grid Data ---\n");
+ for (i = 0; i < g->num_faces; i++) {
+ grid_face *f = g->faces + i;
+ printf("Face %d: dots[", i);
+ int j;
+ for (j = 0; j < f->order; j++) {
+ grid_dot *d = f->dots[j];
+ printf("%s%d", j ? "," : "", (int)(d - g->dots));
+ }
+ printf("]\n");
+ }
+ printf("Middle face: %d\n", (int)(g->middle_face - g->faces));
+}
+/* Show the derived grid information, computed by grid_make_consistent */
+static void grid_print_derived(grid *g)
+{
+ /* edges */
+ int i;
+ printf("--- Derived Grid Data ---\n");
+ for (i = 0; i < g->num_edges; i++) {
+ grid_edge *e = g->edges + i;
+ printf("Edge %d: dots[%d,%d] faces[%d,%d]\n",
+ i, (int)(e->dot1 - g->dots), (int)(e->dot2 - g->dots),
+ e->face1 ? (int)(e->face1 - g->faces) : -1,
+ e->face2 ? (int)(e->face2 - g->faces) : -1);
+ }
+ /* faces */
+ for (i = 0; i < g->num_faces; i++) {
+ grid_face *f = g->faces + i;
+ int j;
+ printf("Face %d: faces[", i);
+ for (j = 0; j < f->order; j++) {
+ grid_edge *e = f->edges[j];
+ grid_face *f2 = (e->face1 == f) ? e->face2 : e->face1;
+ printf("%s%d", j ? "," : "", f2 ? (int)(f2 - g->faces) : -1);
+ }
+ printf("]\n");
+ }
+ /* dots */
+ for (i = 0; i < g->num_dots; i++) {
+ grid_dot *d = g->dots + i;
+ int j;
+ printf("Dot %d: dots[", i);
+ for (j = 0; j < d->order; j++) {
+ grid_edge *e = d->edges[j];
+ grid_dot *d2 = (e->dot1 == d) ? e->dot2 : e->dot1;
+ printf("%s%d", j ? "," : "", (int)(d2 - g->dots));
+ }
+ printf("] faces[");
+ for (j = 0; j < d->order; j++) {
+ grid_face *f = d->faces[j];
+ printf("%s%d", j ? "," : "", f ? (int)(f - g->faces) : -1);
+ }
+ printf("]\n");
+ }
+}
+#endif /* DEBUG_GRID */
+
+/* Helper function for building incomplete-edges list in
+ * grid_make_consistent() */
+static int grid_edge_bydots_cmpfn(void *v1, void *v2)
+{
+ grid_edge *a = v1;
+ grid_edge *b = v2;
+ grid_dot *da, *db;
+
+ /* Pointer subtraction is valid here, because all dots point into the
+ * same dot-list (g->dots).
+ * Edges are not "normalised" - the 2 dots could be stored in any order,
+ * so we need to take this into account when comparing edges. */
+
+ /* Compare first dots */
+ da = (a->dot1 < a->dot2) ? a->dot1 : a->dot2;
+ db = (b->dot1 < b->dot2) ? b->dot1 : b->dot2;
+ if (da != db)
+ return db - da;
+ /* Compare last dots */
+ da = (a->dot1 < a->dot2) ? a->dot2 : a->dot1;
+ db = (b->dot1 < b->dot2) ? b->dot2 : b->dot1;
+ if (da != db)
+ return db - da;
+
+ return 0;
+}
+
+/* Input: grid has its dots and faces initialised:
+ * - dots have (optionally) x and y coordinates, but no edges or faces
+ * (pointers are NULL).
+ * - edges not initialised at all
+ * - faces initialised and know which dots they have (but no edges yet). The
+ * dots around each face are assumed to be clockwise.
+ *
+ * Output: grid is complete and valid with all relationships defined.
+ */
+static void grid_make_consistent(grid *g)
+{
+ int i;
+ tree234 *incomplete_edges;
+ grid_edge *next_new_edge; /* Where new edge will go into g->edges */
+
+#ifdef DEBUG_GRID
+ grid_print_basic(g);
+#endif
+
+ /* ====== Stage 1 ======
+ * Generate edges
+ */
+
+ /* We know how many dots and faces there are, so we can find the exact
+ * number of edges from Euler's polyhedral formula: F + V = E + 2 .
+ * We use "-1", not "-2" here, because Euler's formula includes the
+ * infinite face, which we don't count. */
+ g->num_edges = g->num_faces + g->num_dots - 1;
+ g->edges = snewn(g->num_edges, grid_edge);
+ next_new_edge = g->edges;
+
+ /* Iterate over faces, and over each face's dots, generating edges as we
+ * go. As we find each new edge, we can immediately fill in the edge's
+ * dots, but only one of the edge's faces. Later on in the iteration, we
+ * will find the same edge again (unless it's on the border), but we will
+ * know the other face.
+ * For efficiency, maintain a list of the incomplete edges, sorted by
+ * their dots. */
+ incomplete_edges = newtree234(grid_edge_bydots_cmpfn);
+ for (i = 0; i < g->num_faces; i++) {
+ grid_face *f = g->faces + i;
+ int j;
+ for (j = 0; j < f->order; j++) {
+ grid_edge e; /* fake edge for searching */
+ grid_edge *edge_found;
+ int j2 = j + 1;
+ if (j2 == f->order)
+ j2 = 0;
+ e.dot1 = f->dots[j];
+ e.dot2 = f->dots[j2];
+ /* Use del234 instead of find234, because we always want to
+ * remove the edge if found */
+ edge_found = del234(incomplete_edges, &e);
+ if (edge_found) {
+ /* This edge already added, so fill out missing face.
+ * Edge is already removed from incomplete_edges. */
+ edge_found->face2 = f;
+ } else {
+ assert(next_new_edge - g->edges < g->num_edges);
+ next_new_edge->dot1 = e.dot1;
+ next_new_edge->dot2 = e.dot2;
+ next_new_edge->face1 = f;
+ next_new_edge->face2 = NULL; /* potentially infinite face */
+ add234(incomplete_edges, next_new_edge);
+ ++next_new_edge;
+ }
+ }
+ }
+ freetree234(incomplete_edges);
+
+ /* ====== Stage 2 ======
+ * For each face, build its edge list.
+ */
+
+ /* Allocate space for each edge list. Can do this, because each face's
+ * edge-list is the same size as its dot-list. */
+ for (i = 0; i < g->num_faces; i++) {
+ grid_face *f = g->faces + i;
+ int j;
+ f->edges = snewn(f->order, grid_edge*);
+ /* Preload with NULLs, to help detect potential bugs. */
+ for (j = 0; j < f->order; j++)
+ f->edges[j] = NULL;
+ }
+
+ /* Iterate over each edge, and over both its faces. Add this edge to
+ * the face's edge-list, after finding where it should go in the
+ * sequence. */
+ for (i = 0; i < g->num_edges; i++) {
+ grid_edge *e = g->edges + i;
+ int j;
+ for (j = 0; j < 2; j++) {
+ grid_face *f = j ? e->face2 : e->face1;
+ int k, k2;
+ if (f == NULL) continue;
+ /* Find one of the dots around the face */
+ for (k = 0; k < f->order; k++) {
+ if (f->dots[k] == e->dot1)
+ break; /* found dot1 */
+ }
+ assert(k != f->order); /* Must find the dot around this face */
+
+ /* Labelling scheme: as we walk clockwise around the face,
+ * starting at dot0 (f->dots[0]), we hit:
+ * (dot0), edge0, dot1, edge1, dot2,...
+ *
+ * 0
+ * 0-----1
+ * |
+ * |1
+ * |
+ * 3-----2
+ * 2
+ *
+ * Therefore, edgeK joins dotK and dot{K+1}
+ */
+
+ /* Around this face, either the next dot or the previous dot
+ * must be e->dot2. Otherwise the edge is wrong. */
+ k2 = k + 1;
+ if (k2 == f->order)
+ k2 = 0;
+ if (f->dots[k2] == e->dot2) {
+ /* dot1(k) and dot2(k2) go clockwise around this face, so add
+ * this edge at position k (see diagram). */
+ assert(f->edges[k] == NULL);
+ f->edges[k] = e;
+ continue;
+ }
+ /* Try previous dot */
+ k2 = k - 1;
+ if (k2 == -1)
+ k2 = f->order - 1;
+ if (f->dots[k2] == e->dot2) {
+ /* dot1(k) and dot2(k2) go anticlockwise around this face. */
+ assert(f->edges[k2] == NULL);
+ f->edges[k2] = e;
+ continue;
+ }
+ assert(!"Grid broken: bad edge-face relationship");
+ }
+ }
+
+ /* ====== Stage 3 ======
+ * For each dot, build its edge-list and face-list.
+ */
+
+ /* We don't know how many edges/faces go around each dot, so we can't
+ * allocate the right space for these lists. Pre-compute the sizes by
+ * iterating over each edge and recording a tally against each dot. */
+ for (i = 0; i < g->num_dots; i++) {
+ g->dots[i].order = 0;
+ }
+ for (i = 0; i < g->num_edges; i++) {
+ grid_edge *e = g->edges + i;
+ ++(e->dot1->order);
+ ++(e->dot2->order);
+ }
+ /* Now we have the sizes, pre-allocate the edge and face lists. */
+ for (i = 0; i < g->num_dots; i++) {
+ grid_dot *d = g->dots + i;
+ int j;
+ assert(d->order >= 2); /* sanity check */
+ d->edges = snewn(d->order, grid_edge*);
+ d->faces = snewn(d->order, grid_face*);
+ for (j = 0; j < d->order; j++) {
+ d->edges[j] = NULL;
+ d->faces[j] = NULL;
+ }
+ }
+ /* For each dot, need to find a face that touches it, so we can seed
+ * the edge-face-edge-face process around each dot. */
+ for (i = 0; i < g->num_faces; i++) {
+ grid_face *f = g->faces + i;
+ int j;
+ for (j = 0; j < f->order; j++) {
+ grid_dot *d = f->dots[j];
+ d->faces[0] = f;
+ }
+ }
+ /* Each dot now has a face in its first slot. Generate the remaining
+ * faces and edges around the dot, by searching both clockwise and
+ * anticlockwise from the first face. Need to do both directions,
+ * because of the possibility of hitting the infinite face, which
+ * blocks progress. But there's only one such face, so we will
+ * succeed in finding every edge and face this way. */
+ for (i = 0; i < g->num_dots; i++) {
+ grid_dot *d = g->dots + i;
+ int current_face1 = 0; /* ascends clockwise */
+ int current_face2 = 0; /* descends anticlockwise */
+
+ /* Labelling scheme: as we walk clockwise around the dot, starting
+ * at face0 (d->faces[0]), we hit:
+ * (face0), edge0, face1, edge1, face2,...
+ *
+ * 0
+ * |
+ * 0 | 1
+ * |
+ * -----d-----1
+ * |
+ * | 2
+ * |
+ * 2
+ *
+ * So, for example, face1 should be joined to edge0 and edge1,
+ * and those edges should appear in an anticlockwise sense around
+ * that face (see diagram). */
+
+ /* clockwise search */
+ while (TRUE) {
+ grid_face *f = d->faces[current_face1];
+ grid_edge *e;
+ int j;
+ assert(f != NULL);
+ /* find dot around this face */
+ for (j = 0; j < f->order; j++) {
+ if (f->dots[j] == d)
+ break;
+ }
+ assert(j != f->order); /* must find dot */
+
+ /* Around f, required edge is anticlockwise from the dot. See
+ * the other labelling scheme higher up, for why we subtract 1
+ * from j. */
+ j--;
+ if (j == -1)
+ j = f->order - 1;
+ e = f->edges[j];
+ d->edges[current_face1] = e; /* set edge */
+ current_face1++;
+ if (current_face1 == d->order)
+ break;
+ else {
+ /* set face */
+ d->faces[current_face1] =
+ (e->face1 == f) ? e->face2 : e->face1;
+ if (d->faces[current_face1] == NULL)
+ break; /* cannot progress beyond infinite face */
+ }
+ }
+ /* If the clockwise search made it all the way round, don't need to
+ * bother with the anticlockwise search. */
+ if (current_face1 == d->order)
+ continue; /* this dot is complete, move on to next dot */
+
+ /* anticlockwise search */
+ while (TRUE) {
+ grid_face *f = d->faces[current_face2];
+ grid_edge *e;
+ int j;
+ assert(f != NULL);
+ /* find dot around this face */
+ for (j = 0; j < f->order; j++) {
+ if (f->dots[j] == d)
+ break;
+ }
+ assert(j != f->order); /* must find dot */
+
+ /* Around f, required edge is clockwise from the dot. */
+ e = f->edges[j];
+
+ current_face2--;
+ if (current_face2 == -1)
+ current_face2 = d->order - 1;
+ d->edges[current_face2] = e; /* set edge */
+
+ /* set face */
+ if (current_face2 == current_face1)
+ break;
+ d->faces[current_face2] =
+ (e->face1 == f) ? e->face2 : e->face1;
+ /* There's only 1 infinite face, so we must get all the way
+ * to current_face1 before we hit it. */
+ assert(d->faces[current_face2]);
+ }
+ }
+
+ /* ====== Stage 4 ======
+ * Compute other grid settings
+ */
+
+ /* Bounding rectangle */
+ for (i = 0; i < g->num_dots; i++) {
+ grid_dot *d = g->dots + i;
+ if (i == 0) {
+ g->lowest_x = g->highest_x = d->x;
+ g->lowest_y = g->highest_y = d->y;
+ } else {
+ g->lowest_x = min(g->lowest_x, d->x);
+ g->highest_x = max(g->highest_x, d->x);
+ g->lowest_y = min(g->lowest_y, d->y);
+ g->highest_y = max(g->highest_y, d->y);
+ }
+ }
+
+#ifdef DEBUG_GRID
+ grid_print_derived(g);
+#endif
+}
+
+/* Helpers for making grid-generation easier. These functions are only
+ * intended for use during grid generation. */
+
+/* Comparison function for the (tree234) sorted dot list */
+static int grid_point_cmp_fn(void *v1, void *v2)
+{
+ grid_dot *p1 = v1;
+ grid_dot *p2 = v2;
+ if (p1->y != p2->y)
+ return p2->y - p1->y;
+ else
+ return p2->x - p1->x;
+}
+/* Add a new face to the grid, with its dot list allocated.
+ * Assumes there's enough space allocated for the new face in grid->faces */
+static void grid_face_add_new(grid *g, int face_size)
+{
+ int i;
+ grid_face *new_face = g->faces + g->num_faces;
+ new_face->order = face_size;
+ new_face->dots = snewn(face_size, grid_dot*);
+ for (i = 0; i < face_size; i++)
+ new_face->dots[i] = NULL;
+ new_face->edges = NULL;
+ g->num_faces++;
+}
+/* Assumes dot list has enough space */
+static grid_dot *grid_dot_add_new(grid *g, int x, int y)
+{
+ grid_dot *new_dot = g->dots + g->num_dots;
+ new_dot->order = 0;
+ new_dot->edges = NULL;
+ new_dot->faces = NULL;
+ new_dot->x = x;
+ new_dot->y = y;
+ g->num_dots++;
+ return new_dot;
+}
+/* Retrieve a dot with these (x,y) coordinates. Either return an existing dot
+ * in the dot_list, or add a new dot to the grid (and the dot_list) and
+ * return that.
+ * Assumes g->dots has enough capacity allocated */
+static grid_dot *grid_get_dot(grid *g, tree234 *dot_list, int x, int y)
+{
+ grid_dot test = {0, NULL, NULL, x, y};
+ grid_dot *ret = find234(dot_list, &test, NULL);
+ if (ret)
+ return ret;
+
+ ret = grid_dot_add_new(g, x, y);
+ add234(dot_list, ret);
+ return ret;
+}
+
+/* Sets the last face of the grid to include this dot, at this position
+ * around the face. Assumes num_faces is at least 1 (a new face has
+ * previously been added, with the required number of dots allocated) */
+static void grid_face_set_dot(grid *g, grid_dot *d, int position)
+{
+ grid_face *last_face = g->faces + g->num_faces - 1;
+ last_face->dots[position] = d;
+}
+
+/* ------ Generate various types of grid ------ */
+
+/* General method is to generate faces, by calculating their dot coordinates.
+ * As new faces are added, we keep track of all the dots so we can tell when
+ * a new face reuses an existing dot. For example, two squares touching at an
+ * edge would generate six unique dots: four dots from the first face, then
+ * two additional dots for the second face, because we detect the other two
+ * dots have already been taken up. This list is stored in a tree234
+ * called "points". No extra memory-allocation needed here - we store the
+ * actual grid_dot* pointers, which all point into the g->dots list.
+ * For this reason, we have to calculate coordinates in such a way as to
+ * eliminate any rounding errors, so we can detect when a dot on one
+ * face precisely lands on a dot of a different face. No floating-point
+ * arithmetic here!
+ */
+
+grid *grid_new_square(int width, int height)
+{
+ int x, y;
+ /* Side length */
+ int a = 20;
+
+ /* Upper bounds - don't have to be exact */
+ int max_faces = width * height;
+ int max_dots = (width + 1) * (height + 1);
+
+ tree234 *points;
+
+ grid *g = grid_new();
+ g->tilesize = a;
+ g->faces = snewn(max_faces, grid_face);
+ g->dots = snewn(max_dots, grid_dot);
+
+ points = newtree234(grid_point_cmp_fn);
+
+ /* generate square faces */
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ grid_dot *d;
+ /* face position */
+ int px = a * x;
+ int py = a * y;
+
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a, py);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + a, py + a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px, py + a);
+ grid_face_set_dot(g, d, 3);
+ }
+ }
+
+ freetree234(points);
+ assert(g->num_faces <= max_faces);
+ assert(g->num_dots <= max_dots);
+ g->middle_face = g->faces + (height/2) * width + (width/2);
+
+ grid_make_consistent(g);
+ return g;
+}
+
+grid *grid_new_honeycomb(int width, int height)
+{
+ int x, y;
+ /* Vector for side of hexagon - ratio is close to sqrt(3) */
+ int a = 15;
+ int b = 26;
+
+ /* Upper bounds - don't have to be exact */
+ int max_faces = width * height;
+ int max_dots = 2 * (width + 1) * (height + 1);
+
+ tree234 *points;
+
+ grid *g = grid_new();
+ g->tilesize = 3 * a;
+ g->faces = snewn(max_faces, grid_face);
+ g->dots = snewn(max_dots, grid_dot);
+
+ points = newtree234(grid_point_cmp_fn);
+
+ /* generate hexagonal faces */
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ grid_dot *d;
+ /* face centre */
+ int cx = 3 * a * x;
+ int cy = 2 * b * y;
+ if (x % 2)
+ cy += b;
+ grid_face_add_new(g, 6);
+
+ d = grid_get_dot(g, points, cx - a, cy - b);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, cx + a, cy - b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, cx + 2*a, cy);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, cx + a, cy + b);
+ grid_face_set_dot(g, d, 3);
+ d = grid_get_dot(g, points, cx - a, cy + b);
+ grid_face_set_dot(g, d, 4);
+ d = grid_get_dot(g, points, cx - 2*a, cy);
+ grid_face_set_dot(g, d, 5);
+ }
+ }
+
+ freetree234(points);
+ assert(g->num_faces <= max_faces);
+ assert(g->num_dots <= max_dots);
+ g->middle_face = g->faces + (height/2) * width + (width/2);
+
+ grid_make_consistent(g);
+ return g;
+}
+
+/* Doesn't use the previous method of generation, it pre-dates it!
+ * A triangular grid is just about simple enough to do by "brute force" */
+grid *grid_new_triangular(int width, int height)
+{
+ int x,y;
+
+ /* Vector for side of triangle - ratio is close to sqrt(3) */
+ int vec_x = 15;
+ int vec_y = 26;
+
+ int index;
+
+ /* convenient alias */
+ int w = width + 1;
+
+ grid *g = grid_new();
+ g->tilesize = 18; /* adjust to your taste */
+
+ g->num_faces = width * height * 2;
+ g->num_dots = (width + 1) * (height + 1);
+ g->faces = snewn(g->num_faces, grid_face);
+ g->dots = snewn(g->num_dots, grid_dot);
+
+ /* generate dots */
+ index = 0;
+ for (y = 0; y <= height; y++) {
+ for (x = 0; x <= width; x++) {
+ grid_dot *d = g->dots + index;
+ /* odd rows are offset to the right */
+ d->order = 0;
+ d->edges = NULL;
+ d->faces = NULL;
+ d->x = x * 2 * vec_x + ((y % 2) ? vec_x : 0);
+ d->y = y * vec_y;
+ index++;
+ }
+ }
+
+ /* generate faces */
+ index = 0;
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ /* initialise two faces for this (x,y) */
+ grid_face *f1 = g->faces + index;
+ grid_face *f2 = f1 + 1;
+ f1->edges = NULL;
+ f1->order = 3;
+ f1->dots = snewn(f1->order, grid_dot*);
+ f2->edges = NULL;
+ f2->order = 3;
+ f2->dots = snewn(f2->order, grid_dot*);
+
+ /* face descriptions depend on whether the row-number is
+ * odd or even */
+ if (y % 2) {
+ f1->dots[0] = g->dots + y * w + x;
+ f1->dots[1] = g->dots + (y + 1) * w + x + 1;
+ f1->dots[2] = g->dots + (y + 1) * w + x;
+ f2->dots[0] = g->dots + y * w + x;
+ f2->dots[1] = g->dots + y * w + x + 1;
+ f2->dots[2] = g->dots + (y + 1) * w + x + 1;
+ } else {
+ f1->dots[0] = g->dots + y * w + x;
+ f1->dots[1] = g->dots + y * w + x + 1;
+ f1->dots[2] = g->dots + (y + 1) * w + x;
+ f2->dots[0] = g->dots + y * w + x + 1;
+ f2->dots[1] = g->dots + (y + 1) * w + x + 1;
+ f2->dots[2] = g->dots + (y + 1) * w + x;
+ }
+ index += 2;
+ }
+ }
+
+ /* "+ width" takes us to the middle of the row, because each row has
+ * (2*width) faces. */
+ g->middle_face = g->faces + (height / 2) * 2 * width + width;
+
+ grid_make_consistent(g);
+ return g;
+}
+
+grid *grid_new_snubsquare(int width, int height)
+{
+ int x, y;
+ /* Vector for side of triangle - ratio is close to sqrt(3) */
+ int a = 15;
+ int b = 26;
+
+ /* Upper bounds - don't have to be exact */
+ int max_faces = 3 * width * height;
+ int max_dots = 2 * (width + 1) * (height + 1);
+
+ tree234 *points;
+
+ grid *g = grid_new();
+ g->tilesize = 18;
+ g->faces = snewn(max_faces, grid_face);
+ g->dots = snewn(max_dots, grid_dot);
+
+ points = newtree234(grid_point_cmp_fn);
+
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ grid_dot *d;
+ /* face position */
+ int px = (a + b) * x;
+ int py = (a + b) * y;
+
+ /* generate square faces */
+ grid_face_add_new(g, 4);
+ if ((x + y) % 2) {
+ d = grid_get_dot(g, points, px + a, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a + b, py + a);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + b, py + a + b);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px, py + b);
+ grid_face_set_dot(g, d, 3);
+ } else {
+ d = grid_get_dot(g, points, px + b, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a + b, py + b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + a, py + a + b);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px, py + a);
+ grid_face_set_dot(g, d, 3);
+ }
+
+ /* generate up/down triangles */
+ if (x > 0) {
+ grid_face_add_new(g, 3);
+ if ((x + y) % 2) {
+ d = grid_get_dot(g, points, px + a, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px, py + b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px - a, py);
+ grid_face_set_dot(g, d, 2);
+ } else {
+ d = grid_get_dot(g, points, px, py + a);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a, py + a + b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px - a, py + a + b);
+ grid_face_set_dot(g, d, 2);
+ }
+ }
+
+ /* generate left/right triangles */
+ if (y > 0) {
+ grid_face_add_new(g, 3);
+ if ((x + y) % 2) {
+ d = grid_get_dot(g, points, px + a, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a + b, py - a);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + a + b, py + a);
+ grid_face_set_dot(g, d, 2);
+ } else {
+ d = grid_get_dot(g, points, px, py - a);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + b, py);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px, py + a);
+ grid_face_set_dot(g, d, 2);
+ }
+ }
+ }
+ }
+
+ freetree234(points);
+ assert(g->num_faces <= max_faces);
+ assert(g->num_dots <= max_dots);
+ g->middle_face = g->faces + (height/2) * width + (width/2);
+
+ grid_make_consistent(g);
+ return g;
+}
+
+grid *grid_new_cairo(int width, int height)
+{
+ int x, y;
+ /* Vector for side of pentagon - ratio is close to (4+sqrt(7))/3 */
+ int a = 14;
+ int b = 31;
+
+ /* Upper bounds - don't have to be exact */
+ int max_faces = 2 * width * height;
+ int max_dots = 3 * (width + 1) * (height + 1);
+
+ tree234 *points;
+
+ grid *g = grid_new();
+ g->tilesize = 40;
+ g->faces = snewn(max_faces, grid_face);
+ g->dots = snewn(max_dots, grid_dot);
+
+ points = newtree234(grid_point_cmp_fn);
+
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ grid_dot *d;
+ /* cell position */
+ int px = 2 * b * x;
+ int py = 2 * b * y;
+
+ /* horizontal pentagons */
+ if (y > 0) {
+ grid_face_add_new(g, 5);
+ if ((x + y) % 2) {
+ d = grid_get_dot(g, points, px + a, py - b);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + 2*b - a, py - b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + 2*b, py);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px + b, py + a);
+ grid_face_set_dot(g, d, 3);
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 4);
+ } else {
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + b, py - a);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + 2*b, py);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px + 2*b - a, py + b);
+ grid_face_set_dot(g, d, 3);
+ d = grid_get_dot(g, points, px + a, py + b);
+ grid_face_set_dot(g, d, 4);
+ }
+ }
+ /* vertical pentagons */
+ if (x > 0) {
+ grid_face_add_new(g, 5);
+ if ((x + y) % 2) {
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + b, py + a);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + b, py + 2*b - a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px, py + 2*b);
+ grid_face_set_dot(g, d, 3);
+ d = grid_get_dot(g, points, px - a, py + b);
+ grid_face_set_dot(g, d, 4);
+ } else {
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a, py + b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px, py + 2*b);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px - b, py + 2*b - a);
+ grid_face_set_dot(g, d, 3);
+ d = grid_get_dot(g, points, px - b, py + a);
+ grid_face_set_dot(g, d, 4);
+ }
+ }
+ }
+ }
+
+ freetree234(points);
+ assert(g->num_faces <= max_faces);
+ assert(g->num_dots <= max_dots);
+ g->middle_face = g->faces + (height/2) * width + (width/2);
+
+ grid_make_consistent(g);
+ return g;
+}
+
+grid *grid_new_greathexagonal(int width, int height)
+{
+ int x, y;
+ /* Vector for side of triangle - ratio is close to sqrt(3) */
+ int a = 15;
+ int b = 26;
+
+ /* Upper bounds - don't have to be exact */
+ int max_faces = 6 * (width + 1) * (height + 1);
+ int max_dots = 6 * width * height;
+
+ tree234 *points;
+
+ grid *g = grid_new();
+ g->tilesize = 18;
+ g->faces = snewn(max_faces, grid_face);
+ g->dots = snewn(max_dots, grid_dot);
+
+ points = newtree234(grid_point_cmp_fn);
+
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ grid_dot *d;
+ /* centre of hexagon */
+ int px = (3*a + b) * x;
+ int py = (2*a + 2*b) * y;
+ if (x % 2)
+ py += a + b;
+
+ /* hexagon */
+ grid_face_add_new(g, 6);
+ d = grid_get_dot(g, points, px - a, py - b);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a, py - b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + 2*a, py);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px + a, py + b);
+ grid_face_set_dot(g, d, 3);
+ d = grid_get_dot(g, points, px - a, py + b);
+ grid_face_set_dot(g, d, 4);
+ d = grid_get_dot(g, points, px - 2*a, py);
+ grid_face_set_dot(g, d, 5);
+
+ /* square below hexagon */
+ if (y < height - 1) {
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px - a, py + b);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a, py + b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + a, py + 2*a + b);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px - a, py + 2*a + b);
+ grid_face_set_dot(g, d, 3);
+ }
+
+ /* square below right */
+ if ((x < width - 1) && (((x % 2) == 0) || (y < height - 1))) {
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px + 2*a, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + 2*a + b, py + a);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + a + b, py + a + b);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px + a, py + b);
+ grid_face_set_dot(g, d, 3);
+ }
+
+ /* square below left */
+ if ((x > 0) && (((x % 2) == 0) || (y < height - 1))) {
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px - 2*a, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px - a, py + b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px - a - b, py + a + b);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px - 2*a - b, py + a);
+ grid_face_set_dot(g, d, 3);
+ }
+
+ /* Triangle below right */
+ if ((x < width - 1) && (y < height - 1)) {
+ grid_face_add_new(g, 3);
+ d = grid_get_dot(g, points, px + a, py + b);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a + b, py + a + b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + a, py + 2*a + b);
+ grid_face_set_dot(g, d, 2);
+ }
+
+ /* Triangle below left */
+ if ((x > 0) && (y < height - 1)) {
+ grid_face_add_new(g, 3);
+ d = grid_get_dot(g, points, px - a, py + b);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px - a, py + 2*a + b);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px - a - b, py + a + b);
+ grid_face_set_dot(g, d, 2);
+ }
+ }
+ }
+
+ freetree234(points);
+ assert(g->num_faces <= max_faces);
+ assert(g->num_dots <= max_dots);
+ g->middle_face = g->faces + (height/2) * width + (width/2);
+
+ grid_make_consistent(g);
+ return g;
+}
+
+grid *grid_new_octagonal(int width, int height)
+{
+ int x, y;
+ /* b/a approx sqrt(2) */
+ int a = 29;
+ int b = 41;
+
+ /* Upper bounds - don't have to be exact */
+ int max_faces = 2 * width * height;
+ int max_dots = 4 * (width + 1) * (height + 1);
+
+ tree234 *points;
+
+ grid *g = grid_new();
+ g->tilesize = 40;
+ g->faces = snewn(max_faces, grid_face);
+ g->dots = snewn(max_dots, grid_dot);
+
+ points = newtree234(grid_point_cmp_fn);
+
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ grid_dot *d;
+ /* cell position */
+ int px = (2*a + b) * x;
+ int py = (2*a + b) * y;
+ /* octagon */
+ grid_face_add_new(g, 8);
+ d = grid_get_dot(g, points, px + a, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a + b, py);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + 2*a + b, py + a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px + 2*a + b, py + a + b);
+ grid_face_set_dot(g, d, 3);
+ d = grid_get_dot(g, points, px + a + b, py + 2*a + b);
+ grid_face_set_dot(g, d, 4);
+ d = grid_get_dot(g, points, px + a, py + 2*a + b);
+ grid_face_set_dot(g, d, 5);
+ d = grid_get_dot(g, points, px, py + a + b);
+ grid_face_set_dot(g, d, 6);
+ d = grid_get_dot(g, points, px, py + a);
+ grid_face_set_dot(g, d, 7);
+
+ /* diamond */
+ if ((x > 0) && (y > 0)) {
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px, py - a);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + a, py);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px, py + a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px - a, py);
+ grid_face_set_dot(g, d, 3);
+ }
+ }
+ }
+
+ freetree234(points);
+ assert(g->num_faces <= max_faces);
+ assert(g->num_dots <= max_dots);
+ g->middle_face = g->faces + (height/2) * width + (width/2);
+
+ grid_make_consistent(g);
+ return g;
+}
+
+grid *grid_new_kites(int width, int height)
+{
+ int x, y;
+ /* b/a approx sqrt(3) */
+ int a = 15;
+ int b = 26;
+
+ /* Upper bounds - don't have to be exact */
+ int max_faces = 6 * width * height;
+ int max_dots = 6 * (width + 1) * (height + 1);
+
+ tree234 *points;
+
+ grid *g = grid_new();
+ g->tilesize = 40;
+ g->faces = snewn(max_faces, grid_face);
+ g->dots = snewn(max_dots, grid_dot);
+
+ points = newtree234(grid_point_cmp_fn);
+
+ for (y = 0; y < height; y++) {
+ for (x = 0; x < width; x++) {
+ grid_dot *d;
+ /* position of order-6 dot */
+ int px = 4*b * x;
+ int py = 6*a * y;
+ if (y % 2)
+ px += 2*b;
+
+ /* kite pointing up-left */
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + 2*b, py);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + 2*b, py + 2*a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px + b, py + 3*a);
+ grid_face_set_dot(g, d, 3);
+
+ /* kite pointing up */
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + b, py + 3*a);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px, py + 4*a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px - b, py + 3*a);
+ grid_face_set_dot(g, d, 3);
+
+ /* kite pointing up-right */
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px - b, py + 3*a);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px - 2*b, py + 2*a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px - 2*b, py);
+ grid_face_set_dot(g, d, 3);
+
+ /* kite pointing down-right */
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px - 2*b, py);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px - 2*b, py - 2*a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px - b, py - 3*a);
+ grid_face_set_dot(g, d, 3);
+
+ /* kite pointing down */
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px - b, py - 3*a);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px, py - 4*a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px + b, py - 3*a);
+ grid_face_set_dot(g, d, 3);
+
+ /* kite pointing down-left */
+ grid_face_add_new(g, 4);
+ d = grid_get_dot(g, points, px, py);
+ grid_face_set_dot(g, d, 0);
+ d = grid_get_dot(g, points, px + b, py - 3*a);
+ grid_face_set_dot(g, d, 1);
+ d = grid_get_dot(g, points, px + 2*b, py - 2*a);
+ grid_face_set_dot(g, d, 2);
+ d = grid_get_dot(g, points, px + 2*b, py);
+ grid_face_set_dot(g, d, 3);
+ }
+ }
+
+ freetree234(points);
+ assert(g->num_faces <= max_faces);
+ assert(g->num_dots <= max_dots);
+ g->middle_face = g->faces + 6 * ((height/2) * width + (width/2));
+
+ grid_make_consistent(g);
+ return g;
+}
+
+/* ----------- End of grid generators ------------- */
--- /dev/null
+++ b/grid.h
@@ -1,0 +1,96 @@
+/*
+ * (c) Lambros Lambrou 2008
+ *
+ * Code for working with general grids, which can be any planar graph
+ * with faces, edges and vertices (dots). Includes generators for a few
+ * types of grid, including square, hexagonal, triangular and others.
+ */
+
+#ifndef PUZZLES_GRID_H
+#define PUZZLES_GRID_H
+
+/* Useful macros */
+#ifndef SQ
+# define SQ(x) ( (x) * (x) )
+#endif
+
+/* ----------------------------------------------------------------------
+ * Grid structures:
+ * A grid is made up of faces, edges and dots. These structures hold
+ * the incidence relationships between these types. For example, an
+ * edge always joins two dots, and is adjacent to two faces.
+ * The "grid_xxx **" members are lists of pointers which are dynamically
+ * allocated during grid generation.
+ * A pointer to a face/edge/dot will always point somewhere inside one of the
+ * three lists of the main "grid" structure: faces, edges, dots.
+ * Could have used integer offsets into these lists, but using actual
+ * pointers instead gives us type-safety.
+ */
+
+/* Need forward declarations */
+typedef struct grid_face grid_face;
+typedef struct grid_edge grid_edge;
+typedef struct grid_dot grid_dot;
+
+struct grid_face {
+ int order; /* Number of edges, also the number of dots */
+ grid_edge **edges; /* edges around this face */
+ grid_dot **dots; /* corners of this face */
+};
+struct grid_edge {
+ grid_dot *dot1, *dot2;
+ grid_face *face1, *face2; /* Use NULL for the infinite outside face */
+};
+struct grid_dot {
+ int order;
+ grid_edge **edges;
+ grid_face **faces; /* A NULL grid_face* means infinite outside face */
+
+ /* Position in some fairly arbitrary (Cartesian) coordinate system.
+ * Use large enough values such that we can get away with
+ * integer arithmetic, but small enough such that arithmetic
+ * won't overflow. */
+ int x, y;
+};
+typedef struct grid {
+ /* These are (dynamically allocated) arrays of all the
+ * faces, edges, dots that are in the grid. */
+ int num_faces; grid_face *faces;
+ int num_edges; grid_edge *edges;
+ int num_dots; grid_dot *dots;
+
+ /* Should be a face roughly near the middle of the grid.
+ * Used to seed path-generation, and also for nearest-edge
+ * detection. */
+ grid_face *middle_face;
+
+ /* Cache the bounding-box of the grid, so the drawing-code can quickly
+ * figure out the proper scaling to draw onto a given area. */
+ int lowest_x, lowest_y, highest_x, highest_y;
+
+ /* A measure of tile size for this grid (in grid coordinates), to help
+ * the renderer decide how large to draw the grid.
+ * Roughly the size of a single tile - for example the side-length
+ * of a square cell. */
+ int tilesize;
+
+ /* We really don't want to copy this monstrosity!
+ * A grid is immutable once generated.
+ */
+ int refcount;
+} grid;
+
+grid *grid_new_square(int width, int height);
+grid *grid_new_honeycomb(int width, int height);
+grid *grid_new_triangular(int width, int height);
+grid *grid_new_snubsquare(int width, int height);
+grid *grid_new_cairo(int width, int height);
+grid *grid_new_greathexagonal(int width, int height);
+grid *grid_new_octagonal(int width, int height);
+grid *grid_new_kites(int width, int height);
+
+void grid_free(grid *g);
+
+grid_edge *grid_nearest_edge(grid *g, int x, int y);
+
+#endif /* PUZZLES_GRID_H */
--- a/loopy.R
+++ b/loopy.R
@@ -1,10 +1,10 @@
# -*- makefile -*-
-LOOPY = loopy tree234 dsf
+LOOPY = loopy tree234 dsf grid
-loopy : [X] GTK COMMON LOOPY loopy-icon|no-icon
+loopy : [X] GTK COMMON LOOPY loopy-icon|no-icon
-loopy : [G] WINDOWS COMMON LOOPY loopy.res|noicon.res
+loopy : [G] WINDOWS COMMON LOOPY loopy.res|noicon.res
ALL += LOOPY
--- a/loopy.c
+++ b/loopy.c
@@ -1,16 +1,16 @@
/*
- * loopy.c: An implementation of the Nikoli game 'Loop the loop'.
+ * loopy.c:
+ *
+ * An implementation of the Nikoli game 'Loop the loop'.
* (c) Mike Pinna, 2005, 2006
+ * Substantially rewritten to allowing for more general types of grid.
+ * (c) Lambros Lambrou 2008
*
* vim: set shiftwidth=4 :set textwidth=80:
- */
+ */
/*
- * TODO:
*
- * - Setting very high recursion depth seems to cause memory munching: are we
- * recursing before checking completion, by any chance?
- *
* - There's an interesting deductive technique which makes use of topology
* rather than just graph theory. Each _square_ in the grid is either inside
* or outside the loop; you can tell that two squares are on the same side
@@ -37,11 +37,16 @@
#include "puzzles.h"
#include "tree234.h"
+#include "grid.h"
/* Debugging options */
-/*#define DEBUG_CACHES*/
-/*#define SHOW_WORKING*/
+/*
+#define DEBUG_CACHES
+#define SHOW_WORKING
+#define DEBUG_DLINES
+*/
+
/* ----------------------------------------------------------------------
* Struct, enum and function declarations
*/
@@ -49,24 +54,29 @@
enum {
COL_BACKGROUND,
COL_FOREGROUND,
+ COL_LINEUNKNOWN,
COL_HIGHLIGHT,
COL_MISTAKE,
+ COL_SATISFIED,
NCOLOURS
};
struct game_state {
- int w, h;
-
- /* Put -1 in a square that doesn't get a clue */
+ grid *game_grid;
+
+ /* Put -1 in a face that doesn't get a clue */
signed char *clues;
-
- /* Arrays of line states, stored left-to-right, top-to-bottom */
- char *hl, *vl;
+ /* Array of line states, to store whether each line is
+ * YES, NO or UNKNOWN */
+ char *lines;
+
int solved;
int cheated;
- int recursion_depth;
+ /* Used in game_text_format(), so that it knows what type of
+ * grid it's trying to render as ASCII text. */
+ int grid_type;
};
enum solver_status {
@@ -76,9 +86,12 @@
SOLVER_INCOMPLETE /* This may be a partial solution */
};
+/* ------ Solver state ------ */
typedef struct normal {
- char *dot_atleastone;
- char *dot_atmostone;
+ /* For each dline, store a bitmask for whether we know:
+ * (bit 0) at least one is YES
+ * (bit 1) at most one is YES */
+ char *dlines;
} normal_mode_state;
typedef struct hard {
@@ -87,7 +100,6 @@
typedef struct solver_state {
game_state *state;
- int recursion_remaining;
enum solver_status solver_status;
/* NB looplen is the number of dots that are joined together at a point, ie a
* looplen of 1 means there are no lines to a particular dot */
@@ -94,11 +106,11 @@
int *looplen;
/* caches */
- char *dot_yescount;
- char *dot_nocount;
- char *square_yescount;
- char *square_nocount;
- char *dot_solved, *square_solved;
+ char *dot_yes_count;
+ char *dot_no_count;
+ char *face_yes_count;
+ char *face_no_count;
+ char *dot_solved, *face_solved;
int *dotdsf;
normal_mode_state *normal;
@@ -130,39 +142,31 @@
struct game_params {
int w, h;
int diff;
- int rec;
+ int type;
+
+ /* Grid generation is expensive, so keep a (ref-counted) reference to the
+ * grid for these parameters, and only generate when required. */
+ grid *game_grid;
};
enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
-#define OPP(state) \
- (2 - state)
+#define OPP(line_state) \
+ (2 - line_state)
-enum direction { UP, LEFT, RIGHT, DOWN };
-#define OPP_DIR(dir) \
- (3 - dir)
-
struct game_drawstate {
int started;
- int tilesize, linewidth;
+ int tilesize;
int flashing;
- char *hl, *vl;
+ char *lines;
char *clue_error;
+ char *clue_satisfied;
};
-static int game_can_format_as_text_now(game_params *params)
-{
- return TRUE;
-}
-
-static char *game_text_format(game_state *state);
-static char *state_to_text(const game_state *state);
static char *validate_desc(game_params *params, char *desc);
-static int get_line_status_from_point(const game_state *state,
- int x, int y, enum direction d);
-static int dot_order(const game_state* state, int i, int j, char line_type);
-static int square_order(const game_state* state, int i, int j, char line_type);
+static int dot_order(const game_state* state, int i, char line_type);
+static int face_order(const game_state* state, int i, char line_type);
static solver_state *solve_game_rec(const solver_state *sstate,
int diff);
@@ -172,41 +176,45 @@
#define check_caches(s)
#endif
+/* ------- List of grid generators ------- */
+#define GRIDLIST(A) \
+ A(Squares,grid_new_square) \
+ A(Triangular,grid_new_triangular) \
+ A(Honeycomb,grid_new_honeycomb) \
+ A(Snub-Square,grid_new_snubsquare) \
+ A(Cairo,grid_new_cairo) \
+ A(Great-Hexagonal,grid_new_greathexagonal) \
+ A(Octagonal,grid_new_octagonal) \
+ A(Kites,grid_new_kites)
+
+#define GRID_NAME(title,fn) #title,
+#define GRID_CONFIG(title,fn) ":" #title
+#define GRID_FN(title,fn) &fn,
+static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
+#define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
+static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
+static const int NUM_GRID_TYPES = sizeof(grid_fns) / sizeof(grid_fns[0]);
+
+/* Generates a (dynamically allocated) new grid, according to the
+ * type and size requested in params. Does nothing if the grid is already
+ * generated. The allocated grid is owned by the params object, and will be
+ * freed in free_params(). */
+static void params_generate_grid(game_params *params)
+{
+ if (!params->game_grid) {
+ params->game_grid = grid_fns[params->type](params->w, params->h);
+ }
+}
+
/* ----------------------------------------------------------------------
- * Preprocessor magic
+ * Preprocessor magic
*/
/* General constants */
#define PREFERRED_TILE_SIZE 32
-#define TILE_SIZE (ds->tilesize)
-#define LINEWIDTH (ds->linewidth)
-#define BORDER (TILE_SIZE / 2)
+#define BORDER(tilesize) ((tilesize) / 2)
#define FLASH_TIME 0.5F
-/* Counts of various things that we're interested in */
-#define HL_COUNT(state) ((state)->w * ((state)->h + 1))
-#define VL_COUNT(state) (((state)->w + 1) * (state)->h)
-#define LINE_COUNT(state) (HL_COUNT(state) + VL_COUNT(state))
-#define DOT_COUNT(state) (((state)->w + 1) * ((state)->h + 1))
-#define SQUARE_COUNT(state) ((state)->w * (state)->h)
-
-/* For indexing into arrays */
-#define DOT_INDEX(state, x, y) ((x) + ((state)->w + 1) * (y))
-#define SQUARE_INDEX(state, x, y) ((x) + ((state)->w) * (y))
-#define HL_INDEX(state, x, y) SQUARE_INDEX(state, x, y)
-#define VL_INDEX(state, x, y) DOT_INDEX(state, x, y)
-
-/* Useful utility functions */
-#define LEGAL_DOT(state, i, j) ((i) >= 0 && (j) >= 0 && \
- (i) <= (state)->w && (j) <= (state)->h)
-#define LEGAL_SQUARE(state, i, j) ((i) >= 0 && (j) >= 0 && \
- (i) < (state)->w && (j) < (state)->h)
-
-#define CLUE_AT(state, i, j) (LEGAL_SQUARE(state, i, j) ? \
- LV_CLUE_AT(state, i, j) : -1)
-
-#define LV_CLUE_AT(state, i, j) ((state)->clues[SQUARE_INDEX(state, i, j)])
-
#define BIT_SET(field, bit) ((field) & (1<<(bit)))
#define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
@@ -215,82 +223,9 @@
#define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
((field) &= ~(1<<(bit)), TRUE) : FALSE)
-#define DIR2STR(d) \
- ((d == UP) ? "up" : \
- (d == DOWN) ? "down" : \
- (d == LEFT) ? "left" : \
- (d == RIGHT) ? "right" : "oops")
-
#define CLUE2CHAR(c) \
((c < 0) ? ' ' : c + '0')
-/* Lines that have particular relationships with given dots or squares */
-#define ABOVE_SQUARE(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
-#define BELOW_SQUARE(state, i, j) ABOVE_SQUARE(state, i, (j)+1)
-#define LEFTOF_SQUARE(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
-#define RIGHTOF_SQUARE(state, i, j) LEFTOF_SQUARE(state, (i)+1, j)
-
-/*
- * These macros return rvalues only, but can cope with being passed
- * out-of-range coordinates.
- */
-/* XXX replace these with functions so we can create an array of function
- * pointers for nicer iteration over them. This could probably be done with
- * loads of other things for eliminating many nasty hacks. */
-#define ABOVE_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j <= 0) ? \
- LINE_NO : LV_ABOVE_DOT(state, i, j))
-#define BELOW_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j >= (state)->h) ? \
- LINE_NO : LV_BELOW_DOT(state, i, j))
-
-#define LEFTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i <= 0) ? \
- LINE_NO : LV_LEFTOF_DOT(state, i, j))
-#define RIGHTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i >= (state)->w)? \
- LINE_NO : LV_RIGHTOF_DOT(state, i, j))
-
-/*
- * These macros expect to be passed valid coordinates, and return
- * lvalues.
- */
-#define LV_BELOW_DOT(state, i, j) ((state)->vl[VL_INDEX(state, i, j)])
-#define LV_ABOVE_DOT(state, i, j) LV_BELOW_DOT(state, i, (j)-1)
-
-#define LV_RIGHTOF_DOT(state, i, j) ((state)->hl[HL_INDEX(state, i, j)])
-#define LV_LEFTOF_DOT(state, i, j) LV_RIGHTOF_DOT(state, (i)-1, j)
-
-/* Counts of interesting things */
-#define DOT_YES_COUNT(sstate, i, j) \
- ((sstate)->dot_yescount[DOT_INDEX((sstate)->state, i, j)])
-
-#define DOT_NO_COUNT(sstate, i, j) \
- ((sstate)->dot_nocount[DOT_INDEX((sstate)->state, i, j)])
-
-#define SQUARE_YES_COUNT(sstate, i, j) \
- ((sstate)->square_yescount[SQUARE_INDEX((sstate)->state, i, j)])
-
-#define SQUARE_NO_COUNT(sstate, i, j) \
- ((sstate)->square_nocount[SQUARE_INDEX((sstate)->state, i, j)])
-
-/* Iterators. NB these iterate over height more slowly than over width so that
- * the elements come out in 'reading' order */
-/* XXX considering adding a 'current' element to each of these which gets the
- * address of the current dot, say. But expecting we'd need more than that
- * most of the time. */
-#define FORALL(i, j, w, h) \
- for ((j) = 0; (j) < (h); ++(j)) \
- for ((i) = 0; (i) < (w); ++(i))
-
-#define FORALL_DOTS(state, i, j) \
- FORALL(i, j, (state)->w + 1, (state)->h + 1)
-
-#define FORALL_SQUARES(state, i, j) \
- FORALL(i, j, (state)->w, (state)->h)
-
-#define FORALL_HL(state, i, j) \
- FORALL(i, j, (state)->w, (state)->h+1)
-
-#define FORALL_VL(state, i, j) \
- FORALL(i, j, (state)->w+1, (state)->h)
-
/* ----------------------------------------------------------------------
* General struct manipulation and other straightforward code
*/
@@ -299,22 +234,19 @@
{
game_state *ret = snew(game_state);
- ret->h = state->h;
- ret->w = state->w;
+ ret->game_grid = state->game_grid;
+ ret->game_grid->refcount++;
+
ret->solved = state->solved;
ret->cheated = state->cheated;
- ret->clues = snewn(SQUARE_COUNT(state), signed char);
- memcpy(ret->clues, state->clues, SQUARE_COUNT(state));
+ ret->clues = snewn(state->game_grid->num_faces, signed char);
+ memcpy(ret->clues, state->clues, state->game_grid->num_faces);
- ret->hl = snewn(HL_COUNT(state), char);
- memcpy(ret->hl, state->hl, HL_COUNT(state));
+ ret->lines = snewn(state->game_grid->num_edges, char);
+ memcpy(ret->lines, state->lines, state->game_grid->num_edges);
- ret->vl = snewn(VL_COUNT(state), char);
- memcpy(ret->vl, state->vl, VL_COUNT(state));
-
- ret->recursion_depth = state->recursion_depth;
-
+ ret->grid_type = state->grid_type;
return ret;
}
@@ -321,62 +253,51 @@
static void free_game(game_state *state)
{
if (state) {
+ grid_free(state->game_grid);
sfree(state->clues);
- sfree(state->hl);
- sfree(state->vl);
+ sfree(state->lines);
sfree(state);
}
}
-static solver_state *new_solver_state(const game_state *state, int diff) {
- int i, j;
+static solver_state *new_solver_state(game_state *state, int diff) {
+ int i;
+ int num_dots = state->game_grid->num_dots;
+ int num_faces = state->game_grid->num_faces;
+ int num_edges = state->game_grid->num_edges;
solver_state *ret = snew(solver_state);
- ret->state = dup_game((game_state *)state);
-
- ret->recursion_remaining = state->recursion_depth;
- ret->solver_status = SOLVER_INCOMPLETE;
+ ret->state = dup_game(state);
- ret->dotdsf = snew_dsf(DOT_COUNT(state));
- ret->looplen = snewn(DOT_COUNT(state), int);
+ ret->solver_status = SOLVER_INCOMPLETE;
- for (i = 0; i < DOT_COUNT(state); i++) {
+ ret->dotdsf = snew_dsf(num_dots);
+ ret->looplen = snewn(num_dots, int);
+
+ for (i = 0; i < num_dots; i++) {
ret->looplen[i] = 1;
}
- ret->dot_solved = snewn(DOT_COUNT(state), char);
- ret->square_solved = snewn(SQUARE_COUNT(state), char);
- memset(ret->dot_solved, FALSE, DOT_COUNT(state));
- memset(ret->square_solved, FALSE, SQUARE_COUNT(state));
+ ret->dot_solved = snewn(num_dots, char);
+ ret->face_solved = snewn(num_faces, char);
+ memset(ret->dot_solved, FALSE, num_dots);
+ memset(ret->face_solved, FALSE, num_faces);
- ret->dot_yescount = snewn(DOT_COUNT(state), char);
- memset(ret->dot_yescount, 0, DOT_COUNT(state));
- ret->dot_nocount = snewn(DOT_COUNT(state), char);
- memset(ret->dot_nocount, 0, DOT_COUNT(state));
- ret->square_yescount = snewn(SQUARE_COUNT(state), char);
- memset(ret->square_yescount, 0, SQUARE_COUNT(state));
- ret->square_nocount = snewn(SQUARE_COUNT(state), char);
- memset(ret->square_nocount, 0, SQUARE_COUNT(state));
+ ret->dot_yes_count = snewn(num_dots, char);
+ memset(ret->dot_yes_count, 0, num_dots);
+ ret->dot_no_count = snewn(num_dots, char);
+ memset(ret->dot_no_count, 0, num_dots);
+ ret->face_yes_count = snewn(num_faces, char);
+ memset(ret->face_yes_count, 0, num_faces);
+ ret->face_no_count = snewn(num_faces, char);
+ memset(ret->face_no_count, 0, num_faces);
- /* dot_nocount needs special initialisation as we define lines coming off
- * dots on edges as fixed at NO */
-
- FORALL_DOTS(state, i, j) {
- if (i == 0 || i == state->w)
- ++ret->dot_nocount[DOT_INDEX(state, i, j)];
- if (j == 0 || j == state->h)
- ++ret->dot_nocount[DOT_INDEX(state, i, j)];
- }
-
if (diff < DIFF_NORMAL) {
ret->normal = NULL;
} else {
ret->normal = snew(normal_mode_state);
-
- ret->normal->dot_atmostone = snewn(DOT_COUNT(state), char);
- memset(ret->normal->dot_atmostone, 0, DOT_COUNT(state));
- ret->normal->dot_atleastone = snewn(DOT_COUNT(state), char);
- memset(ret->normal->dot_atleastone, 0, DOT_COUNT(state));
+ ret->normal->dlines = snewn(2*num_edges, char);
+ memset(ret->normal->dlines, 0, 2*num_edges);
}
if (diff < DIFF_HARD) {
@@ -383,7 +304,7 @@
ret->hard = NULL;
} else {
ret->hard = snew(hard_mode_state);
- ret->hard->linedsf = snew_dsf(LINE_COUNT(state));
+ ret->hard->linedsf = snew_dsf(state->game_grid->num_edges);
}
return ret;
@@ -395,15 +316,14 @@
sfree(sstate->dotdsf);
sfree(sstate->looplen);
sfree(sstate->dot_solved);
- sfree(sstate->square_solved);
- sfree(sstate->dot_yescount);
- sfree(sstate->dot_nocount);
- sfree(sstate->square_yescount);
- sfree(sstate->square_nocount);
+ sfree(sstate->face_solved);
+ sfree(sstate->dot_yes_count);
+ sfree(sstate->dot_no_count);
+ sfree(sstate->face_yes_count);
+ sfree(sstate->face_no_count);
if (sstate->normal) {
- sfree(sstate->normal->dot_atleastone);
- sfree(sstate->normal->dot_atmostone);
+ sfree(sstate->normal->dlines);
sfree(sstate->normal);
}
@@ -417,52 +337,43 @@
}
static solver_state *dup_solver_state(const solver_state *sstate) {
- game_state *state;
-
+ game_state *state = sstate->state;
+ int num_dots = state->game_grid->num_dots;
+ int num_faces = state->game_grid->num_faces;
+ int num_edges = state->game_grid->num_edges;
solver_state *ret = snew(solver_state);
ret->state = state = dup_game(sstate->state);
- ret->recursion_remaining = sstate->recursion_remaining;
ret->solver_status = sstate->solver_status;
- ret->dotdsf = snewn(DOT_COUNT(state), int);
- ret->looplen = snewn(DOT_COUNT(state), int);
- memcpy(ret->dotdsf, sstate->dotdsf,
- DOT_COUNT(state) * sizeof(int));
- memcpy(ret->looplen, sstate->looplen,
- DOT_COUNT(state) * sizeof(int));
+ ret->dotdsf = snewn(num_dots, int);
+ ret->looplen = snewn(num_dots, int);
+ memcpy(ret->dotdsf, sstate->dotdsf,
+ num_dots * sizeof(int));
+ memcpy(ret->looplen, sstate->looplen,
+ num_dots * sizeof(int));
- ret->dot_solved = snewn(DOT_COUNT(state), char);
- ret->square_solved = snewn(SQUARE_COUNT(state), char);
- memcpy(ret->dot_solved, sstate->dot_solved,
- DOT_COUNT(state));
- memcpy(ret->square_solved, sstate->square_solved,
- SQUARE_COUNT(state));
+ ret->dot_solved = snewn(num_dots, char);
+ ret->face_solved = snewn(num_faces, char);
+ memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
+ memcpy(ret->face_solved, sstate->face_solved, num_faces);
- ret->dot_yescount = snewn(DOT_COUNT(state), char);
- memcpy(ret->dot_yescount, sstate->dot_yescount,
- DOT_COUNT(state));
- ret->dot_nocount = snewn(DOT_COUNT(state), char);
- memcpy(ret->dot_nocount, sstate->dot_nocount,
- DOT_COUNT(state));
+ ret->dot_yes_count = snewn(num_dots, char);
+ memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
+ ret->dot_no_count = snewn(num_dots, char);
+ memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
- ret->square_yescount = snewn(SQUARE_COUNT(state), char);
- memcpy(ret->square_yescount, sstate->square_yescount,
- SQUARE_COUNT(state));
- ret->square_nocount = snewn(SQUARE_COUNT(state), char);
- memcpy(ret->square_nocount, sstate->square_nocount,
- SQUARE_COUNT(state));
+ ret->face_yes_count = snewn(num_faces, char);
+ memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
+ ret->face_no_count = snewn(num_faces, char);
+ memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
if (sstate->normal) {
ret->normal = snew(normal_mode_state);
- ret->normal->dot_atmostone = snewn(DOT_COUNT(state), char);
- memcpy(ret->normal->dot_atmostone, sstate->normal->dot_atmostone,
- DOT_COUNT(state));
-
- ret->normal->dot_atleastone = snewn(DOT_COUNT(state), char);
- memcpy(ret->normal->dot_atleastone, sstate->normal->dot_atleastone,
- DOT_COUNT(state));
+ ret->normal->dlines = snewn(2*num_edges, char);
+ memcpy(ret->normal->dlines, sstate->normal->dlines,
+ 2*num_edges);
} else {
ret->normal = NULL;
}
@@ -469,9 +380,9 @@
if (sstate->hard) {
ret->hard = snew(hard_mode_state);
- ret->hard->linedsf = snewn(LINE_COUNT(state), int);
- memcpy(ret->hard->linedsf, sstate->hard->linedsf,
- LINE_COUNT(state) * sizeof(int));
+ ret->hard->linedsf = snewn(num_edges, int);
+ memcpy(ret->hard->linedsf, sstate->hard->linedsf,
+ num_edges * sizeof(int));
} else {
ret->hard = NULL;
}
@@ -484,15 +395,17 @@
game_params *ret = snew(game_params);
#ifdef SLOW_SYSTEM
- ret->h = 4;
- ret->w = 4;
+ ret->h = 7;
+ ret->w = 7;
#else
ret->h = 10;
ret->w = 10;
#endif
ret->diff = DIFF_EASY;
- ret->rec = 0;
+ ret->type = 0;
+ ret->game_grid = NULL;
+
return ret;
}
@@ -499,30 +412,28 @@
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
+
*ret = *params; /* structure copy */
+ if (ret->game_grid) {
+ ret->game_grid->refcount++;
+ }
return ret;
}
static const game_params presets[] = {
- { 4, 4, DIFF_EASY, 0 },
- { 4, 4, DIFF_NORMAL, 0 },
- { 4, 4, DIFF_HARD, 0 },
- { 7, 7, DIFF_EASY, 0 },
- { 7, 7, DIFF_NORMAL, 0 },
- { 7, 7, DIFF_HARD, 0 },
- { 10, 10, DIFF_EASY, 0 },
- { 10, 10, DIFF_NORMAL, 0 },
- { 10, 10, DIFF_HARD, 0 },
-#ifndef SLOW_SYSTEM
- { 15, 15, DIFF_EASY, 0 },
- { 15, 15, DIFF_NORMAL, 0 },
- { 15, 15, DIFF_HARD, 0 },
-#ifndef SMALL_SCREEN
- { 30, 20, DIFF_EASY, 0 },
- { 30, 20, DIFF_NORMAL, 0 },
- { 30, 20, DIFF_HARD, 0 }
-#endif
-#endif
+ { 7, 7, DIFF_EASY, 0, NULL },
+ { 10, 10, DIFF_EASY, 0, NULL },
+ { 7, 7, DIFF_NORMAL, 0, NULL },
+ { 10, 10, DIFF_NORMAL, 0, NULL },
+ { 7, 7, DIFF_HARD, 0, NULL },
+ { 10, 10, DIFF_HARD, 0, NULL },
+ { 10, 10, DIFF_HARD, 1, NULL },
+ { 12, 10, DIFF_HARD, 2, NULL },
+ { 7, 7, DIFF_HARD, 3, NULL },
+ { 9, 9, DIFF_HARD, 4, NULL },
+ { 5, 4, DIFF_HARD, 5, NULL },
+ { 7, 7, DIFF_HARD, 6, NULL },
+ { 5, 5, DIFF_HARD, 7, NULL },
};
static int game_fetch_preset(int i, char **name, game_params **params)
@@ -536,7 +447,8 @@
tmppar = snew(game_params);
*tmppar = presets[i];
*params = tmppar;
- sprintf(buf, "%dx%d %s", tmppar->h, tmppar->w, diffnames[tmppar->diff]);
+ sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
+ gridnames[tmppar->type], diffnames[tmppar->diff]);
*name = dupstr(buf);
return TRUE;
@@ -544,13 +456,19 @@
static void free_params(game_params *params)
{
+ if (params->game_grid) {
+ grid_free(params->game_grid);
+ }
sfree(params);
}
static void decode_params(game_params *params, char const *string)
{
+ if (params->game_grid) {
+ grid_free(params->game_grid);
+ params->game_grid = NULL;
+ }
params->h = params->w = atoi(string);
- params->rec = 0;
params->diff = DIFF_EASY;
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
@@ -558,9 +476,9 @@
params->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
- if (*string == 'r') {
+ if (*string == 't') {
string++;
- params->rec = atoi(string);
+ params->type = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
if (*string == 'd') {
@@ -576,9 +494,9 @@
static char *encode_params(game_params *params, int full)
{
char str[80];
- sprintf(str, "%dx%d", params->w, params->h);
+ sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
if (full)
- sprintf(str + strlen(str), "r%dd%c", params->rec, diffchars[params->diff]);
+ sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
return dupstr(str);
}
@@ -587,7 +505,7 @@
config_item *ret;
char buf[80];
- ret = snewn(4, config_item);
+ ret = snewn(5, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
@@ -601,16 +519,21 @@
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
- ret[2].name = "Difficulty";
+ ret[2].name = "Grid type";
ret[2].type = C_CHOICES;
- ret[2].sval = DIFFCONFIG;
- ret[2].ival = params->diff;
+ ret[2].sval = GRID_CONFIGS;
+ ret[2].ival = params->type;
- ret[3].name = NULL;
- ret[3].type = C_END;
- ret[3].sval = NULL;
- ret[3].ival = 0;
+ ret[3].name = "Difficulty";
+ ret[3].type = C_CHOICES;
+ ret[3].sval = DIFFCONFIG;
+ ret[3].ival = params->diff;
+ ret[4].name = NULL;
+ ret[4].type = C_END;
+ ret[4].sval = NULL;
+ ret[4].ival = 0;
+
return ret;
}
@@ -620,18 +543,19 @@
ret->w = atoi(cfg[0].sval);
ret->h = atoi(cfg[1].sval);
- ret->rec = 0;
- ret->diff = cfg[2].ival;
+ ret->type = cfg[2].ival;
+ ret->diff = cfg[3].ival;
+ ret->game_grid = NULL;
return ret;
}
static char *validate_params(game_params *params, int full)
{
- if (params->w < 4 || params->h < 4)
- return "Width and height must both be at least 4";
- if (params->rec < 0)
- return "Recursion depth can't be negative";
+ if (params->w < 3 || params->h < 3)
+ return "Width and height must both be at least 3";
+ if (params->type < 0 || params->type >= NUM_GRID_TYPES)
+ return "Illegal grid type";
/*
* This shouldn't be able to happen at all, since decode_params
@@ -646,14 +570,16 @@
/* Returns a newly allocated string describing the current puzzle */
static char *state_to_text(const game_state *state)
{
+ grid *g = state->game_grid;
char *retval;
- char *description = snewn(SQUARE_COUNT(state) + 1, char);
+ int num_faces = g->num_faces;
+ char *description = snewn(num_faces + 1, char);
char *dp = description;
int empty_count = 0;
- int i, j;
+ int i;
- FORALL_SQUARES(state, i, j) {
- if (CLUE_AT(state, i, j) < 0) {
+ for (i = 0; i < num_faces; i++) {
+ if (state->clues[i] < 0) {
if (empty_count > 25) {
dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
empty_count = 0;
@@ -664,7 +590,7 @@
dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
empty_count = 0;
}
- dp += sprintf(dp, "%c", (int)CLUE2CHAR(CLUE_AT(state, i, j)));
+ dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
}
}
@@ -682,6 +608,9 @@
static char *validate_desc(game_params *params, char *desc)
{
int count = 0;
+ grid *g;
+ params_generate_grid(params);
+ g = params->game_grid;
for (; *desc; ++desc) {
if (*desc >= '0' && *desc <= '9') {
@@ -695,9 +624,9 @@
return "Unknown character in description";
}
- if (count < SQUARE_COUNT(params))
+ if (count < g->num_faces)
return "Description too short for board size";
- if (count > SQUARE_COUNT(params))
+ if (count > g->num_faces)
return "Description too long for board size";
return NULL;
@@ -719,24 +648,20 @@
static char *encode_solve_move(const game_state *state)
{
- int len, i, j;
+ int len;
char *ret, *p;
+ int i;
+ int num_edges = state->game_grid->num_edges;
+
/* This is going to return a string representing the moves needed to set
* every line in a grid to be the same as the ones in 'state'. The exact
* length of this string is predictable. */
len = 1; /* Count the 'S' prefix */
- /* Numbers in horizontal lines */
- /* Horizontal lines, x position */
- len += len_0_to_n(state->w) * (state->h + 1);
- /* Horizontal lines, y position */
- len += len_0_to_n(state->h + 1) * (state->w);
- /* Vertical lines, y position */
- len += len_0_to_n(state->h) * (state->w + 1);
- /* Vertical lines, x position */
- len += len_0_to_n(state->w + 1) * (state->h);
- /* For each line we also have two letters and a comma */
- len += 3 * (LINE_COUNT(state));
+ /* Numbers in all lines */
+ len += len_0_to_n(num_edges);
+ /* For each line we also have a letter */
+ len += num_edges;
ret = snewn(len + 1, char);
p = ret;
@@ -743,28 +668,17 @@
p += sprintf(p, "S");
- FORALL_HL(state, i, j) {
- switch (RIGHTOF_DOT(state, i, j)) {
- case LINE_YES:
- p += sprintf(p, "%d,%dhy", i, j);
- break;
- case LINE_NO:
- p += sprintf(p, "%d,%dhn", i, j);
- break;
+ for (i = 0; i < num_edges; i++) {
+ switch (state->lines[i]) {
+ case LINE_YES:
+ p += sprintf(p, "%dy", i);
+ break;
+ case LINE_NO:
+ p += sprintf(p, "%dn", i);
+ break;
}
}
- FORALL_VL(state, i, j) {
- switch (BELOW_DOT(state, i, j)) {
- case LINE_YES:
- p += sprintf(p, "%d,%dvy", i, j);
- break;
- case LINE_NO:
- p += sprintf(p, "%d,%dvn", i, j);
- break;
- }
- }
-
/* No point in doing sums like that if they're going to be wrong */
assert(strlen(ret) <= (size_t)len);
return ret;
@@ -793,23 +707,25 @@
{
}
-#define SIZE(d) ((d) * TILE_SIZE + 2 * BORDER + 1)
-
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
- struct { int tilesize; } ads, *ds = &ads;
- ads.tilesize = tilesize;
-
- *x = SIZE(params->w);
- *y = SIZE(params->h);
+ grid *g;
+ params_generate_grid(params);
+ g = params->game_grid;
+ int grid_width = g->highest_x - g->lowest_x;
+ int grid_height = g->highest_y - g->lowest_y;
+ /* multiply first to minimise rounding error on integer division */
+ int rendered_width = grid_width * tilesize / g->tilesize;
+ int rendered_height = grid_height * tilesize / g->tilesize;
+ *x = rendered_width + 2 * BORDER(tilesize) + 1;
+ *y = rendered_height + 2 * BORDER(tilesize) + 1;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
- game_params *params, int tilesize)
+ game_params *params, int tilesize)
{
ds->tilesize = tilesize;
- ds->linewidth = max(1,tilesize/16);
}
static float *game_colours(frontend *fe, int *ncolours)
@@ -822,6 +738,10 @@
ret[COL_FOREGROUND * 3 + 1] = 0.0F;
ret[COL_FOREGROUND * 3 + 2] = 0.0F;
+ ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
+ ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
+ ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
+
ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
@@ -830,6 +750,10 @@
ret[COL_MISTAKE * 3 + 1] = 0.0F;
ret[COL_MISTAKE * 3 + 2] = 0.0F;
+ ret[COL_SATISFIED * 3 + 0] = 0.0F;
+ ret[COL_SATISFIED * 3 + 1] = 0.0F;
+ ret[COL_SATISFIED * 3 + 2] = 0.0F;
+
*ncolours = NCOLOURS;
return ret;
}
@@ -837,17 +761,19 @@
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
+ int num_faces = state->game_grid->num_faces;
+ int num_edges = state->game_grid->num_edges;
- ds->tilesize = ds->linewidth = 0;
+ ds->tilesize = 0;
ds->started = 0;
- ds->hl = snewn(HL_COUNT(state), char);
- ds->vl = snewn(VL_COUNT(state), char);
- ds->clue_error = snewn(SQUARE_COUNT(state), char);
+ ds->lines = snewn(num_edges, char);
+ ds->clue_error = snewn(num_faces, char);
+ ds->clue_satisfied = snewn(num_faces, char);
ds->flashing = 0;
- memset(ds->hl, LINE_UNKNOWN, HL_COUNT(state));
- memset(ds->vl, LINE_UNKNOWN, VL_COUNT(state));
- memset(ds->clue_error, 0, SQUARE_COUNT(state));
+ memset(ds->lines, LINE_UNKNOWN, num_edges);
+ memset(ds->clue_error, 0, num_faces);
+ memset(ds->clue_satisfied, 0, num_faces);
return ds;
}
@@ -855,8 +781,8 @@
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->clue_error);
- sfree(ds->hl);
- sfree(ds->vl);
+ sfree(ds->clue_satisfied);
+ sfree(ds->lines);
sfree(ds);
}
@@ -871,63 +797,86 @@
return 0.0F;
}
+static int game_can_format_as_text_now(game_params *params)
+{
+ if (params->type != 0)
+ return FALSE;
+ return TRUE;
+}
+
static char *game_text_format(game_state *state)
{
- int i, j;
- int len;
- char *ret, *rp;
+ int w, h, W, H;
+ int x, y, i;
+ int cell_size;
+ char *ret;
+ grid *g = state->game_grid;
+ grid_face *f;
- len = (2 * state->w + 2) * (2 * state->h + 1);
- rp = ret = snewn(len + 1, char);
-
-#define DRAW_HL \
- switch (ABOVE_SQUARE(state, i, j)) { \
- case LINE_YES: \
- rp += sprintf(rp, " -"); \
- break; \
- case LINE_NO: \
- rp += sprintf(rp, " x"); \
- break; \
- case LINE_UNKNOWN: \
- rp += sprintf(rp, " "); \
- break; \
- default: \
- assert(!"Illegal line state for HL"); \
- }
+ assert(state->grid_type == 0);
-#define DRAW_VL \
- switch (LEFTOF_SQUARE(state, i, j)) { \
- case LINE_YES: \
- rp += sprintf(rp, "|"); \
- break; \
- case LINE_NO: \
- rp += sprintf(rp, "x"); \
- break; \
- case LINE_UNKNOWN: \
- rp += sprintf(rp, " "); \
- break; \
- default: \
- assert(!"Illegal line state for VL"); \
+ /* Work out the basic size unit */
+ f = g->faces; /* first face */
+ assert(f->order == 4);
+ /* The dots are ordered clockwise, so the two opposite
+ * corners are guaranteed to span the square */
+ cell_size = abs(f->dots[0]->x - f->dots[2]->x);
+
+ w = (g->highest_x - g->lowest_x) / cell_size;
+ h = (g->highest_y - g->lowest_y) / cell_size;
+
+ /* Create a blank "canvas" to "draw" on */
+ W = 2 * w + 2;
+ H = 2 * h + 1;
+ ret = snewn(W * H + 1, char);
+ for (y = 0; y < H; y++) {
+ for (x = 0; x < W-1; x++) {
+ ret[y*W + x] = ' ';
+ }
+ ret[y*W + W-1] = '\n';
}
-
- for (j = 0; j < state->h; ++j) {
- for (i = 0; i < state->w; ++i) {
- DRAW_HL;
+ ret[H*W] = '\0';
+
+ /* Fill in edge info */
+ for (i = 0; i < g->num_edges; i++) {
+ grid_edge *e = g->edges + i;
+ /* Cell coordinates, from (0,0) to (w-1,h-1) */
+ int x1 = (e->dot1->x - g->lowest_x) / cell_size;
+ int x2 = (e->dot2->x - g->lowest_x) / cell_size;
+ int y1 = (e->dot1->y - g->lowest_y) / cell_size;
+ int y2 = (e->dot2->y - g->lowest_y) / cell_size;
+ /* Midpoint, in canvas coordinates (canvas coordinates are just twice
+ * cell coordinates) */
+ x = x1 + x2;
+ y = y1 + y2;
+ switch (state->lines[i]) {
+ case LINE_YES:
+ ret[y*W + x] = (y1 == y2) ? '-' : '|';
+ break;
+ case LINE_NO:
+ ret[y*W + x] = 'x';
+ break;
+ case LINE_UNKNOWN:
+ break; /* already a space */
+ default:
+ assert(!"Illegal line state");
}
- rp += sprintf(rp, " \n");
- for (i = 0; i < state->w; ++i) {
- DRAW_VL;
- rp += sprintf(rp, "%c", (int)CLUE2CHAR(CLUE_AT(state, i, j)));
- }
- DRAW_VL;
- rp += sprintf(rp, "\n");
}
- for (i = 0; i < state->w; ++i) {
- DRAW_HL;
+
+ /* Fill in clues */
+ for (i = 0; i < g->num_faces; i++) {
+ f = g->faces + i;
+ assert(f->order == 4);
+ /* Cell coordinates, from (0,0) to (w-1,h-1) */
+ int x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
+ int x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
+ int y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
+ int y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
+ /* Midpoint, in canvas coordinates */
+ x = x1 + x2;
+ y = y1 + y2;
+ ret[y*W + x] = CLUE2CHAR(state->clues[i]);
}
- rp += sprintf(rp, " \n");
-
- assert(strlen(ret) == len);
return ret;
}
@@ -938,37 +887,18 @@
#ifdef DEBUG_CACHES
static void check_caches(const solver_state* sstate)
{
- int i, j;
+ int i;
const game_state *state = sstate->state;
+ const grid *g = state->game_grid;
- FORALL_DOTS(state, i, j) {
-#if 0
- fprintf(stderr, "dot [%d,%d] y: %d %d n: %d %d\n", i, j,
- dot_order(state, i, j, LINE_YES),
- sstate->dot_yescount[i + (state->w + 1) * j],
- dot_order(state, i, j, LINE_NO),
- sstate->dot_nocount[i + (state->w + 1) * j]);
-#endif
-
- assert(dot_order(state, i, j, LINE_YES) ==
- DOT_YES_COUNT(sstate, i, j));
- assert(dot_order(state, i, j, LINE_NO) ==
- DOT_NO_COUNT(sstate, i, j));
+ for (i = 0; i < g->num_dots; i++) {
+ assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
+ assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
}
- FORALL_SQUARES(state, i, j) {
-#if 0
- fprintf(stderr, "square [%d,%d] y: %d %d n: %d %d\n", i, j,
- square_order(state, i, j, LINE_YES),
- sstate->square_yescount[i + state->w * j],
- square_order(state, i, j, LINE_NO),
- sstate->square_nocount[i + state->w * j]);
-#endif
-
- assert(square_order(state, i, j, LINE_YES) ==
- SQUARE_YES_COUNT(sstate, i, j));
- assert(square_order(state, i, j, LINE_NO) ==
- SQUARE_NO_COUNT(sstate, i, j));
+ for (i = 0; i < g->num_faces; i++) {
+ assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
+ assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
}
}
@@ -985,135 +915,66 @@
* Solver utility functions
*/
-static int set_line_bydot(solver_state *sstate, int x, int y, enum direction d,
- enum line_state line_new
+/* Sets the line (with index i) to the new state 'line_new', and updates
+ * the cached counts of any affected faces and dots.
+ * Returns TRUE if this actually changed the line's state. */
+static int solver_set_line(solver_state *sstate, int i,
+ enum line_state line_new
#ifdef SHOW_WORKING
- , const char *reason
+ , const char *reason
#endif
- )
+ )
{
game_state *state = sstate->state;
+ grid *g;
+ grid_edge *e;
- /* This line borders at most two squares in our board. We figure out the
- * x and y positions of those squares so we can record that their yes or no
- * counts have been changed */
- int sq1_x=-1, sq1_y=-1, sq2_x=-1, sq2_y=-1;
- int otherdot_x=-1, otherdot_y=-1;
-
- int progress = FALSE;
-
-#if 0
- fprintf(stderr, "set_line_bydot [%d,%d], %s, %d\n",
- x, y, DIR2STR(d), line_new);
-#endif
-
assert(line_new != LINE_UNKNOWN);
check_caches(sstate);
- switch (d) {
- case LEFT:
- assert(x > 0);
-
- if (LEFTOF_DOT(state, x, y) != line_new) {
- LV_LEFTOF_DOT(state, x, y) = line_new;
-
- otherdot_x = x-1;
- otherdot_y = y;
-
- sq1_x = x-1;
- sq1_y = y-1;
- sq2_x = x-1;
- sq2_y = y;
-
- progress = TRUE;
- }
- break;
- case RIGHT:
- assert(x < state->w);
- if (RIGHTOF_DOT(state, x, y) != line_new) {
- LV_RIGHTOF_DOT(state, x, y) = line_new;
-
- otherdot_x = x+1;
- otherdot_y = y;
-
- sq1_x = x;
- sq1_y = y-1;
- sq2_x = x;
- sq2_y = y;
-
- progress = TRUE;
- }
- break;
- case UP:
- assert(y > 0);
- if (ABOVE_DOT(state, x, y) != line_new) {
- LV_ABOVE_DOT(state, x, y) = line_new;
-
- otherdot_x = x;
- otherdot_y = y-1;
-
- sq1_x = x-1;
- sq1_y = y-1;
- sq2_x = x;
- sq2_y = y-1;
-
- progress = TRUE;
- }
- break;
- case DOWN:
- assert(y < state->h);
- if (BELOW_DOT(state, x, y) != line_new) {
- LV_BELOW_DOT(state, x, y) = line_new;
-
- otherdot_x = x;
- otherdot_y = y+1;
-
- sq1_x = x-1;
- sq1_y = y;
- sq2_x = x;
- sq2_y = y;
-
- progress = TRUE;
- }
- break;
+ if (state->lines[i] == line_new) {
+ return FALSE; /* nothing changed */
}
+ state->lines[i] = line_new;
- if (!progress)
- return progress;
-
#ifdef SHOW_WORKING
- fprintf(stderr, "set line [%d,%d] -> [%d,%d] to %s (%s)\n",
- x, y, otherdot_x, otherdot_y, line_new == LINE_YES ? "YES" : "NO",
+ fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
+ i, line_new == LINE_YES ? "YES" : "NO",
reason);
#endif
- /* Above we updated the cache for the dot that the line in question reaches
- * from the dot we've been told about. Here we update that for the dot
- * named in our arguments. */
+ g = state->game_grid;
+ e = g->edges + i;
+
+ /* Update the cache for both dots and both faces affected by this. */
if (line_new == LINE_YES) {
- if (sq1_x >= 0 && sq1_y >= 0)
- ++SQUARE_YES_COUNT(sstate, sq1_x, sq1_y);
- if (sq2_x < state->w && sq2_y < state->h)
- ++SQUARE_YES_COUNT(sstate, sq2_x, sq2_y);
- ++DOT_YES_COUNT(sstate, x, y);
- ++DOT_YES_COUNT(sstate, otherdot_x, otherdot_y);
+ sstate->dot_yes_count[e->dot1 - g->dots]++;
+ sstate->dot_yes_count[e->dot2 - g->dots]++;
+ if (e->face1) {
+ sstate->face_yes_count[e->face1 - g->faces]++;
+ }
+ if (e->face2) {
+ sstate->face_yes_count[e->face2 - g->faces]++;
+ }
} else {
- if (sq1_x >= 0 && sq1_y >= 0)
- ++SQUARE_NO_COUNT(sstate, sq1_x, sq1_y);
- if (sq2_x < state->w && sq2_y < state->h)
- ++SQUARE_NO_COUNT(sstate, sq2_x, sq2_y);
- ++DOT_NO_COUNT(sstate, x, y);
- ++DOT_NO_COUNT(sstate, otherdot_x, otherdot_y);
+ sstate->dot_no_count[e->dot1 - g->dots]++;
+ sstate->dot_no_count[e->dot2 - g->dots]++;
+ if (e->face1) {
+ sstate->face_no_count[e->face1 - g->faces]++;
+ }
+ if (e->face2) {
+ sstate->face_no_count[e->face2 - g->faces]++;
+ }
}
-
+
check_caches(sstate);
- return progress;
+ return TRUE;
}
#ifdef SHOW_WORKING
-#define set_line_bydot(a, b, c, d, e) \
- set_line_bydot(a, b, c, d, e, __FUNCTION__)
+#define solver_set_line(a, b, c) \
+ solver_set_line(a, b, c, __FUNCTION__)
#endif
/*
@@ -1123,12 +984,14 @@
* Returns TRUE if the dots were already linked, ie if they are part of a
* closed loop, and false otherwise.
*/
-static int merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2)
+static int merge_dots(solver_state *sstate, int edge_index)
{
int i, j, len;
+ grid *g = sstate->state->game_grid;
+ grid_edge *e = g->edges + edge_index;
- i = y1 * (sstate->state->w + 1) + x1;
- j = y2 * (sstate->state->w + 1) + x2;
+ i = e->dot1 - g->dots;
+ j = e->dot2 - g->dots;
i = dsf_canonify(sstate->dotdsf, i);
j = dsf_canonify(sstate->dotdsf, j);
@@ -1144,51 +1007,20 @@
}
}
-/* Seriously, these should be functions */
-
-#define LINEDSF_INDEX(state, x, y, d) \
- ((d == UP) ? ((y-1) * (state->w + 1) + x) : \
- (d == DOWN) ? ((y) * (state->w + 1) + x) : \
- (d == LEFT) ? ((y) * (state->w) + x-1 + VL_COUNT(state)) : \
- (d == RIGHT) ? ((y) * (state->w) + x + VL_COUNT(state)) : \
- (assert(!"bad direction value"), 0))
-
-static void linedsf_deindex(const game_state *state, int i,
- int *px, int *py, enum direction *pd)
-{
- int i_mod;
- if (i < VL_COUNT(state)) {
- *(pd) = DOWN;
- *(px) = (i) % (state->w+1);
- *(py) = (i) / (state->w+1);
- } else {
- i_mod = i - VL_COUNT(state);
- *(pd) = RIGHT;
- *(px) = (i_mod) % (state->w);
- *(py) = (i_mod) / (state->w);
- }
-}
-
/* Merge two lines because the solver has deduced that they must be either
* identical or opposite. Returns TRUE if this is new information, otherwise
* FALSE. */
-static int merge_lines(solver_state *sstate,
- int x1, int y1, enum direction d1,
- int x2, int y2, enum direction d2,
- int inverse
+static int merge_lines(solver_state *sstate, int i, int j, int inverse
#ifdef SHOW_WORKING
, const char *reason
#endif
- )
+ )
{
- int i, j, inv_tmp;
+ int inv_tmp;
- i = LINEDSF_INDEX(sstate->state, x1, y1, d1);
- j = LINEDSF_INDEX(sstate->state, x2, y2, d2);
+ assert(i < sstate->state->game_grid->num_edges);
+ assert(j < sstate->state->game_grid->num_edges);
- assert(i < LINE_COUNT(sstate->state));
- assert(j < LINE_COUNT(sstate->state));
-
i = edsf_canonify(sstate->hard->linedsf, i, &inv_tmp);
inverse ^= inv_tmp;
j = edsf_canonify(sstate->hard->linedsf, j, &inv_tmp);
@@ -1198,10 +1030,8 @@
#ifdef SHOW_WORKING
if (i != j) {
- fprintf(stderr, "%s [%d,%d,%s] [%d,%d,%s] %s(%s)\n",
- __FUNCTION__,
- x1, y1, DIR2STR(d1),
- x2, y2, DIR2STR(d2),
+ fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
+ __FUNCTION__, i, j,
inverse ? "inverse " : "", reason);
}
#endif
@@ -1209,155 +1039,97 @@
}
#ifdef SHOW_WORKING
-#define merge_lines(a, b, c, d, e, f, g, h) \
- merge_lines(a, b, c, d, e, f, g, h, __FUNCTION__)
+#define merge_lines(a, b, c, d) \
+ merge_lines(a, b, c, d, __FUNCTION__)
#endif
-/* Return 0 if the given lines are not in the same equivalence class, 1 if they
- * are known identical, or 2 if they are known opposite */
-#if 0
-static int lines_related(solver_state *sstate,
- int x1, int y1, enum direction d1,
- int x2, int y2, enum direction d2)
-{
- int i, j, inv1, inv2;
-
- i = LINEDSF_INDEX(sstate->state, x1, y1, d1);
- j = LINEDSF_INDEX(sstate->state, x2, y2, d2);
-
- i = edsf_canonify(sstate->hard->linedsf, i, &inv1);
- j = edsf_canonify(sstate->hard->linedsf, j, &inv2);
-
- if (i == j)
- return (inv1 == inv2) ? 1 : 2;
- else
- return 0;
-}
-#endif
-
/* Count the number of lines of a particular type currently going into the
- * given dot. Lines going off the edge of the board are assumed fixed no. */
-static int dot_order(const game_state* state, int i, int j, char line_type)
+ * given dot. */
+static int dot_order(const game_state* state, int dot, char line_type)
{
int n = 0;
+ grid *g = state->game_grid;
+ grid_dot *d = g->dots + dot;
+ int i;
- if (i > 0) {
- if (line_type == LV_LEFTOF_DOT(state, i, j))
+ for (i = 0; i < d->order; i++) {
+ grid_edge *e = d->edges[i];
+ if (state->lines[e - g->edges] == line_type)
++n;
- } else {
- if (line_type == LINE_NO)
- ++n;
}
- if (i < state->w) {
- if (line_type == LV_RIGHTOF_DOT(state, i, j))
- ++n;
- } else {
- if (line_type == LINE_NO)
- ++n;
- }
- if (j > 0) {
- if (line_type == LV_ABOVE_DOT(state, i, j))
- ++n;
- } else {
- if (line_type == LINE_NO)
- ++n;
- }
- if (j < state->h) {
- if (line_type == LV_BELOW_DOT(state, i, j))
- ++n;
- } else {
- if (line_type == LINE_NO)
- ++n;
- }
-
return n;
}
/* Count the number of lines of a particular type currently surrounding the
- * given square */
-static int square_order(const game_state* state, int i, int j, char line_type)
+ * given face */
+static int face_order(const game_state* state, int face, char line_type)
{
int n = 0;
+ grid *g = state->game_grid;
+ grid_face *f = g->faces + face;
+ int i;
- if (ABOVE_SQUARE(state, i, j) == line_type)
- ++n;
- if (BELOW_SQUARE(state, i, j) == line_type)
- ++n;
- if (LEFTOF_SQUARE(state, i, j) == line_type)
- ++n;
- if (RIGHTOF_SQUARE(state, i, j) == line_type)
- ++n;
-
+ for (i = 0; i < f->order; i++) {
+ grid_edge *e = f->edges[i];
+ if (state->lines[e - g->edges] == line_type)
+ ++n;
+ }
return n;
}
-/* Set all lines bordering a dot of type old_type to type new_type
+/* Set all lines bordering a dot of type old_type to type new_type
* Return value tells caller whether this function actually did anything */
-static int dot_setall(solver_state *sstate, int i, int j,
- char old_type, char new_type)
+static int dot_setall(solver_state *sstate, int dot,
+ char old_type, char new_type)
{
int retval = FALSE, r;
game_state *state = sstate->state;
-
+ grid *g;
+ grid_dot *d;
+ int i;
+
if (old_type == new_type)
return FALSE;
- if (i > 0 && LEFTOF_DOT(state, i, j) == old_type) {
- r = set_line_bydot(sstate, i, j, LEFT, new_type);
- assert(r == TRUE);
- retval = TRUE;
- }
+ g = state->game_grid;
+ d = g->dots + dot;
- if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type) {
- r = set_line_bydot(sstate, i, j, RIGHT, new_type);
- assert(r == TRUE);
- retval = TRUE;
+ for (i = 0; i < d->order; i++) {
+ int line_index = d->edges[i] - g->edges;
+ if (state->lines[line_index] == old_type) {
+ r = solver_set_line(sstate, line_index, new_type);
+ assert(r == TRUE);
+ retval = TRUE;
+ }
}
-
- if (j > 0 && ABOVE_DOT(state, i, j) == old_type) {
- r = set_line_bydot(sstate, i, j, UP, new_type);
- assert(r == TRUE);
- retval = TRUE;
- }
-
- if (j < state->h && BELOW_DOT(state, i, j) == old_type) {
- r = set_line_bydot(sstate, i, j, DOWN, new_type);
- assert(r == TRUE);
- retval = TRUE;
- }
-
return retval;
}
-/* Set all lines bordering a square of type old_type to type new_type */
-static int square_setall(solver_state *sstate, int i, int j,
- char old_type, char new_type)
+/* Set all lines bordering a face of type old_type to type new_type */
+static int face_setall(solver_state *sstate, int face,
+ char old_type, char new_type)
{
- int r = FALSE;
+ int retval = FALSE, r;
game_state *state = sstate->state;
+ grid *g;
+ grid_face *f;
+ int i;
-#if 0
- fprintf(stderr, "square_setall [%d,%d] from %d to %d\n", i, j,
- old_type, new_type);
-#endif
- if (ABOVE_SQUARE(state, i, j) == old_type) {
- r = set_line_bydot(sstate, i, j, RIGHT, new_type);
- assert(r == TRUE);
- }
- if (BELOW_SQUARE(state, i, j) == old_type) {
- r = set_line_bydot(sstate, i, j+1, RIGHT, new_type);
- assert(r == TRUE);
- }
- if (LEFTOF_SQUARE(state, i, j) == old_type) {
- r = set_line_bydot(sstate, i, j, DOWN, new_type);
- assert(r == TRUE);
- }
- if (RIGHTOF_SQUARE(state, i, j) == old_type) {
- r = set_line_bydot(sstate, i+1, j, DOWN, new_type);
- assert(r == TRUE);
- }
+ if (old_type == new_type)
+ return FALSE;
- return r;
+ g = state->game_grid;
+ f = g->faces + face;
+
+ for (i = 0; i < f->order; i++) {
+ int line_index = f->edges[i] - g->edges;
+ if (state->lines[line_index] == old_type) {
+ r = solver_set_line(sstate, line_index, new_type);
+ assert(r == TRUE);
+ retval = TRUE;
+ }
+ }
+ return retval;
}
/* ----------------------------------------------------------------------
@@ -1364,302 +1136,355 @@
* Loop generation and clue removal
*/
-/* We're going to store a list of current candidate squares for lighting.
- * Each square gets a 'score', which tells us how adding that square right
+/* We're going to store a list of current candidate faces for lighting.
+ * Each face gets a 'score', which tells us how adding that face right
* now would affect the length of the solution loop. We're trying to
- * maximise that quantity so will bias our random selection of squares to
+ * maximise that quantity so will bias our random selection of faces to
* light towards those with high scores */
-struct square {
+struct face {
int score;
unsigned long random;
- int x, y;
+ grid_face *f;
};
-static int get_square_cmpfn(void *v1, void *v2)
+static int get_face_cmpfn(void *v1, void *v2)
{
- struct square *s1 = v1;
- struct square *s2 = v2;
- int r;
-
- r = s1->x - s2->x;
- if (r)
- return r;
-
- r = s1->y - s2->y;
- if (r)
- return r;
-
- return 0;
+ struct face *f1 = v1;
+ struct face *f2 = v2;
+ /* These grid_face pointers always point into the same list of
+ * 'grid_face's, so it's valid to subtract them. */
+ return f1->f - f2->f;
}
-static int square_sort_cmpfn(void *v1, void *v2)
+static int face_sort_cmpfn(void *v1, void *v2)
{
- struct square *s1 = v1;
- struct square *s2 = v2;
+ struct face *f1 = v1;
+ struct face *f2 = v2;
int r;
- r = s2->score - s1->score;
+ r = f2->score - f1->score;
if (r) {
return r;
}
- if (s1->random < s2->random)
+ if (f1->random < f2->random)
return -1;
- else if (s1->random > s2->random)
+ else if (f1->random > f2->random)
return 1;
/*
- * It's _just_ possible that two squares might have been given
+ * It's _just_ possible that two faces might have been given
* the same random value. In that situation, fall back to
- * comparing based on the coordinates. This introduces a tiny
- * directional bias, but not a significant one.
+ * comparing based on the positions within the grid's face-list.
+ * This introduces a tiny directional bias, but not a significant one.
*/
- return get_square_cmpfn(v1, v2);
+ return get_face_cmpfn(f1, f2);
}
-enum { SQUARE_LIT, SQUARE_UNLIT };
+enum { FACE_LIT, FACE_UNLIT };
-#define SQUARE_STATE(i, j) \
- ( LEGAL_SQUARE(state, i, j) ? \
- LV_SQUARE_STATE(i,j) : \
- SQUARE_UNLIT )
+/* face should be of type grid_face* here. */
+#define FACE_LIT_STATE(face) \
+ ( (face) == NULL ? FACE_UNLIT : \
+ board[(face) - g->faces] )
-#define LV_SQUARE_STATE(i, j) board[SQUARE_INDEX(state, i, j)]
-
-/* Generate a new complete set of clues for the given game_state (respecting
- * the dimensions provided by said game_state) */
-static void add_full_clues(game_state *state, random_state *rs)
+/* 'board' is an array of these enums, indicating which faces are
+ * currently lit. Returns whether it's legal to light up the
+ * given face. */
+static int can_light_face(grid *g, char* board, int face_index)
{
- signed char *clues;
- char *board;
- int i, j, a, b, c;
- int board_area = SQUARE_COUNT(state);
- int t;
+ int i, j;
+ grid_face *test_face = g->faces + face_index;
+ grid_face *starting_face, *current_face;
+ int transitions;
+ int current_state, s;
+ int found_lit_neighbour = FALSE;
+ assert(board[face_index] == FACE_UNLIT);
- struct square *square, *tmpsquare, *sq;
- struct square square_pos;
+ /* Can only consider a face for lighting if it's adjacent to an
+ * already lit face. */
+ for (i = 0; i < test_face->order; i++) {
+ grid_edge *e = test_face->edges[i];
+ grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
+ if (FACE_LIT_STATE(f) == FACE_LIT) {
+ found_lit_neighbour = TRUE;
+ break;
+ }
+ }
+ if (!found_lit_neighbour)
+ return FALSE;
- /* These will contain exactly the same information, sorted into different
- * orders */
- tree234 *lightable_squares_sorted, *lightable_squares_gettable;
+ /* Need to avoid creating a loop of lit faces around some unlit faces.
+ * Also need to avoid meeting another lit face at a corner, with
+ * unlit faces in between. Here's a simple test that (I believe) takes
+ * care of both these conditions:
+ *
+ * Take the circular path formed by this face's edges, and inflate it
+ * slightly outwards. Imagine walking around this path and consider
+ * the faces that you visit in sequence. This will include all faces
+ * touching the given face, either along an edge or just at a corner.
+ * Count the number of LIT/UNLIT transitions you encounter, as you walk
+ * along the complete loop. This will obviously turn out to be an even
+ * number.
+ * If 0, we're either in a completely unlit zone, or this face is a hole
+ * in a completely lit zone. If the former, we would create a brand new
+ * island by lighting this face. And the latter ought to be impossible -
+ * it would mean there's already a lit loop, so something went wrong
+ * earlier.
+ * If 4 or greater, there are too many separate lit regions touching this
+ * face, and lighting it up would create a loop or a corner-violation.
+ * The only allowed case is when the count is exactly 2. */
-#define SQUARE_REACHABLE(i,j) \
- (t = (SQUARE_STATE(i-1, j) == SQUARE_LIT || \
- SQUARE_STATE(i+1, j) == SQUARE_LIT || \
- SQUARE_STATE(i, j-1) == SQUARE_LIT || \
- SQUARE_STATE(i, j+1) == SQUARE_LIT), \
- t)
+ /* i points to a dot around the test face.
+ * j points to a face around the i^th dot.
+ * The current face will always be:
+ * test_face->dots[i]->faces[j]
+ * We assume dots go clockwise around the test face,
+ * and faces go clockwise around dots. */
+ i = j = 0;
+ starting_face = test_face->dots[0]->faces[0];
+ if (starting_face == test_face) {
+ j = 1;
+ starting_face = test_face->dots[0]->faces[1];
+ }
+ current_face = starting_face;
+ transitions = 0;
+ current_state = FACE_LIT_STATE(current_face);
- /* One situation in which we may not light a square is if that'll leave one
- * square above/below and one left/right of us unlit, separated by a lit
- * square diagnonal from us */
-#define SQUARE_DIAGONAL_VIOLATION(i, j, h, v) \
- (t = (SQUARE_STATE((i)+(h), (j)) == SQUARE_UNLIT && \
- SQUARE_STATE((i), (j)+(v)) == SQUARE_UNLIT && \
- SQUARE_STATE((i)+(h), (j)+(v)) == SQUARE_LIT), \
- t)
+ do {
+ /* Advance to next face.
+ * Need to loop here because it might take several goes to
+ * find it. */
+ while (TRUE) {
+ j++;
+ if (j == test_face->dots[i]->order)
+ j = 0;
- /* We also may not light a square if it will form a loop of lit squares
- * around some unlit squares, as then the game soln won't have a single
- * loop */
-#define SQUARE_LOOP_VIOLATION(i, j, lit1, lit2) \
- (SQUARE_STATE((i)+1, (j)) == lit1 && \
- SQUARE_STATE((i)-1, (j)) == lit1 && \
- SQUARE_STATE((i), (j)+1) == lit2 && \
- SQUARE_STATE((i), (j)-1) == lit2)
+ if (test_face->dots[i]->faces[j] == test_face) {
+ /* Advance to next dot round test_face, then
+ * find current_face around new dot
+ * and advance to the next face clockwise */
+ i++;
+ if (i == test_face->order)
+ i = 0;
+ for (j = 0; j < test_face->dots[i]->order; j++) {
+ if (test_face->dots[i]->faces[j] == current_face)
+ break;
+ }
+ /* Must actually find current_face around new dot,
+ * or else something's wrong with the grid. */
+ assert(j != test_face->dots[i]->order);
+ /* Found, so advance to next face and try again */
+ } else {
+ break;
+ }
+ }
+ /* (i,j) are now advanced to next face */
+ current_face = test_face->dots[i]->faces[j];
+ s = FACE_LIT_STATE(current_face);
+ if (s != current_state) {
+ ++transitions;
+ current_state = s;
+ if (transitions > 2)
+ return FALSE; /* no point in continuing */
+ }
+ } while (current_face != starting_face);
-#define CAN_LIGHT_SQUARE(i, j) \
- (SQUARE_REACHABLE(i, j) && \
- !SQUARE_DIAGONAL_VIOLATION(i, j, -1, -1) && \
- !SQUARE_DIAGONAL_VIOLATION(i, j, +1, -1) && \
- !SQUARE_DIAGONAL_VIOLATION(i, j, -1, +1) && \
- !SQUARE_DIAGONAL_VIOLATION(i, j, +1, +1) && \
- !SQUARE_LOOP_VIOLATION(i, j, SQUARE_LIT, SQUARE_UNLIT) && \
- !SQUARE_LOOP_VIOLATION(i, j, SQUARE_UNLIT, SQUARE_LIT))
+ return (transitions == 2) ? TRUE : FALSE;
+}
-#define IS_LIGHTING_CANDIDATE(i, j) \
- (SQUARE_STATE(i, j) == SQUARE_UNLIT && \
- CAN_LIGHT_SQUARE(i,j))
+/* The 'score' of a face reflects its current desirability for selection
+ * as the next face to light. We want to encourage moving into uncharted
+ * areas so we give scores according to how many of the face's neighbours
+ * are currently unlit. */
+static int face_score(grid *g, char *board, grid_face *face)
+{
+ /* Simple formula: score = neighbours unlit - neighbours lit */
+ int lit_count = 0, unlit_count = 0;
+ int i;
+ grid_face *f;
+ grid_edge *e;
+ for (i = 0; i < face->order; i++) {
+ e = face->edges[i];
+ f = (e->face1 == face) ? e->face2 : e->face1;
+ if (FACE_LIT_STATE(f) == FACE_LIT)
+ ++lit_count;
+ else
+ ++unlit_count;
+ }
+ return unlit_count - lit_count;
+}
- /* The 'score' of a square reflects its current desirability for selection
- * as the next square to light. We want to encourage moving into uncharted
- * areas so we give scores according to how many of the square's neighbours
- * are currently unlit. */
+/* Generate a new complete set of clues for the given game_state. */
+static void add_full_clues(game_state *state, random_state *rs)
+{
+ signed char *clues = state->clues;
+ char *board;
+ grid *g = state->game_grid;
+ int i, j, c;
+ int num_faces = g->num_faces;
+ int first_time = TRUE;
- /* UNLIT SCORE
- * 3 2
- * 2 0
- * 1 -2
- */
-#define SQUARE_SCORE(i,j) \
- (2*((SQUARE_STATE(i-1, j) == SQUARE_UNLIT) + \
- (SQUARE_STATE(i+1, j) == SQUARE_UNLIT) + \
- (SQUARE_STATE(i, j-1) == SQUARE_UNLIT) + \
- (SQUARE_STATE(i, j+1) == SQUARE_UNLIT)) - 4)
+ struct face *face, *tmpface;
+ struct face face_pos;
- /* When a square gets lit, this defines how far away from that square we
- * need to go recomputing scores */
-#define SCORE_DISTANCE 1
+ /* These will contain exactly the same information, sorted into different
+ * orders */
+ tree234 *lightable_faces_sorted, *lightable_faces_gettable;
- board = snewn(board_area, char);
- clues = state->clues;
+#define IS_LIGHTING_CANDIDATE(i) \
+ (board[i] == FACE_UNLIT && \
+ can_light_face(g, board, i))
+ board = snewn(num_faces, char);
+
/* Make a board */
- memset(board, SQUARE_UNLIT, board_area);
-
- /* Seed the board with a single lit square near the middle */
- i = state->w / 2;
- j = state->h / 2;
- if (state->w & 1 && random_bits(rs, 1))
- ++i;
- if (state->h & 1 && random_bits(rs, 1))
- ++j;
+ memset(board, FACE_UNLIT, num_faces);
- LV_SQUARE_STATE(i, j) = SQUARE_LIT;
-
- /* We need a way of favouring squares that will increase our loopiness.
- * We do this by maintaining a list of all candidate squares sorted by
- * their score and choose randomly from that with appropriate skew.
- * In order to avoid consistently biasing towards particular squares, we
+ /* We need a way of favouring faces that will increase our loopiness.
+ * We do this by maintaining a list of all candidate faces sorted by
+ * their score and choose randomly from that with appropriate skew.
+ * In order to avoid consistently biasing towards particular faces, we
* need the sort order _within_ each group of scores to be completely
* random. But it would be abusing the hospitality of the tree234 data
* structure if our comparison function were nondeterministic :-). So with
- * each square we associate a random number that does not change during a
+ * each face we associate a random number that does not change during a
* particular run of the generator, and use that as a secondary sort key.
- * Yes, this means we will be biased towards particular random squares in
+ * Yes, this means we will be biased towards particular random faces in
* any one run but that doesn't actually matter. */
-
- lightable_squares_sorted = newtree234(square_sort_cmpfn);
- lightable_squares_gettable = newtree234(get_square_cmpfn);
-#define ADD_SQUARE(s) \
+
+ lightable_faces_sorted = newtree234(face_sort_cmpfn);
+ lightable_faces_gettable = newtree234(get_face_cmpfn);
+#define ADD_FACE(f) \
do { \
- sq = add234(lightable_squares_sorted, s); \
- assert(sq == s); \
- sq = add234(lightable_squares_gettable, s); \
- assert(sq == s); \
+ struct face *x = add234(lightable_faces_sorted, f); \
+ assert(x == f); \
+ x = add234(lightable_faces_gettable, f); \
+ assert(x == f); \
} while (0)
-#define REMOVE_SQUARE(s) \
+#define REMOVE_FACE(f) \
do { \
- sq = del234(lightable_squares_sorted, s); \
- assert(sq); \
- sq = del234(lightable_squares_gettable, s); \
- assert(sq); \
+ struct face *x = del234(lightable_faces_sorted, f); \
+ assert(x); \
+ x = del234(lightable_faces_gettable, f); \
+ assert(x); \
} while (0)
-
-#define HANDLE_DIR(a, b) \
- square = snew(struct square); \
- square->x = (i)+(a); \
- square->y = (j)+(b); \
- square->score = 2; \
- square->random = random_bits(rs, 31); \
- ADD_SQUARE(square);
- HANDLE_DIR(-1, 0);
- HANDLE_DIR( 1, 0);
- HANDLE_DIR( 0,-1);
- HANDLE_DIR( 0, 1);
-#undef HANDLE_DIR
-
- /* Light squares one at a time until the board is interesting enough */
+
+ /* Light faces one at a time until the board is interesting enough */
while (TRUE)
{
- /* We have count234(lightable_squares) possibilities, and in
- * lightable_squares_sorted they are sorted with the most desirable
- * first. */
- c = count234(lightable_squares_sorted);
- if (c == 0)
- break;
- assert(c == count234(lightable_squares_gettable));
+ if (first_time) {
+ first_time = FALSE;
+ /* lightable_faces_xxx are empty, so start the process by
+ * lighting up the middle face. These tree234s should
+ * remain empty, consistent with what would happen if
+ * first_time were FALSE. */
+ board[g->middle_face - g->faces] = FACE_LIT;
+ face = snew(struct face);
+ face->f = g->middle_face;
+ /* No need to initialise any more of 'face' here, no other fields
+ * are used in this case. */
+ } else {
+ /* We have count234(lightable_faces_gettable) possibilities, and in
+ * lightable_faces_sorted they are sorted with the most desirable
+ * first. */
+ c = count234(lightable_faces_sorted);
+ if (c == 0)
+ break;
+ assert(c == count234(lightable_faces_gettable));
- /* Check that the best square available is any good */
- square = (struct square *)index234(lightable_squares_sorted, 0);
- assert(square);
+ /* Check that the best face available is any good */
+ face = (struct face *)index234(lightable_faces_sorted, 0);
+ assert(face);
- /*
- * We never want to _decrease_ the loop's perimeter. Making
- * moves that leave the perimeter the same is occasionally
- * useful: if it were _never_ done then the user would be
- * able to deduce illicitly that any degree-zero vertex was
- * on the outside of the loop. So we do it sometimes but
- * not always.
- */
- if (square->score < 0 || (square->score == 0 &&
- random_upto(rs, 2) == 0)) {
- break;
- }
+ /*
+ * The situation for a general grid is slightly different from
+ * a square grid. Decreasing the perimeter should be allowed
+ * sometimes (think about creating a hexagon of lit triangles,
+ * for example). For if it were _never_ done, then the user would
+ * be able to illicitly deduce certain things. So we do it
+ * sometimes but not always.
+ */
+ if (face->score <= 0 && random_upto(rs, 2) == 0) {
+ break;
+ }
- assert(square->score == SQUARE_SCORE(square->x, square->y));
- assert(SQUARE_STATE(square->x, square->y) == SQUARE_UNLIT);
- assert(square->x >= 0 && square->x < state->w);
- assert(square->y >= 0 && square->y < state->h);
+ assert(face->f); /* not the infinite face */
+ assert(FACE_LIT_STATE(face->f) == FACE_UNLIT);
- /* Update data structures */
- LV_SQUARE_STATE(square->x, square->y) = SQUARE_LIT;
- REMOVE_SQUARE(square);
+ /* Update data structures */
+ /* Light up the face and remove it from the lists */
+ board[face->f - g->faces] = FACE_LIT;
+ REMOVE_FACE(face);
+ }
- /* We might have changed the score of any squares up to 2 units away in
- * any direction */
- for (b = -SCORE_DISTANCE; b <= SCORE_DISTANCE; b++) {
- for (a = -SCORE_DISTANCE; a <= SCORE_DISTANCE; a++) {
- if (!a && !b)
+ /* The face we've just lit up potentially affects the lightability
+ * of any neighbouring faces (touching at a corner or edge). So the
+ * search needs to be conducted around all faces touching the one
+ * we've just lit. Iterate over its corners, then over each corner's
+ * faces. */
+ for (i = 0; i < face->f->order; i++) {
+ grid_dot *d = face->f->dots[i];
+ for (j = 0; j < d->order; j++) {
+ grid_face *f2 = d->faces[j];
+ if (f2 == NULL)
continue;
- square_pos.x = square->x + a;
- square_pos.y = square->y + b;
- if (square_pos.x < 0 || square_pos.x >= state->w ||
- square_pos.y < 0 || square_pos.y >= state->h) {
- continue;
- }
- tmpsquare = find234(lightable_squares_gettable, &square_pos,
- NULL);
- if (tmpsquare) {
- assert(tmpsquare->x == square_pos.x);
- assert(tmpsquare->y == square_pos.y);
- assert(SQUARE_STATE(tmpsquare->x, tmpsquare->y) ==
- SQUARE_UNLIT);
- REMOVE_SQUARE(tmpsquare);
+ if (f2 == face->f)
+ continue;
+ face_pos.f = f2;
+ tmpface = find234(lightable_faces_gettable, &face_pos, NULL);
+ if (tmpface) {
+ assert(tmpface->f == face_pos.f);
+ assert(FACE_LIT_STATE(tmpface->f) == FACE_UNLIT);
+ REMOVE_FACE(tmpface);
} else {
- tmpsquare = snew(struct square);
- tmpsquare->x = square_pos.x;
- tmpsquare->y = square_pos.y;
- tmpsquare->random = random_bits(rs, 31);
+ tmpface = snew(struct face);
+ tmpface->f = face_pos.f;
+ tmpface->random = random_bits(rs, 31);
}
- tmpsquare->score = SQUARE_SCORE(tmpsquare->x, tmpsquare->y);
+ tmpface->score = face_score(g, board, tmpface->f);
- if (IS_LIGHTING_CANDIDATE(tmpsquare->x, tmpsquare->y)) {
- ADD_SQUARE(tmpsquare);
+ if (IS_LIGHTING_CANDIDATE(tmpface->f - g->faces)) {
+ ADD_FACE(tmpface);
} else {
- sfree(tmpsquare);
+ sfree(tmpface);
}
}
}
- sfree(square);
+ sfree(face);
}
/* Clean up */
- while ((square = delpos234(lightable_squares_gettable, 0)) != NULL)
- sfree(square);
- freetree234(lightable_squares_gettable);
- freetree234(lightable_squares_sorted);
+ while ((face = delpos234(lightable_faces_gettable, 0)) != NULL)
+ sfree(face);
+ freetree234(lightable_faces_gettable);
+ freetree234(lightable_faces_sorted);
- /* Copy out all the clues */
- FORALL_SQUARES(state, i, j) {
- c = SQUARE_STATE(i, j);
- LV_CLUE_AT(state, i, j) = 0;
- if (SQUARE_STATE(i-1, j) != c) ++LV_CLUE_AT(state, i, j);
- if (SQUARE_STATE(i+1, j) != c) ++LV_CLUE_AT(state, i, j);
- if (SQUARE_STATE(i, j-1) != c) ++LV_CLUE_AT(state, i, j);
- if (SQUARE_STATE(i, j+1) != c) ++LV_CLUE_AT(state, i, j);
+ /* Fill out all the clues by initialising to 0, then iterating over
+ * all edges and incrementing each clue as we find edges that border
+ * between LIT/UNLIT faces */
+ memset(clues, 0, num_faces);
+ for (i = 0; i < g->num_edges; i++) {
+ grid_edge *e = g->edges + i;
+ grid_face *f1 = e->face1;
+ grid_face *f2 = e->face2;
+ if (FACE_LIT_STATE(f1) != FACE_LIT_STATE(f2)) {
+ if (f1) clues[f1 - g->faces]++;
+ if (f2) clues[f2 - g->faces]++;
+ }
}
sfree(board);
}
+
static int game_has_unique_soln(const game_state *state, int diff)
{
int ret;
solver_state *sstate_new;
solver_state *sstate = new_solver_state((game_state *)state, diff);
-
+
sstate_new = solve_game_rec(sstate, diff);
assert(sstate_new->solver_status != SOLVER_MISTAKE);
@@ -1671,40 +1496,31 @@
return ret;
}
+
/* Remove clues one at a time at random. */
-static game_state *remove_clues(game_state *state, random_state *rs,
+static game_state *remove_clues(game_state *state, random_state *rs,
int diff)
{
- int *square_list, squares;
+ int *face_list;
+ int num_faces = state->game_grid->num_faces;
game_state *ret = dup_game(state), *saved_ret;
int n;
-#ifdef SHOW_WORKING
- char *desc;
-#endif
/* We need to remove some clues. We'll do this by forming a list of all
* available clues, shuffling it, then going along one at a
* time clearing each clue in turn for which doing so doesn't render the
* board unsolvable. */
- squares = state->w * state->h;
- square_list = snewn(squares, int);
- for (n = 0; n < squares; ++n) {
- square_list[n] = n;
+ face_list = snewn(num_faces, int);
+ for (n = 0; n < num_faces; ++n) {
+ face_list[n] = n;
}
- shuffle(square_list, squares, sizeof(int), rs);
-
- for (n = 0; n < squares; ++n) {
+ shuffle(face_list, num_faces, sizeof(int), rs);
+
+ for (n = 0; n < num_faces; ++n) {
saved_ret = dup_game(ret);
- LV_CLUE_AT(ret, square_list[n] % state->w,
- square_list[n] / state->w) = -1;
+ ret->clues[face_list[n]] = -1;
-#ifdef SHOW_WORKING
- desc = state_to_text(ret);
- fprintf(stderr, "%dx%d:%s\n", state->w, state->h, desc);
- sfree(desc);
-#endif
-
if (game_has_unique_soln(ret, diff)) {
free_game(saved_ret);
} else {
@@ -1712,36 +1528,37 @@
ret = saved_ret;
}
}
- sfree(square_list);
+ sfree(face_list);
return ret;
}
+
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
/* solution and description both use run-length encoding in obvious ways */
char *retval;
- game_state *state = snew(game_state), *state_new;
+ grid *g;
+ game_state *state = snew(game_state);
+ game_state *state_new;
+ params_generate_grid(params);
+ state->game_grid = g = params->game_grid;
+ g->refcount++;
+ state->clues = snewn(g->num_faces, signed char);
+ state->lines = snewn(g->num_edges, char);
- state->h = params->h;
- state->w = params->w;
+ state->grid_type = params->type;
- state->clues = snewn(SQUARE_COUNT(params), signed char);
- state->hl = snewn(HL_COUNT(params), char);
- state->vl = snewn(VL_COUNT(params), char);
+ newboard_please:
-newboard_please:
- memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
- memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
+ memset(state->lines, LINE_UNKNOWN, g->num_edges);
state->solved = state->cheated = FALSE;
- state->recursion_depth = params->rec;
/* Get a new random solvable board with all its clues filled in. Yes, this
* can loop for ever if the params are suitably unfavourable, but
* preventing games smaller than 4x4 seems to stop this happening */
-
do {
add_full_clues(state, rs);
} while (!game_has_unique_soln(state, params->diff));
@@ -1750,6 +1567,7 @@
free_game(state);
state = state_new;
+
if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
#ifdef SHOW_WORKING
fprintf(stderr, "Rejecting board, it is too easy\n");
@@ -1760,7 +1578,7 @@
retval = state_to_text(state);
free_game(state);
-
+
assert(!validate_desc(params, retval));
return retval;
@@ -1768,27 +1586,29 @@
static game_state *new_game(midend *me, game_params *params, char *desc)
{
- int i,j;
+ int i;
game_state *state = snew(game_state);
int empties_to_make = 0;
int n;
const char *dp = desc;
+ grid *g;
+ params_generate_grid(params);
+ state->game_grid = g = params->game_grid;
+ g->refcount++;
+ int num_faces = g->num_faces;
+ int num_edges = g->num_edges;
- state->recursion_depth = 0; /* XXX pending removal, probably */
-
- state->h = params->h;
- state->w = params->w;
+ state->clues = snewn(num_faces, signed char);
+ state->lines = snewn(num_edges, char);
- state->clues = snewn(SQUARE_COUNT(params), signed char);
- state->hl = snewn(HL_COUNT(params), char);
- state->vl = snewn(VL_COUNT(params), char);
-
state->solved = state->cheated = FALSE;
- FORALL_SQUARES(params, i, j) {
+ state->grid_type = params->type;
+
+ for (i = 0; i < num_faces; i++) {
if (empties_to_make) {
empties_to_make--;
- LV_CLUE_AT(state, i, j) = -1;
+ state->clues[i] = -1;
continue;
}
@@ -1795,18 +1615,17 @@
assert(*dp);
n = *dp - '0';
if (n >= 0 && n < 10) {
- LV_CLUE_AT(state, i, j) = n;
+ state->clues[i] = n;
} else {
n = *dp - 'a' + 1;
assert(n > 0);
- LV_CLUE_AT(state, i, j) = -1;
+ state->clues[i] = -1;
empties_to_make = n - 1;
}
++dp;
}
- memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
- memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
+ memset(state->lines, LINE_UNKNOWN, num_edges);
return state;
}
@@ -1822,10 +1641,9 @@
* Just implement the rules of the game.
*
* Normal Mode
- * For each pair of lines through each dot we store a bit for whether
- * at least one of them is on and whether at most one is on. (If we know
- * both or neither is on that's already stored more directly.) That's six
- * bits per dot. Bit number n represents the lines shown in dline_desc.
+ * For each (adjacent) pair of lines through each dot we store a bit for
+ * whether at least one of them is on and whether at most one is on. (If we
+ * know both or neither is on that's already stored more directly.)
*
* Advanced Mode
* Use edsf data structure to make equivalence classes of lines that are
@@ -1832,175 +1650,90 @@
* known identical to or opposite to one another.
*/
-/* The order the following are defined in is very important, see below.
- * The last two fields may seem non-obvious: they specify that when talking
- * about a square the dx and dy offsets should be added to the square coords to
- * get to the right dot. Where dx and dy are -1 this means that the dline
- * doesn't make sense for a square. */
-/* XXX can this be done with a struct instead? */
-#define DLINES \
- DLINE(DLINE_UD, UP, DOWN, -1, -1) \
- DLINE(DLINE_LR, LEFT, RIGHT, -1, -1) \
- DLINE(DLINE_UR, UP, RIGHT, 0, 1) \
- DLINE(DLINE_DL, DOWN, LEFT, 1, 0) \
- DLINE(DLINE_UL, UP, LEFT, 1, 1) \
- DLINE(DLINE_DR, DOWN, RIGHT, 0, 0)
-#define OPP_DLINE(dline_desc) ((dline_desc) ^ 1)
+/* DLines:
+ * For general grids, we consider "dlines" to be pairs of lines joined
+ * at a dot. The lines must be adjacent around the dot, so we can think of
+ * a dline as being a dot+face combination. Or, a dot+edge combination where
+ * the second edge is taken to be the next clockwise edge from the dot.
+ * Original loopy code didn't have this extra restriction of the lines being
+ * adjacent. From my tests with square grids, this extra restriction seems to
+ * take little, if anything, away from the quality of the puzzles.
+ * A dline can be uniquely identified by an edge/dot combination, given that
+ * a dline-pair always goes clockwise around its common dot. The edge/dot
+ * combination can be represented by an edge/bool combination - if bool is
+ * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
+ * exactly twice the number of edges in the grid - although the dlines
+ * spanning the infinite face are not all that useful to the solver.
+ * Note that, by convention, a dline goes clockwise around its common dot,
+ * which means the dline goes anti-clockwise around its common face.
+ */
-enum dline_desc {
-#define DLINE(desc, dir1, dir2, dx, dy) \
- desc,
- DLINES
-#undef DLINE
-};
+/* Helper functions for obtaining an index into an array of dlines, given
+ * various information. We assume the grid layout conventions about how
+ * the various lists are interleaved - see grid_make_consistent() for
+ * details. */
-struct dline {
- enum dline_desc desc;
- enum direction dir1, dir2;
- int dx, dy;
-};
-
-const static struct dline dlines[] = {
-#define DLINE(desc, dir1, dir2, dx, dy) \
- { desc, dir1, dir2, dx, dy },
- DLINES
-#undef DLINE
-};
-
-#define FORALL_DOT_DLINES(dl_iter) \
- for (dl_iter = 0; dl_iter < lenof(dlines); ++dl_iter)
-
-#define FORALL_SQUARE_DLINES(dl_iter) \
- for (dl_iter = 2; dl_iter < lenof(dlines); ++dl_iter)
-
-#define DL2STR(d) \
- ((d==DLINE_UD) ? "DLINE_UD": \
- (d==DLINE_LR) ? "DLINE_LR": \
- (d==DLINE_UR) ? "DLINE_UR": \
- (d==DLINE_DL) ? "DLINE_DL": \
- (d==DLINE_UL) ? "DLINE_UL": \
- (d==DLINE_DR) ? "DLINE_DR": \
- "oops")
-
-#define CHECK_DLINE_SENSIBLE(d) assert(dlines[(d)].dx != -1 && dlines[(d)].dy != -1)
-
-/* This will fail an assertion if the directions handed to it are the same, as
- * no dline corresponds to that */
-static enum dline_desc dline_desc_from_dirs(enum direction dir1,
- enum direction dir2)
+/* i points to the first edge of the dline pair, reading clockwise around
+ * the dot. */
+static int dline_index_from_dot(grid *g, grid_dot *d, int i)
{
- int i;
-
- assert (dir1 != dir2);
-
- for (i = 0; i < lenof(dlines); ++i) {
- if ((dir1 == dlines[i].dir1 && dir2 == dlines[i].dir2) ||
- (dir1 == dlines[i].dir2 && dir2 == dlines[i].dir1)) {
- return dlines[i].desc;
- }
- }
-
- assert(!"dline not found");
- return DLINE_UD; /* placate compiler */
-}
-
-/* The following functions allow you to get or set info about the selected
- * dline corresponding to the dot or square at [i,j]. You'll get an assertion
- * failure if you talk about a dline that doesn't exist, ie if you ask about
- * non-touching lines around a square. */
-static int get_dot_dline(const game_state *state, const char *dline_array,
- int i, int j, enum dline_desc desc)
-{
-/* fprintf(stderr, "get_dot_dline %p [%d,%d] %s\n", dline_array, i, j, DL2STR(desc)); */
- return BIT_SET(dline_array[i + (state->w + 1) * j], desc);
-}
-
-static int set_dot_dline(game_state *state, char *dline_array,
- int i, int j, enum dline_desc desc
-#ifdef SHOW_WORKING
- , const char *reason
-#endif
- )
-{
+ grid_edge *e = d->edges[i];
int ret;
- ret = SET_BIT(dline_array[i + (state->w + 1) * j], desc);
-
-#ifdef SHOW_WORKING
- if (ret)
- fprintf(stderr, "set_dot_dline %p [%d,%d] %s (%s)\n", dline_array, i, j, DL2STR(desc), reason);
+#ifdef DEBUG_DLINES
+ grid_edge *e2;
+ int i2 = i+1;
+ if (i2 == d->order) i2 = 0;
+ e2 = d->edges[i2];
#endif
+ ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
+#ifdef DEBUG_DLINES
+ printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
+ (int)(d - g->dots), i, (int)(e - g->edges),
+ (int)(e2 - g->edges), ret);
+#endif
return ret;
}
-
-static int get_square_dline(game_state *state, char *dline_array,
- int i, int j, enum dline_desc desc)
+/* i points to the second edge of the dline pair, reading clockwise around
+ * the face. That is, the edges of the dline, starting at edge{i}, read
+ * anti-clockwise around the face. By layout conventions, the common dot
+ * of the dline will be f->dots[i] */
+static int dline_index_from_face(grid *g, grid_face *f, int i)
{
- CHECK_DLINE_SENSIBLE(desc);
-/* fprintf(stderr, "get_square_dline %p [%d,%d] %s\n", dline_array, i, j, DL2STR(desc)); */
- return BIT_SET(dline_array[(i+dlines[desc].dx) + (state->w + 1) * (j+dlines[desc].dy)],
- desc);
-}
-
-static int set_square_dline(game_state *state, char *dline_array,
- int i, int j, enum dline_desc desc
-#ifdef SHOW_WORKING
- , const char *reason
-#endif
- )
-{
+ grid_edge *e = f->edges[i];
+ grid_dot *d = f->dots[i];
int ret;
- CHECK_DLINE_SENSIBLE(desc);
- ret = SET_BIT(dline_array[(i+dlines[desc].dx) + (state->w + 1) * (j+dlines[desc].dy)], desc);
-#ifdef SHOW_WORKING
- if (ret)
- fprintf(stderr, "set_square_dline %p [%d,%d] %s (%s)\n", dline_array, i, j, DL2STR(desc), reason);
+#ifdef DEBUG_DLINES
+ grid_edge *e2;
+ int i2 = i - 1;
+ if (i2 < 0) i2 += f->order;
+ e2 = f->edges[i2];
#endif
+ ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
+#ifdef DEBUG_DLINES
+ printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
+ (int)(f - g->faces), i, (int)(e - g->edges),
+ (int)(e2 - g->edges), ret);
+#endif
return ret;
}
-
-#ifdef SHOW_WORKING
-#define set_dot_dline(a, b, c, d, e) \
- set_dot_dline(a, b, c, d, e, __FUNCTION__)
-#define set_square_dline(a, b, c, d, e) \
- set_square_dline(a, b, c, d, e, __FUNCTION__)
-#endif
-
-static int set_dot_opp_dline(game_state *state, char *dline_array,
- int i, int j, enum dline_desc desc)
+static int is_atleastone(const char *dline_array, int index)
{
- return set_dot_dline(state, dline_array, i, j, OPP_DLINE(desc));
+ return BIT_SET(dline_array[index], 0);
}
-
-static int set_square_opp_dline(game_state *state, char *dline_array,
- int i, int j, enum dline_desc desc)
+static int set_atleastone(char *dline_array, int index)
{
- return set_square_dline(state, dline_array, i, j, OPP_DLINE(desc));
+ return SET_BIT(dline_array[index], 0);
}
-
-/* Find out if both the lines in the given dline are UNKNOWN */
-static int dline_both_unknown(const game_state *state, int i, int j,
- enum dline_desc desc)
+static int is_atmostone(const char *dline_array, int index)
{
- return
- (get_line_status_from_point(state, i, j, dlines[desc].dir1) == LINE_UNKNOWN) &&
- (get_line_status_from_point(state, i, j, dlines[desc].dir2) == LINE_UNKNOWN);
+ return BIT_SET(dline_array[index], 1);
}
+static int set_atmostone(char *dline_array, int index)
+{
+ return SET_BIT(dline_array[index], 1);
+}
-#define SQUARE_DLINES \
- HANDLE_DLINE(DLINE_UL, RIGHTOF_SQUARE, BELOW_SQUARE, 1, 1); \
- HANDLE_DLINE(DLINE_UR, LEFTOF_SQUARE, BELOW_SQUARE, 0, 1); \
- HANDLE_DLINE(DLINE_DL, RIGHTOF_SQUARE, ABOVE_SQUARE, 1, 0); \
- HANDLE_DLINE(DLINE_DR, LEFTOF_SQUARE, ABOVE_SQUARE, 0, 0);
-
-#define DOT_DLINES \
- HANDLE_DLINE(DLINE_UD, ABOVE_DOT, BELOW_DOT); \
- HANDLE_DLINE(DLINE_LR, LEFTOF_DOT, RIGHTOF_DOT); \
- HANDLE_DLINE(DLINE_UL, ABOVE_DOT, LEFTOF_DOT); \
- HANDLE_DLINE(DLINE_UR, ABOVE_DOT, RIGHTOF_DOT); \
- HANDLE_DLINE(DLINE_DL, BELOW_DOT, LEFTOF_DOT); \
- HANDLE_DLINE(DLINE_DR, BELOW_DOT, RIGHTOF_DOT);
-
static void array_setall(char *array, char from, char to, int len)
{
char *p = array, *p_old = p;
@@ -2013,299 +1746,178 @@
}
}
-
-
-static int get_line_status_from_point(const game_state *state,
- int x, int y, enum direction d)
+/* Helper, called when doing dline dot deductions, in the case where we
+ * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
+ * them (because of dline atmostone/atleastone).
+ * On entry, edge points to the first of these two UNKNOWNs. This function
+ * will find the opposite UNKNOWNS (if they are adjacent to one another)
+ * and set their corresponding dline to atleastone. (Setting atmostone
+ * already happens in earlier dline deductions) */
+static int dline_set_opp_atleastone(solver_state *sstate,
+ grid_dot *d, int edge)
{
- switch (d) {
- case LEFT:
- return LEFTOF_DOT(state, x, y);
- case RIGHT:
- return RIGHTOF_DOT(state, x, y);
- case UP:
- return ABOVE_DOT(state, x, y);
- case DOWN:
- return BELOW_DOT(state, x, y);
+ game_state *state = sstate->state;
+ grid *g = state->game_grid;
+ int N = d->order;
+ int opp, opp2;
+ for (opp = 0; opp < N; opp++) {
+ int opp_dline_index;
+ if (opp == edge || opp == edge+1 || opp == edge-1)
+ continue;
+ if (opp == 0 && edge == N-1)
+ continue;
+ if (opp == N-1 && edge == 0)
+ continue;
+ opp2 = opp + 1;
+ if (opp2 == N) opp2 = 0;
+ /* Check if opp, opp2 point to LINE_UNKNOWNs */
+ if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
+ continue;
+ if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
+ continue;
+ /* Found opposite UNKNOWNS and they're next to each other */
+ opp_dline_index = dline_index_from_dot(g, d, opp);
+ return set_atleastone(sstate->normal->dlines, opp_dline_index);
}
-
- return 0;
+ return FALSE;
}
-/* First and second args are coord offset from top left of square to one end
- * of line in question, third and fourth args are the direction from the first
- * end of the line to the second. Fifth arg is the direction of the line from
- * the coord offset position.
- * How confusing.
- */
-#define SQUARE_LINES \
- SQUARE_LINE( 0, 0, RIGHT, RIGHTOF_DOT, UP); \
- SQUARE_LINE( 0, +1, RIGHT, RIGHTOF_DOT, DOWN); \
- SQUARE_LINE( 0, 0, DOWN, BELOW_DOT, LEFT); \
- SQUARE_LINE(+1, 0, DOWN, BELOW_DOT, RIGHT);
-/* Set pairs of lines around this square which are known to be identical to
+/* Set pairs of lines around this face which are known to be identical, to
* the given line_state */
-static int square_setall_identical(solver_state *sstate, int x, int y,
- enum line_state line_new)
+static int face_setall_identical(solver_state *sstate, int face_index,
+ enum line_state line_new)
{
/* can[dir] contains the canonical line associated with the line in
* direction dir from the square in question. Similarly inv[dir] is
* whether or not the line in question is inverse to its canonical
* element. */
- int can[4], inv[4], i, j;
int retval = FALSE;
+ game_state *state = sstate->state;
+ grid *g = state->game_grid;
+ grid_face *f = g->faces + face_index;
+ int N = f->order;
+ int i, j;
+ int can1, can2, inv1, inv2;
- i = 0;
-
-#if 0
- fprintf(stderr, "Setting all identical unknown lines around square "
- "[%d,%d] to %d:\n", x, y, line_new);
-#endif
-
-#define SQUARE_LINE(dx, dy, linedir, dir_dot, sqdir) \
- can[sqdir] = \
- edsf_canonify(sstate->hard->linedsf, \
- LINEDSF_INDEX(sstate->state, x+(dx), y+(dy), linedir), \
- &inv[sqdir]);
-
- SQUARE_LINES;
-
-#undef SQUARE_LINE
-
- for (j = 0; j < 4; ++j) {
- for (i = 0; i < 4; ++i) {
- if (i == j)
+ for (i = 0; i < N; i++) {
+ int line1_index = f->edges[i] - g->edges;
+ if (state->lines[line1_index] != LINE_UNKNOWN)
+ continue;
+ for (j = i + 1; j < N; j++) {
+ int line2_index = f->edges[j] - g->edges;
+ if (state->lines[line2_index] != LINE_UNKNOWN)
continue;
- if (can[i] == can[j] && inv[i] == inv[j]) {
-
- /* Lines in directions i and j are identical.
- * Only do j now, we'll do i when the loop causes us to
- * consider {i,j} in the opposite order. */
-#define SQUARE_LINE(dx, dy, dir, c, sqdir) \
- if (j == sqdir) { \
- retval = set_line_bydot(sstate, x+(dx), y+(dy), dir, line_new); \
- if (retval) { \
- break; \
- } \
- }
-
- SQUARE_LINES;
-
-#undef SQUARE_LINE
+ /* Found two UNKNOWNS */
+ can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
+ can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
+ if (can1 == can2 && inv1 == inv2) {
+ solver_set_line(sstate, line1_index, line_new);
+ solver_set_line(sstate, line2_index, line_new);
}
}
}
-
return retval;
}
-#if 0
-/* Set all identical lines passing through the current dot to the chosen line
- * state. (implicitly this only looks at UNKNOWN lines) */
-static int dot_setall_identical(solver_state *sstate, int x, int y,
- enum line_state line_new)
+/* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
+ * return the edge indices into e. */
+static void find_unknowns(game_state *state,
+ grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
+ int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
+ int *e /* Returned edge indices */)
{
- /* The implementation of this is a little naughty but I can't see how to do
- * it elegantly any other way */
- int can[4], inv[4], i, j;
- enum direction d;
- int retval = FALSE;
-
- for (d = 0; d < 4; ++d) {
- can[d] = edsf_canonify(sstate->hard->linedsf,
- LINEDSF_INDEX(sstate->state, x, y, d),
- inv+d);
- }
-
- for (j = 0; j < 4; ++j) {
-next_j:
- for (i = 0; i < j; ++i) {
- if (can[i] == can[j] && inv[i] == inv[j]) {
- /* Lines in directions i and j are identical */
- if (get_line_status_from_point(sstate->state, x, y, j) ==
- LINE_UNKNOWN) {
- set_line_bydot(sstate->state, x, y, j,
- line_new);
- retval = TRUE;
- goto next_j;
- }
- }
-
+ int c = 0;
+ grid *g = state->game_grid;
+ while (c < expected_count) {
+ int line_index = *edge_list - g->edges;
+ if (state->lines[line_index] == LINE_UNKNOWN) {
+ e[c] = line_index;
+ c++;
}
+ ++edge_list;
}
-
- return retval;
}
-#endif
-static int square_setboth_in_dline(solver_state *sstate, enum dline_desc dd,
- int i, int j, enum line_state line_new)
+/* If we have a list of edges, and we know whether the number of YESs should
+ * be odd or even, and there are only a few UNKNOWNs, we can do some simple
+ * linedsf deductions. This can be used for both face and dot deductions.
+ * Returns the difficulty level of the next solver that should be used,
+ * or DIFF_MAX if no progress was made. */
+static int parity_deductions(solver_state *sstate,
+ grid_edge **edge_list, /* Edge list (from a face or a dot) */
+ int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
+ int unknown_count)
{
- int retval = FALSE;
- const struct dline dll = dlines[dd], *dl = &dll;
-
-#if 0
- fprintf(stderr, "square_setboth_in_dline %s [%d,%d] to %d\n",
- DL2STR(dd), i, j, line_new);
-#endif
-
- CHECK_DLINE_SENSIBLE(dd);
-
- retval |=
- set_line_bydot(sstate, i+dl->dx, j+dl->dy, dl->dir1, line_new);
- retval |=
- set_line_bydot(sstate, i+dl->dx, j+dl->dy, dl->dir2, line_new);
-
- return retval;
-}
-
-/* Call this function to register that the two unknown lines going into the dot
- * [x,y] are identical or opposite (depending on the value of 'inverse'). This
- * function will cause an assertion failure if anything other than exactly two
- * lines into the dot are unknown.
- * As usual returns TRUE if any progress was made, otherwise FALSE. */
-static int dot_relate_2_unknowns(solver_state *sstate, int x, int y, int inverse)
-{
- enum direction d1=DOWN, d2=DOWN; /* Just to keep compiler quiet */
- int dirs_set = 0;
-
-#define TRY_DIR(d) \
- if (get_line_status_from_point(sstate->state, x, y, d) == \
- LINE_UNKNOWN) { \
- if (dirs_set == 0) \
- d1 = d; \
- else { \
- assert(dirs_set == 1); \
- d2 = d; \
- } \
- dirs_set++; \
- } while (0)
-
- TRY_DIR(UP);
- TRY_DIR(DOWN);
- TRY_DIR(LEFT);
- TRY_DIR(RIGHT);
-#undef TRY_DIR
-
- assert(dirs_set == 2);
- assert(d1 != d2);
-
-#if 0
- fprintf(stderr, "Lines in direction %s and %s from dot [%d,%d] are %s\n",
- DIR2STR(d1), DIR2STR(d2), x, y, inverse?"opposite":"the same");
-#endif
-
- return merge_lines(sstate, x, y, d1, x, y, d2, inverse);
-}
-
-/* Very similar to dot_relate_2_unknowns. */
-static int square_relate_2_unknowns(solver_state *sstate, int x, int y, int inverse)
-{
- enum direction d1=DOWN, d2=DOWN;
- int x1=-1, y1=-1, x2=-1, y2=-1;
- int dirs_set = 0;
-
-#if 0
- fprintf(stderr, "2 unknowns around square [%d,%d] are %s\n",
- x, y, inverse?"opposite":"the same");
-#endif
-
-#define TRY_DIR(i, j, d, dir_sq) \
- do { \
- if (dir_sq(sstate->state, x, y) == LINE_UNKNOWN) { \
- if (dirs_set == 0) { \
- d1 = d; x1 = i; y1 = j; \
- } else { \
- assert(dirs_set == 1); \
- d2 = d; x2 = i; y2 = j; \
- } \
- dirs_set++; \
- } \
- } while (0)
-
- TRY_DIR(x, y, RIGHT, ABOVE_SQUARE);
- TRY_DIR(x, y, DOWN, LEFTOF_SQUARE);
- TRY_DIR(x+1, y, DOWN, RIGHTOF_SQUARE);
- TRY_DIR(x, y+1, RIGHT, BELOW_SQUARE);
-#undef TRY_DIR
-
- assert(dirs_set == 2);
-
-#if 0
- fprintf(stderr, "Line in direction %s from dot [%d,%d] and line in direction %s from dot [%2d,%2d] are %s\n",
- DIR2STR(d1), x1, y1, DIR2STR(d2), x2, y2, inverse?"opposite":"the same");
-#endif
-
- return merge_lines(sstate, x1, y1, d1, x2, y2, d2, inverse);
-}
-
-/* Figure out if any dlines can be 'collapsed' (and do so if they can). This
- * can happen if one of the lines is known and due to the dline status this
- * tells us state of the other, or if there's an interaction with the linedsf
- * (ie if atmostone is set for a dline and the lines are known identical they
- * must both be LINE_NO, etc). XXX at the moment only the former is
- * implemented, and indeed the latter should be implemented in the hard mode
- * solver only.
- */
-static int dot_collapse_dlines(solver_state *sstate, int i, int j)
-{
- int progress = FALSE;
- enum direction dir1, dir2;
- int dir1st;
- int dlset;
game_state *state = sstate->state;
- enum dline_desc dd;
+ int diff = DIFF_MAX;
+ int *linedsf = sstate->hard->linedsf;
- for (dir1 = 0; dir1 < 4; dir1++) {
- dir1st = get_line_status_from_point(state, i, j, dir1);
- if (dir1st == LINE_UNKNOWN)
- continue;
- /* dir2 iterates over the whole range rather than starting at dir1+1
- * because test below is asymmetric */
- for (dir2 = 0; dir2 < 4; dir2++) {
- if (dir1 == dir2)
- continue;
-
- if ((i == 0 && (dir1 == LEFT || dir2 == LEFT)) ||
- (j == 0 && (dir1 == UP || dir2 == UP)) ||
- (i == state->w && (dir1 == RIGHT || dir2 == RIGHT)) ||
- (j == state->h && (dir1 == DOWN || dir2 == DOWN))) {
- continue;
- }
-
-#if 0
- fprintf(stderr, "dot_collapse_dlines [%d,%d], %s %s\n", i, j,
- DIR2STR(dir1), DIR2STR(dir2));
-#endif
-
- if (get_line_status_from_point(state, i, j, dir2) ==
- LINE_UNKNOWN) {
- dd = dline_desc_from_dirs(dir1, dir2);
-
- dlset = get_dot_dline(state, sstate->normal->dot_atmostone, i, j, dd);
- if (dlset && dir1st == LINE_YES) {
-/* fprintf(stderr, "setting %s to NO\n", DIR2STR(dir2)); */
- progress |=
- set_line_bydot(sstate, i, j, dir2, LINE_NO);
- }
-
- dlset = get_dot_dline(state, sstate->normal->dot_atleastone, i, j, dd);
- if (dlset && dir1st == LINE_NO) {
-/* fprintf(stderr, "setting %s to YES\n", DIR2STR(dir2)); */
- progress |=
- set_line_bydot(sstate, i, j, dir2, LINE_YES);
- }
- }
+ if (unknown_count == 2) {
+ /* Lines are known alike/opposite, depending on inv. */
+ int e[2];
+ find_unknowns(state, edge_list, 2, e);
+ if (merge_lines(sstate, e[0], e[1], total_parity))
+ diff = min(diff, DIFF_HARD);
+ } else if (unknown_count == 3) {
+ int e[3];
+ int can[3]; /* canonical edges */
+ int inv[3]; /* whether can[x] is inverse to e[x] */
+ find_unknowns(state, edge_list, 3, e);
+ can[0] = edsf_canonify(linedsf, e[0], inv);
+ can[1] = edsf_canonify(linedsf, e[1], inv+1);
+ can[2] = edsf_canonify(linedsf, e[2], inv+2);
+ if (can[0] == can[1]) {
+ if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
+ LINE_YES : LINE_NO))
+ diff = min(diff, DIFF_EASY);
}
+ if (can[0] == can[2]) {
+ if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
+ LINE_YES : LINE_NO))
+ diff = min(diff, DIFF_EASY);
+ }
+ if (can[1] == can[2]) {
+ if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
+ LINE_YES : LINE_NO))
+ diff = min(diff, DIFF_EASY);
+ }
+ } else if (unknown_count == 4) {
+ int e[4];
+ int can[4]; /* canonical edges */
+ int inv[4]; /* whether can[x] is inverse to e[x] */
+ find_unknowns(state, edge_list, 4, e);
+ can[0] = edsf_canonify(linedsf, e[0], inv);
+ can[1] = edsf_canonify(linedsf, e[1], inv+1);
+ can[2] = edsf_canonify(linedsf, e[2], inv+2);
+ can[3] = edsf_canonify(linedsf, e[3], inv+3);
+ if (can[0] == can[1]) {
+ if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
+ diff = min(diff, DIFF_HARD);
+ } else if (can[0] == can[2]) {
+ if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
+ diff = min(diff, DIFF_HARD);
+ } else if (can[0] == can[3]) {
+ if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
+ diff = min(diff, DIFF_HARD);
+ } else if (can[1] == can[2]) {
+ if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
+ diff = min(diff, DIFF_HARD);
+ } else if (can[1] == can[3]) {
+ if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
+ diff = min(diff, DIFF_HARD);
+ } else if (can[2] == can[3]) {
+ if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
+ diff = min(diff, DIFF_HARD);
+ }
}
-
- return progress;
+ return diff;
}
+
/*
- * These are the main solver functions.
+ * These are the main solver functions.
*
* Their return values are diff values corresponding to the lowest mode solver
* that would notice the work that they have done. For example if the normal
@@ -2312,7 +1924,7 @@
* mode solver adds actual lines or crosses, it will return DIFF_EASY as the
* easy mode solver might be able to make progress using that. It doesn't make
* sense for one of them to return a diff value higher than that of the
- * function itself.
+ * function itself.
*
* Each function returns the lowest value it can, as early as possible, in
* order to try and pass as much work as possible back to the lower level
@@ -2334,7 +1946,7 @@
* (easiest first) until either a deduction is made (and an event therefore
* emerges) or no further deductions can be made (in which case we've failed).
*
- * QUESTIONS:
+ * QUESTIONS:
* * How do we 'loop over' a solver when both dots and squares are concerned.
* Answer: first all squares then all dots.
*/
@@ -2341,56 +1953,48 @@
static int easy_mode_deductions(solver_state *sstate)
{
- int i, j, h, w, current_yes, current_no;
- game_state *state;
+ int i, current_yes, current_no;
+ game_state *state = sstate->state;
+ grid *g = state->game_grid;
int diff = DIFF_MAX;
- state = sstate->state;
- h = state->h;
- w = state->w;
-
- /* Per-square deductions */
- FORALL_SQUARES(state, i, j) {
- if (sstate->square_solved[SQUARE_INDEX(state, i, j)])
+ /* Per-face deductions */
+ for (i = 0; i < g->num_faces; i++) {
+ grid_face *f = g->faces + i;
+
+ if (sstate->face_solved[i])
continue;
- current_yes = SQUARE_YES_COUNT(sstate, i, j);
- current_no = SQUARE_NO_COUNT(sstate, i, j);
+ current_yes = sstate->face_yes_count[i];
+ current_no = sstate->face_no_count[i];
- if (current_yes + current_no == 4) {
- sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE;
-/* diff = min(diff, DIFF_EASY); */
+ if (current_yes + current_no == f->order) {
+ sstate->face_solved[i] = TRUE;
continue;
}
- if (CLUE_AT(state, i, j) < 0)
+ if (state->clues[i] < 0)
continue;
- if (CLUE_AT(state, i, j) < current_yes) {
-#if 0
- fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
-#endif
+ if (state->clues[i] < current_yes) {
sstate->solver_status = SOLVER_MISTAKE;
return DIFF_EASY;
}
- if (CLUE_AT(state, i, j) == current_yes) {
- if (square_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO))
+ if (state->clues[i] == current_yes) {
+ if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
diff = min(diff, DIFF_EASY);
- sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE;
+ sstate->face_solved[i] = TRUE;
continue;
}
- if (4 - CLUE_AT(state, i, j) < current_no) {
-#if 0
- fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
-#endif
+ if (f->order - state->clues[i] < current_no) {
sstate->solver_status = SOLVER_MISTAKE;
return DIFF_EASY;
}
- if (4 - CLUE_AT(state, i, j) == current_no) {
- if (square_setall(sstate, i, j, LINE_UNKNOWN, LINE_YES))
+ if (f->order - state->clues[i] == current_no) {
+ if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
diff = min(diff, DIFF_EASY);
- sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE;
+ sstate->face_solved[i] = TRUE;
continue;
}
}
@@ -2398,58 +2002,42 @@
check_caches(sstate);
/* Per-dot deductions */
- FORALL_DOTS(state, i, j) {
- if (sstate->dot_solved[DOT_INDEX(state, i, j)])
+ for (i = 0; i < g->num_dots; i++) {
+ grid_dot *d = g->dots + i;
+ int yes, no, unknown;
+
+ if (sstate->dot_solved[i])
continue;
- switch (DOT_YES_COUNT(sstate, i, j)) {
- case 0:
- switch (DOT_NO_COUNT(sstate, i, j)) {
- case 3:
-#if 0
- fprintf(stderr, "dot [%d,%d]: 0 yes, 3 no\n", i, j);
-#endif
- dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO);
- diff = min(diff, DIFF_EASY);
- /* fall through */
- case 4:
- sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE;
- break;
- }
- break;
- case 1:
- switch (DOT_NO_COUNT(sstate, i, j)) {
- case 2: /* 1 yes, 2 no */
-#if 0
- fprintf(stderr, "dot [%d,%d]: 1 yes, 2 no\n", i, j);
-#endif
- dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_YES);
- diff = min(diff, DIFF_EASY);
- sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE;
- break;
- case 3: /* 1 yes, 3 no */
-#if 0
- fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
-#endif
- sstate->solver_status = SOLVER_MISTAKE;
- return DIFF_EASY;
- }
- break;
- case 2:
-#if 0
- fprintf(stderr, "dot [%d,%d]: 2 yes\n", i, j);
-#endif
- dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO);
+ yes = sstate->dot_yes_count[i];
+ no = sstate->dot_no_count[i];
+ unknown = d->order - yes - no;
+
+ if (yes == 0) {
+ if (unknown == 0) {
+ sstate->dot_solved[i] = TRUE;
+ } else if (unknown == 1) {
+ dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
diff = min(diff, DIFF_EASY);
- sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE;
- break;
- case 3:
- case 4:
-#if 0
- fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
-#endif
+ sstate->dot_solved[i] = TRUE;
+ }
+ } else if (yes == 1) {
+ if (unknown == 0) {
sstate->solver_status = SOLVER_MISTAKE;
return DIFF_EASY;
+ } else if (unknown == 1) {
+ dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
+ diff = min(diff, DIFF_EASY);
+ }
+ } else if (yes == 2) {
+ if (unknown > 0) {
+ dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
+ diff = min(diff, DIFF_EASY);
+ }
+ sstate->dot_solved[i] = TRUE;
+ } else {
+ sstate->solver_status = SOLVER_MISTAKE;
+ return DIFF_EASY;
}
}
@@ -2460,420 +2048,443 @@
static int normal_mode_deductions(solver_state *sstate)
{
- int i, j;
game_state *state = sstate->state;
- enum dline_desc dd;
+ grid *g = state->game_grid;
+ char *dlines = sstate->normal->dlines;
+ int i;
int diff = DIFF_MAX;
- FORALL_SQUARES(state, i, j) {
- if (sstate->square_solved[SQUARE_INDEX(state, i, j)])
- continue;
+ /* ------ Face deductions ------ */
- if (CLUE_AT(state, i, j) < 0)
+ /* Given a set of dline atmostone/atleastone constraints, need to figure
+ * out if we can deduce any further info. For more general faces than
+ * squares, this turns out to be a tricky problem.
+ * The approach taken here is to define (per face) NxN matrices:
+ * "maxs" and "mins".
+ * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
+ * for the possible number of edges that are YES between positions j and k
+ * going clockwise around the face. Can think of j and k as marking dots
+ * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
+ * edge1 joins dot1 to dot2 etc).
+ * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
+ * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
+ * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
+ * the dline atmostone/atleastone status for edges j and j+1.
+ *
+ * Then we calculate the remaining entries recursively. We definitely
+ * know that
+ * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
+ * This is because any valid placement of YESs between j and k must give
+ * a valid placement between j and u, and also between u and k.
+ * I believe it's sufficient to use just the two values of u:
+ * j+1 and j+2. Seems to work well in practice - the bounds we compute
+ * are rigorous, even if they might not be best-possible.
+ *
+ * Once we have maxs and mins calculated, we can make inferences about
+ * each dline{j,j+1} by looking at the possible complementary edge-counts
+ * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
+ * As well as dlines, we can make similar inferences about single edges.
+ * For example, consider a pentagon with clue 3, and we know at most one
+ * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
+ * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
+ * that final edge would have to be YES to make the count up to 3.
+ */
+
+ /* Much quicker to allocate arrays on the stack than the heap, so
+ * define the largest possible face size, and base our array allocations
+ * on that. We check this with an assertion, in case someone decides to
+ * make a grid which has larger faces than this. Note, this algorithm
+ * could get quite expensive if there are many large faces. */
+#define MAX_FACE_SIZE 8
+
+ for (i = 0; i < g->num_faces; i++) {
+ int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
+ int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
+ grid_face *f = g->faces + i;
+ int N = f->order;
+ int j,m;
+ int clue = state->clues[i];
+ assert(N <= MAX_FACE_SIZE);
+ if (sstate->face_solved[i])
continue;
+ if (clue < 0) continue;
- switch (CLUE_AT(state, i, j)) {
- case 1:
-#if 0
- fprintf(stderr, "clue [%d,%d] is 1, doing dline ops\n",
- i, j);
-#endif
- FORALL_SQUARE_DLINES(dd) {
- /* At most one of any DLINE can be set */
- if (set_square_dline(state,
- sstate->normal->dot_atmostone,
- i, j, dd)) {
- diff = min(diff, DIFF_NORMAL);
- }
+ /* Calculate the (j,j+1) entries */
+ for (j = 0; j < N; j++) {
+ int edge_index = f->edges[j] - g->edges;
+ int dline_index;
+ enum line_state line1 = state->lines[edge_index];
+ enum line_state line2;
+ int tmp;
+ int k = j + 1;
+ if (k >= N) k = 0;
+ maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
+ mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
+ /* Calculate the (j,j+2) entries */
+ dline_index = dline_index_from_face(g, f, k);
+ edge_index = f->edges[k] - g->edges;
+ line2 = state->lines[edge_index];
+ k++;
+ if (k >= N) k = 0;
- if (get_square_dline(state,
- sstate->normal->dot_atleastone,
- i, j, dd)) {
- /* This DLINE provides enough YESes to solve the clue */
- if (square_setboth_in_dline(sstate, OPP_DLINE(dd),
- i, j, LINE_NO)) {
- diff = min(diff, DIFF_EASY);
- }
- }
- }
+ /* max */
+ tmp = 2;
+ if (line1 == LINE_NO) tmp--;
+ if (line2 == LINE_NO) tmp--;
+ if (tmp == 2 && is_atmostone(dlines, dline_index))
+ tmp = 1;
+ maxs[j][k] = tmp;
+
+ /* min */
+ tmp = 0;
+ if (line1 == LINE_YES) tmp++;
+ if (line2 == LINE_YES) tmp++;
+ if (tmp == 0 && is_atleastone(dlines, dline_index))
+ tmp = 1;
+ mins[j][k] = tmp;
+ }
- break;
- case 2:
- /* If at least one of one DLINE is set, at most one
- * of the opposing one is and vice versa */
-#if 0
- fprintf(stderr, "clue [%d,%d] is 2, doing dline ops\n",
- i, j);
-#endif
- FORALL_SQUARE_DLINES(dd) {
- if (get_square_dline(state,
- sstate->normal->dot_atmostone,
- i, j, dd)) {
- if (set_square_opp_dline(state,
- sstate->normal->dot_atleastone,
- i, j, dd)) {
- diff = min(diff, DIFF_NORMAL);
- }
- }
- if (get_square_dline(state,
- sstate->normal->dot_atleastone,
- i, j, dd)) {
- if (set_square_opp_dline(state,
- sstate->normal->dot_atmostone,
- i, j, dd)) {
- diff = min(diff, DIFF_NORMAL);
- }
- }
- }
- break;
- case 3:
-#if 0
- fprintf(stderr, "clue [%d,%d] is 3, doing dline ops\n",
- i, j);
-#endif
- FORALL_SQUARE_DLINES(dd) {
- /* At least one of any DLINE must be set */
- if (set_square_dline(state,
- sstate->normal->dot_atleastone,
- i, j, dd)) {
- diff = min(diff, DIFF_NORMAL);
- }
+ /* Calculate the (j,j+m) entries for m between 3 and N-1 */
+ for (m = 3; m < N; m++) {
+ for (j = 0; j < N; j++) {
+ int k = j + m;
+ int u = j + 1;
+ int v = j + 2;
+ int tmp;
+ if (k >= N) k -= N;
+ if (u >= N) u -= N;
+ if (v >= N) v -= N;
+ maxs[j][k] = maxs[j][u] + maxs[u][k];
+ mins[j][k] = mins[j][u] + mins[u][k];
+ tmp = maxs[j][v] + maxs[v][k];
+ maxs[j][k] = min(maxs[j][k], tmp);
+ tmp = mins[j][v] + mins[v][k];
+ mins[j][k] = max(mins[j][k], tmp);
+ }
+ }
- if (get_square_dline(state,
- sstate->normal->dot_atmostone,
- i, j, dd)) {
- /* This DLINE provides enough NOs to solve the clue */
- if (square_setboth_in_dline(sstate, OPP_DLINE(dd),
- i, j, LINE_YES)) {
- diff = min(diff, DIFF_EASY);
- }
- }
- }
- break;
- }
- }
+ /* See if we can make any deductions */
+ for (j = 0; j < N; j++) {
+ int k;
+ grid_edge *e = f->edges[j];
+ int line_index = e - g->edges;
+ int dline_index;
+
+ if (state->lines[line_index] != LINE_UNKNOWN)
+ continue;
+ k = j + 1;
+ if (k >= N) k = 0;
+
+ /* minimum YESs in the complement of this edge */
+ if (mins[k][j] > clue) {
+ sstate->solver_status = SOLVER_MISTAKE;
+ return DIFF_EASY;
+ }
+ if (mins[k][j] == clue) {
+ /* setting this edge to YES would make at least
+ * (clue+1) edges - contradiction */
+ solver_set_line(sstate, line_index, LINE_NO);
+ diff = min(diff, DIFF_EASY);
+ }
+ if (maxs[k][j] < clue - 1) {
+ sstate->solver_status = SOLVER_MISTAKE;
+ return DIFF_EASY;
+ }
+ if (maxs[k][j] == clue - 1) {
+ /* Only way to satisfy the clue is to set edge{j} as YES */
+ solver_set_line(sstate, line_index, LINE_YES);
+ diff = min(diff, DIFF_EASY);
+ }
+
+ /* Now see if we can make dline deduction for edges{j,j+1} */
+ e = f->edges[k];
+ if (state->lines[e - g->edges] != LINE_UNKNOWN)
+ /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
+ * Dlines where one of the edges is known, are handled in the
+ * dot-deductions */
+ continue;
+
+ dline_index = dline_index_from_face(g, f, k);
+ k++;
+ if (k >= N) k = 0;
+
+ /* minimum YESs in the complement of this dline */
+ if (mins[k][j] > clue - 2) {
+ /* Adding 2 YESs would break the clue */
+ if (set_atmostone(dlines, dline_index))
+ diff = min(diff, DIFF_NORMAL);
+ }
+ /* maximum YESs in the complement of this dline */
+ if (maxs[k][j] < clue) {
+ /* Adding 2 NOs would mean not enough YESs */
+ if (set_atleastone(dlines, dline_index))
+ diff = min(diff, DIFF_NORMAL);
+ }
+ }
+ }
- check_caches(sstate);
-
if (diff < DIFF_NORMAL)
return diff;
- FORALL_DOTS(state, i, j) {
- if (sstate->dot_solved[DOT_INDEX(state, i, j)])
+ /* ------ Dot deductions ------ */
+
+ for (i = 0; i < g->num_dots; i++) {
+ grid_dot *d = g->dots + i;
+ int N = d->order;
+ int yes, no, unknown;
+ int j;
+ if (sstate->dot_solved[i])
continue;
+ yes = sstate->dot_yes_count[i];
+ no = sstate->dot_no_count[i];
+ unknown = N - yes - no;
-#if 0
- text = game_text_format(state);
- fprintf(stderr, "-----------------\n%s", text);
- sfree(text);
-#endif
+ for (j = 0; j < N; j++) {
+ int k;
+ int dline_index;
+ int line1_index, line2_index;
+ enum line_state line1, line2;
+ k = j + 1;
+ if (k >= N) k = 0;
+ dline_index = dline_index_from_dot(g, d, j);
+ line1_index = d->edges[j] - g->edges;
+ line2_index = d->edges[k] - g->edges;
+ line1 = state->lines[line1_index];
+ line2 = state->lines[line2_index];
- switch (DOT_YES_COUNT(sstate, i, j)) {
- case 0:
- switch (DOT_NO_COUNT(sstate, i, j)) {
- case 1:
- /* Make note that at most one of each unknown DLINE
- * is YES */
- break;
+ /* Infer dline state from line state */
+ if (line1 == LINE_NO || line2 == LINE_NO) {
+ if (set_atmostone(dlines, dline_index))
+ diff = min(diff, DIFF_NORMAL);
}
- break;
-
- case 1:
- switch (DOT_NO_COUNT(sstate, i, j)) {
- case 1:
- /* 1 yes, 1 no, so exactly one of unknowns is
- * yes */
-#if 0
- fprintf(stderr, "dot [%d,%d]: 1 yes, 1 no\n", i, j);
-#endif
- FORALL_DOT_DLINES(dd) {
- if (dline_both_unknown(state,
- i, j, dd)) {
- if (set_dot_dline(state,
- sstate->normal->dot_atleastone,
- i, j, dd)) {
- diff = min(diff, DIFF_NORMAL);
- }
- }
- }
+ if (line1 == LINE_YES || line2 == LINE_YES) {
+ if (set_atleastone(dlines, dline_index))
+ diff = min(diff, DIFF_NORMAL);
+ }
+ /* Infer line state from dline state */
+ if (is_atmostone(dlines, dline_index)) {
+ if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
+ solver_set_line(sstate, line2_index, LINE_NO);
+ diff = min(diff, DIFF_EASY);
+ }
+ if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
+ solver_set_line(sstate, line1_index, LINE_NO);
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ if (is_atleastone(dlines, dline_index)) {
+ if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
+ solver_set_line(sstate, line2_index, LINE_YES);
+ diff = min(diff, DIFF_EASY);
+ }
+ if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
+ solver_set_line(sstate, line1_index, LINE_YES);
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ /* Deductions that depend on the numbers of lines.
+ * Only bother if both lines are UNKNOWN, otherwise the
+ * easy-mode solver (or deductions above) would have taken
+ * care of it. */
+ if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
+ continue;
- /* fall through */
- case 0:
-#if 0
- fprintf(stderr, "dot [%d,%d]: 1 yes, 0 or 1 no\n", i, j);
-#endif
- /* 1 yes, fewer than 2 no, so at most one of
- * unknowns is yes */
- FORALL_DOT_DLINES(dd) {
- if (dline_both_unknown(state,
- i, j, dd)) {
- if (set_dot_dline(state,
- sstate->normal->dot_atmostone,
- i, j, dd)) {
- diff = min(diff, DIFF_NORMAL);
- }
- }
- }
- break;
+ if (yes == 0 && unknown == 2) {
+ /* Both these unknowns must be identical. If we know
+ * atmostone or atleastone, we can make progress. */
+ if (is_atmostone(dlines, dline_index)) {
+ solver_set_line(sstate, line1_index, LINE_NO);
+ solver_set_line(sstate, line2_index, LINE_NO);
+ diff = min(diff, DIFF_EASY);
+ }
+ if (is_atleastone(dlines, dline_index)) {
+ solver_set_line(sstate, line1_index, LINE_YES);
+ solver_set_line(sstate, line2_index, LINE_YES);
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ if (yes == 1) {
+ if (set_atmostone(dlines, dline_index))
+ diff = min(diff, DIFF_NORMAL);
+ if (unknown == 2) {
+ if (set_atleastone(dlines, dline_index))
+ diff = min(diff, DIFF_NORMAL);
+ }
}
- break;
- }
- /* DLINE deductions that don't depend on the exact number of
- * LINE_YESs or LINE_NOs */
+ /* If we have atleastone set for this dline, infer
+ * atmostone for each "opposite" dline (that is, each
+ * dline without edges in common with this one).
+ * Again, this test is only worth doing if both these
+ * lines are UNKNOWN. For if one of these lines were YES,
+ * the (yes == 1) test above would kick in instead. */
+ if (is_atleastone(dlines, dline_index)) {
+ int opp;
+ for (opp = 0; opp < N; opp++) {
+ int opp_dline_index;
+ if (opp == j || opp == j+1 || opp == j-1)
+ continue;
+ if (j == 0 && opp == N-1)
+ continue;
+ if (j == N-1 && opp == 0)
+ continue;
+ opp_dline_index = dline_index_from_dot(g, d, opp);
+ if (set_atmostone(dlines, opp_dline_index))
+ diff = min(diff, DIFF_NORMAL);
+ }
- /* If at least one of a dline in a dot is YES, at most one
- * of the opposite dline to that dot must be YES. */
- FORALL_DOT_DLINES(dd) {
- if (get_dot_dline(state,
- sstate->normal->dot_atleastone,
- i, j, dd)) {
- if (set_dot_opp_dline(state,
- sstate->normal->dot_atmostone,
- i, j, dd)) {
- diff = min(diff, DIFF_NORMAL);
+ if (yes == 0 && is_atmostone(dlines, dline_index)) {
+ /* This dline has *exactly* one YES and there are no
+ * other YESs. This allows more deductions. */
+ if (unknown == 3) {
+ /* Third unknown must be YES */
+ for (opp = 0; opp < N; opp++) {
+ int opp_index;
+ if (opp == j || opp == k)
+ continue;
+ opp_index = d->edges[opp] - g->edges;
+ if (state->lines[opp_index] == LINE_UNKNOWN) {
+ solver_set_line(sstate, opp_index, LINE_YES);
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ } else if (unknown == 4) {
+ /* Exactly one of opposite UNKNOWNS is YES. We've
+ * already set atmostone, so set atleastone as well.
+ */
+ if (dline_set_opp_atleastone(sstate, d, j))
+ diff = min(diff, DIFF_NORMAL);
+ }
}
}
}
-
- if (dot_collapse_dlines(sstate, i, j))
- diff = min(diff, DIFF_EASY);
}
- check_caches(sstate);
-
return diff;
}
static int hard_mode_deductions(solver_state *sstate)
{
- int i, j, a, b, s;
game_state *state = sstate->state;
- const int h=state->h, w=state->w;
- enum direction dir1, dir2;
- int can1, can2, inv1, inv2;
+ grid *g = state->game_grid;
+ char *dlines = sstate->normal->dlines;
+ int i;
int diff = DIFF_MAX;
- enum dline_desc dd;
+ int diff_tmp;
- FORALL_SQUARES(state, i, j) {
- if (sstate->square_solved[SQUARE_INDEX(state, i, j)])
- continue;
+ /* ------ Face deductions ------ */
- switch (CLUE_AT(state, i, j)) {
- case -1:
- continue;
+ /* A fully-general linedsf deduction seems overly complicated
+ * (I suspect the problem is NP-complete, though in practice it might just
+ * be doable because faces are limited in size).
+ * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
+ * known to be identical. If setting them both to YES (or NO) would break
+ * the clue, set them to NO (or YES). */
- case 1:
- if (square_setall_identical(sstate, i, j, LINE_NO))
- diff = min(diff, DIFF_EASY);
- break;
- case 3:
- if (square_setall_identical(sstate, i, j, LINE_YES))
- diff = min(diff, DIFF_EASY);
- break;
- }
+ for (i = 0; i < g->num_faces; i++) {
+ int N, yes, no, unknown;
+ int clue;
- if (SQUARE_YES_COUNT(sstate, i, j) +
- SQUARE_NO_COUNT(sstate, i, j) == 2) {
- /* There are exactly two unknown lines bordering this
- * square. */
- if (SQUARE_YES_COUNT(sstate, i, j) + 1 ==
- CLUE_AT(state, i, j)) {
- /* They must be different */
- if (square_relate_2_unknowns(sstate, i, j, TRUE))
- diff = min(diff, DIFF_HARD);
- }
- }
- }
-
- check_caches(sstate);
-
- FORALL_DOTS(state, i, j) {
- if (DOT_YES_COUNT(sstate, i, j) == 1 &&
- DOT_NO_COUNT(sstate, i, j) == 1) {
- if (dot_relate_2_unknowns(sstate, i, j, TRUE))
- diff = min(diff, DIFF_HARD);
+ if (sstate->face_solved[i])
continue;
- }
-
- if (DOT_YES_COUNT(sstate, i, j) == 0 &&
- DOT_NO_COUNT(sstate, i, j) == 2) {
- if (dot_relate_2_unknowns(sstate, i, j, FALSE))
- diff = min(diff, DIFF_HARD);
+ clue = state->clues[i];
+ if (clue < 0)
continue;
- }
- }
- /* If two lines into a dot are related, the other two lines into that dot
- * are related in the same way. */
-
- /* iter over points that aren't on edges */
- for (i = 1; i < w; ++i) {
- for (j = 1; j < h; ++j) {
- if (sstate->dot_solved[DOT_INDEX(state, i, j)])
- continue;
-
- /* iter over directions */
- for (dir1 = 0; dir1 < 4; ++dir1) {
- for (dir2 = dir1+1; dir2 < 4; ++dir2) {
- /* canonify both lines */
- can1 = edsf_canonify
- (sstate->hard->linedsf,
- LINEDSF_INDEX(state, i, j, dir1),
- &inv1);
- can2 = edsf_canonify
- (sstate->hard->linedsf,
- LINEDSF_INDEX(state, i, j, dir2),
- &inv2);
- /* merge opposite lines */
- if (can1 == can2) {
- if (merge_lines(sstate,
- i, j, OPP_DIR(dir1),
- i, j, OPP_DIR(dir2),
- inv1 ^ inv2)) {
- diff = min(diff, DIFF_HARD);
- }
- }
- }
- }
+ N = g->faces[i].order;
+ yes = sstate->face_yes_count[i];
+ if (yes + 1 == clue) {
+ if (face_setall_identical(sstate, i, LINE_NO))
+ diff = min(diff, DIFF_EASY);
+ }
+ no = sstate->face_no_count[i];
+ if (no + 1 == N - clue) {
+ if (face_setall_identical(sstate, i, LINE_YES))
+ diff = min(diff, DIFF_EASY);
}
- }
- /* If the state of a line is known, deduce the state of its canonical line
- * too. */
- FORALL_DOTS(state, i, j) {
- /* Do this even if the dot we're on is solved */
- if (i < w) {
- can1 = edsf_canonify(sstate->hard->linedsf,
- LINEDSF_INDEX(state, i, j, RIGHT),
- &inv1);
- linedsf_deindex(state, can1, &a, &b, &dir1);
- s = RIGHTOF_DOT(state, i, j);
- if (s != LINE_UNKNOWN)
- {
- if (set_line_bydot(sstate, a, b, dir1, inv1 ? OPP(s) : s))
- diff = min(diff, DIFF_EASY);
- }
- }
- if (j < h) {
- can1 = edsf_canonify(sstate->hard->linedsf,
- LINEDSF_INDEX(state, i, j, DOWN),
- &inv1);
- linedsf_deindex(state, can1, &a, &b, &dir1);
- s = BELOW_DOT(state, i, j);
- if (s != LINE_UNKNOWN)
- {
- if (set_line_bydot(sstate, a, b, dir1, inv1 ? OPP(s) : s))
- diff = min(diff, DIFF_EASY);
- }
- }
+ /* Reload YES count, it might have changed */
+ yes = sstate->face_yes_count[i];
+ unknown = N - no - yes;
+
+ /* Deductions with small number of LINE_UNKNOWNs, based on overall
+ * parity of lines. */
+ diff_tmp = parity_deductions(sstate, g->faces[i].edges,
+ (clue - yes) % 2, unknown);
+ diff = min(diff, diff_tmp);
}
- /* Interactions between dline and linedsf */
- FORALL_DOTS(state, i, j) {
- if (sstate->dot_solved[DOT_INDEX(state, i, j)])
- continue;
-
- FORALL_DOT_DLINES(dd) {
- const struct dline dll = dlines[dd], *dl = &dll;
- if (i == 0 && (dl->dir1 == LEFT || dl->dir2 == LEFT))
+ /* ------ Dot deductions ------ */
+ for (i = 0; i < g->num_dots; i++) {
+ grid_dot *d = g->dots + i;
+ int N = d->order;
+ int j;
+ int yes, no, unknown;
+ /* Go through dlines, and do any dline<->linedsf deductions wherever
+ * we find two UNKNOWNS. */
+ for (j = 0; j < N; j++) {
+ int dline_index = dline_index_from_dot(g, d, j);
+ int line1_index;
+ int line2_index;
+ int can1, can2, inv1, inv2;
+ int j2;
+ line1_index = d->edges[j] - g->edges;
+ if (state->lines[line1_index] != LINE_UNKNOWN)
continue;
- if (i == w && (dl->dir1 == RIGHT || dl->dir2 == RIGHT))
+ j2 = j + 1;
+ if (j2 == N) j2 = 0;
+ line2_index = d->edges[j2] - g->edges;
+ if (state->lines[line2_index] != LINE_UNKNOWN)
continue;
- if (j == 0 && (dl->dir1 == UP || dl->dir2 == UP))
+ /* Infer dline flags from linedsf */
+ can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1);
+ can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2);
+ if (can1 == can2 && inv1 != inv2) {
+ /* These are opposites, so set dline atmostone/atleastone */
+ if (set_atmostone(dlines, dline_index))
+ diff = min(diff, DIFF_NORMAL);
+ if (set_atleastone(dlines, dline_index))
+ diff = min(diff, DIFF_NORMAL);
continue;
- if (j == h && (dl->dir1 == DOWN || dl->dir2 == DOWN))
- continue;
-
- if (get_dot_dline(state, sstate->normal->dot_atleastone,
- i, j, dd) &&
- get_dot_dline(state, sstate->normal->dot_atmostone,
- i, j, dd)) {
- /* atleastone && atmostone => inverse */
- if (merge_lines(sstate, i, j, dl->dir1, i, j, dl->dir2, 1)) {
+ }
+ /* Infer linedsf from dline flags */
+ if (is_atmostone(dlines, dline_index)
+ && is_atleastone(dlines, dline_index)) {
+ if (merge_lines(sstate, line1_index, line2_index, 1))
diff = min(diff, DIFF_HARD);
- }
- } else {
- /* don't have atleastone and atmostone for this dline */
- can1 = edsf_canonify(sstate->hard->linedsf,
- LINEDSF_INDEX(state, i, j, dl->dir1),
- &inv1);
- can2 = edsf_canonify(sstate->hard->linedsf,
- LINEDSF_INDEX(state, i, j, dl->dir2),
- &inv2);
- if (can1 == can2) {
- if (inv1 == inv2) {
- /* identical => collapse dline */
- if (get_dot_dline(state,
- sstate->normal->dot_atleastone,
- i, j, dd)) {
- if (set_line_bydot(sstate, i, j,
- dl->dir1, LINE_YES)) {
- diff = min(diff, DIFF_EASY);
- }
- if (set_line_bydot(sstate, i, j,
- dl->dir2, LINE_YES)) {
- diff = min(diff, DIFF_EASY);
- }
- } else if (get_dot_dline(state,
- sstate->normal->dot_atmostone,
- i, j, dd)) {
- if (set_line_bydot(sstate, i, j,
- dl->dir1, LINE_NO)) {
- diff = min(diff, DIFF_EASY);
- }
- if (set_line_bydot(sstate, i, j,
- dl->dir2, LINE_NO)) {
- diff = min(diff, DIFF_EASY);
- }
- }
- } else {
- /* inverse => atleastone && atmostone */
- if (set_dot_dline(state,
- sstate->normal->dot_atleastone,
- i, j, dd)) {
- diff = min(diff, DIFF_NORMAL);
- }
- if (set_dot_dline(state,
- sstate->normal->dot_atmostone,
- i, j, dd)) {
- diff = min(diff, DIFF_NORMAL);
- }
- }
- }
- }
- }
- }
-
- /* If the state of the canonical line for line 'l' is known, deduce the
- * state of 'l' */
- FORALL_DOTS(state, i, j) {
- if (sstate->dot_solved[DOT_INDEX(state, i, j)])
- continue;
+ }
+ }
+
+ /* Deductions with small number of LINE_UNKNOWNs, based on overall
+ * parity of lines. */
+ yes = sstate->dot_yes_count[i];
+ no = sstate->dot_no_count[i];
+ unknown = N - yes - no;
+ diff_tmp = parity_deductions(sstate, d->edges,
+ yes % 2, unknown);
+ diff = min(diff, diff_tmp);
+ }
- if (i < w) {
- can1 = edsf_canonify(sstate->hard->linedsf,
- LINEDSF_INDEX(state, i, j, RIGHT),
- &inv1);
- linedsf_deindex(state, can1, &a, &b, &dir1);
- s = get_line_status_from_point(state, a, b, dir1);
- if (s != LINE_UNKNOWN)
- {
- if (set_line_bydot(sstate, i, j, RIGHT, inv1 ? OPP(s) : s))
+ /* ------ Edge dsf deductions ------ */
+
+ /* If the state of a line is known, deduce the state of its canonical line
+ * too, and vice versa. */
+ for (i = 0; i < g->num_edges; i++) {
+ int can, inv;
+ enum line_state s;
+ can = edsf_canonify(sstate->hard->linedsf, i, &inv);
+ if (can == i)
+ continue;
+ s = sstate->state->lines[can];
+ if (s != LINE_UNKNOWN) {
+ if (solver_set_line(sstate, i, inv ? OPP(s) : s))
+ diff = min(diff, DIFF_EASY);
+ } else {
+ s = sstate->state->lines[i];
+ if (s != LINE_UNKNOWN) {
+ if (solver_set_line(sstate, can, inv ? OPP(s) : s))
diff = min(diff, DIFF_EASY);
}
}
- if (j < h) {
- can1 = edsf_canonify(sstate->hard->linedsf,
- LINEDSF_INDEX(state, i, j, DOWN),
- &inv1);
- linedsf_deindex(state, can1, &a, &b, &dir1);
- s = get_line_status_from_point(state, a, b, dir1);
- if (s != LINE_UNKNOWN)
- {
- if (set_line_bydot(sstate, i, j, DOWN, inv1 ? OPP(s) : s))
- diff = min(diff, DIFF_EASY);
- }
- }
}
return diff;
@@ -2883,35 +2494,34 @@
{
int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
game_state *state = sstate->state;
- int shortest_chainlen = DOT_COUNT(state);
+ grid *g = state->game_grid;
+ int shortest_chainlen = g->num_dots;
int loop_found = FALSE;
- int d;
int dots_connected;
int progress = FALSE;
- int i, j;
+ int i;
/*
* Go through the grid and update for all the new edges.
* Since merge_dots() is idempotent, the simplest way to
* do this is just to update for _all_ the edges.
- *
- * Also, while we're here, we count the edges, count the
- * clues, count the satisfied clues, and count the
- * satisfied-minus-one clues.
+ * Also, while we're here, we count the edges.
*/
- FORALL_DOTS(state, i, j) {
- if (RIGHTOF_DOT(state, i, j) == LINE_YES) {
- loop_found |= merge_dots(sstate, i, j, i+1, j);
+ for (i = 0; i < g->num_edges; i++) {
+ if (state->lines[i] == LINE_YES) {
+ loop_found |= merge_dots(sstate, i);
edgecount++;
}
- if (BELOW_DOT(state, i, j) == LINE_YES) {
- loop_found |= merge_dots(sstate, i, j, i, j+1);
- edgecount++;
- }
+ }
- if (CLUE_AT(state, i, j) >= 0) {
- int c = CLUE_AT(state, i, j);
- int o = SQUARE_YES_COUNT(sstate, i, j);
+ /*
+ * Count the clues, count the satisfied clues, and count the
+ * satisfied-minus-one clues.
+ */
+ for (i = 0; i < g->num_faces; i++) {
+ int c = state->clues[i];
+ if (c >= 0) {
+ int o = sstate->face_yes_count[i];
if (o == c)
satclues++;
else if (o == c-1)
@@ -2920,8 +2530,8 @@
}
}
- for (i = 0; i < DOT_COUNT(state); ++i) {
- dots_connected =
+ for (i = 0; i < g->num_dots; ++i) {
+ dots_connected =
sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
if (dots_connected > 1)
shortest_chainlen = min(shortest_chainlen, dots_connected);
@@ -2933,7 +2543,7 @@
sstate->solver_status = SOLVER_SOLVED;
/* This discovery clearly counts as progress, even if we haven't
* just added any lines or anything */
- progress = TRUE;
+ progress = TRUE;
goto finished_loop_deductionsing;
}
@@ -2943,125 +2553,101 @@
* equivalence class. If we find one, test to see if the
* loop it would create is a solution.
*/
- FORALL_DOTS(state, i, j) {
- for (d = 0; d < 2; d++) {
- int i2, j2, eqclass, val;
+ for (i = 0; i < g->num_edges; i++) {
+ grid_edge *e = g->edges + i;
+ int d1 = e->dot1 - g->dots;
+ int d2 = e->dot2 - g->dots;
+ int eqclass, val;
+ if (state->lines[i] != LINE_UNKNOWN)
+ continue;
- if (d == 0) {
- if (RIGHTOF_DOT(state, i, j) !=
- LINE_UNKNOWN)
- continue;
- i2 = i+1;
- j2 = j;
- } else {
- if (BELOW_DOT(state, i, j) !=
- LINE_UNKNOWN) {
- continue;
- }
- i2 = i;
- j2 = j+1;
- }
+ eqclass = dsf_canonify(sstate->dotdsf, d1);
+ if (eqclass != dsf_canonify(sstate->dotdsf, d2))
+ continue;
- eqclass = dsf_canonify(sstate->dotdsf, j * (state->w+1) + i);
- if (eqclass != dsf_canonify(sstate->dotdsf,
- j2 * (state->w+1) + i2)) {
- continue;
- }
+ val = LINE_NO; /* loop is bad until proven otherwise */
- val = LINE_NO; /* loop is bad until proven otherwise */
+ /*
+ * This edge would form a loop. Next
+ * question: how long would the loop be?
+ * Would it equal the total number of edges
+ * (plus the one we'd be adding if we added
+ * it)?
+ */
+ if (sstate->looplen[eqclass] == edgecount + 1) {
+ int sm1_nearby;
/*
- * This edge would form a loop. Next
- * question: how long would the loop be?
- * Would it equal the total number of edges
- * (plus the one we'd be adding if we added
- * it)?
+ * This edge would form a loop which
+ * took in all the edges in the entire
+ * grid. So now we need to work out
+ * whether it would be a valid solution
+ * to the puzzle, which means we have to
+ * check if it satisfies all the clues.
+ * This means that every clue must be
+ * either satisfied or satisfied-minus-
+ * 1, and also that the number of
+ * satisfied-minus-1 clues must be at
+ * most two and they must lie on either
+ * side of this edge.
*/
- if (sstate->looplen[eqclass] == edgecount + 1) {
- int sm1_nearby;
- int cx, cy;
-
- /*
- * This edge would form a loop which
- * took in all the edges in the entire
- * grid. So now we need to work out
- * whether it would be a valid solution
- * to the puzzle, which means we have to
- * check if it satisfies all the clues.
- * This means that every clue must be
- * either satisfied or satisfied-minus-
- * 1, and also that the number of
- * satisfied-minus-1 clues must be at
- * most two and they must lie on either
- * side of this edge.
- */
- sm1_nearby = 0;
- cx = i - (j2-j);
- cy = j - (i2-i);
- if (CLUE_AT(state, cx,cy) >= 0 &&
- square_order(state, cx,cy, LINE_YES) ==
- CLUE_AT(state, cx,cy) - 1) {
+ sm1_nearby = 0;
+ if (e->face1) {
+ int f = e->face1 - g->faces;
+ int c = state->clues[f];
+ if (c >= 0 && sstate->face_yes_count[f] == c - 1)
sm1_nearby++;
- }
- if (CLUE_AT(state, i, j) >= 0 &&
- SQUARE_YES_COUNT(sstate, i, j) ==
- CLUE_AT(state, i, j) - 1) {
+ }
+ if (e->face2) {
+ int f = e->face2 - g->faces;
+ int c = state->clues[f];
+ if (c >= 0 && sstate->face_yes_count[f] == c - 1)
sm1_nearby++;
- }
- if (sm1clues == sm1_nearby &&
- sm1clues + satclues == clues) {
- val = LINE_YES; /* loop is good! */
- }
}
-
- /*
- * Right. Now we know that adding this edge
- * would form a loop, and we know whether
- * that loop would be a viable solution or
- * not.
- *
- * If adding this edge produces a solution,
- * then we know we've found _a_ solution but
- * we don't know that it's _the_ solution -
- * if it were provably the solution then
- * we'd have deduced this edge some time ago
- * without the need to do loop detection. So
- * in this state we return SOLVER_AMBIGUOUS,
- * which has the effect that hitting Solve
- * on a user-provided puzzle will fill in a
- * solution but using the solver to
- * construct new puzzles won't consider this
- * a reasonable deduction for the user to
- * make.
- */
- if (d == 0) {
- progress = set_line_bydot(sstate, i, j, RIGHT, val);
- assert(progress == TRUE);
- } else {
- progress = set_line_bydot(sstate, i, j, DOWN, val);
- assert(progress == TRUE);
+ if (sm1clues == sm1_nearby &&
+ sm1clues + satclues == clues) {
+ val = LINE_YES; /* loop is good! */
}
- if (val == LINE_YES) {
- sstate->solver_status = SOLVER_AMBIGUOUS;
- goto finished_loop_deductionsing;
- }
}
+
+ /*
+ * Right. Now we know that adding this edge
+ * would form a loop, and we know whether
+ * that loop would be a viable solution or
+ * not.
+ *
+ * If adding this edge produces a solution,
+ * then we know we've found _a_ solution but
+ * we don't know that it's _the_ solution -
+ * if it were provably the solution then
+ * we'd have deduced this edge some time ago
+ * without the need to do loop detection. So
+ * in this state we return SOLVER_AMBIGUOUS,
+ * which has the effect that hitting Solve
+ * on a user-provided puzzle will fill in a
+ * solution but using the solver to
+ * construct new puzzles won't consider this
+ * a reasonable deduction for the user to
+ * make.
+ */
+ progress = solver_set_line(sstate, i, val);
+ assert(progress == TRUE);
+ if (val == LINE_YES) {
+ sstate->solver_status = SOLVER_AMBIGUOUS;
+ goto finished_loop_deductionsing;
+ }
}
-finished_loop_deductionsing:
+ finished_loop_deductionsing:
return progress ? DIFF_EASY : DIFF_MAX;
}
/* This will return a dynamically allocated solver_state containing the (more)
* solved grid */
-static solver_state *solve_game_rec(const solver_state *sstate_start,
+static solver_state *solve_game_rec(const solver_state *sstate_start,
int diff)
{
- int i, j;
- int w, h;
- solver_state *sstate, *sstate_saved, *sstate_tmp;
- solver_state *sstate_rec_solved;
- int recursive_soln_count;
+ solver_state *sstate, *sstate_saved;
int solver_progress;
game_state *state;
@@ -3068,54 +2654,33 @@
/* Indicates which solver we should call next. This is a sensible starting
* point */
int current_solver = DIFF_EASY, next_solver;
-#ifdef SHOW_WORKING
- char *text;
-#endif
-
-#if 0
- printf("solve_game_rec: recursion_remaining = %d\n",
- sstate_start->recursion_remaining);
-#endif
-
sstate = dup_solver_state(sstate_start);
-
+
/* Cache the values of some variables for readability */
state = sstate->state;
- h = state->h;
- w = state->w;
sstate_saved = NULL;
-nonrecursive_solver:
solver_progress = FALSE;
check_caches(sstate);
do {
-#ifdef SHOW_WORKING
- text = game_text_format(state);
- fprintf(stderr, "-----------------\n%s", text);
- sfree(text);
-#endif
-
if (sstate->solver_status == SOLVER_MISTAKE)
return sstate;
-/* fprintf(stderr, "Invoking solver %d\n", current_solver); */
next_solver = solver_fns[current_solver](sstate);
if (next_solver == DIFF_MAX) {
-/* fprintf(stderr, "Current solver failed\n"); */
if (current_solver < diff && current_solver + 1 < DIFF_MAX) {
/* Try next beefier solver */
next_solver = current_solver + 1;
} else {
-/* fprintf(stderr, "Doing loop deductions\n"); */
next_solver = loop_deductions(sstate);
}
}
- if (sstate->solver_status == SOLVER_SOLVED ||
+ if (sstate->solver_status == SOLVER_SOLVED ||
sstate->solver_status == SOLVER_AMBIGUOUS) {
/* fprintf(stderr, "Solver completed\n"); */
break;
@@ -3129,117 +2694,14 @@
if (sstate->solver_status == SOLVER_SOLVED ||
sstate->solver_status == SOLVER_AMBIGUOUS) {
/* s/LINE_UNKNOWN/LINE_NO/g */
- array_setall(sstate->state->hl, LINE_UNKNOWN, LINE_NO,
- HL_COUNT(sstate->state));
- array_setall(sstate->state->vl, LINE_UNKNOWN, LINE_NO,
- VL_COUNT(sstate->state));
+ array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
+ sstate->state->game_grid->num_edges);
return sstate;
}
- /* Perform recursive calls */
- if (sstate->recursion_remaining) {
- sstate_saved = dup_solver_state(sstate);
-
- sstate->recursion_remaining--;
-
- recursive_soln_count = 0;
- sstate_rec_solved = NULL;
-
- /* Memory management:
- * sstate_saved won't be modified but needs to be freed when we have
- * finished with it.
- * sstate is expected to contain our 'best' solution by the time we
- * finish this section of code. It's the thing we'll try adding lines
- * to, seeing if they make it more solvable.
- * If sstate_rec_solved is non-NULL, it will supersede sstate
- * eventually. sstate_tmp should not hold a value persistently.
- */
-
- /* NB SOLVER_AMBIGUOUS is like SOLVER_SOLVED except the solver is aware
- * of the possibility of additional solutions. So as soon as we have a
- * SOLVER_AMBIGUOUS we can safely propagate it back to our caller, but
- * if we get a SOLVER_SOLVED we want to keep trying in case we find
- * further solutions and have to mark it ambiguous.
- */
-
-#define DO_RECURSIVE_CALL(dir_dot) \
- if (dir_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
- debug(("Trying " #dir_dot " at [%d,%d]\n", i, j)); \
- LV_##dir_dot(sstate->state, i, j) = LINE_YES; \
- sstate_tmp = solve_game_rec(sstate, diff); \
- switch (sstate_tmp->solver_status) { \
- case SOLVER_AMBIGUOUS: \
- debug(("Solver ambiguous, returning\n")); \
- sstate_rec_solved = sstate_tmp; \
- goto finished_recursion; \
- case SOLVER_SOLVED: \
- switch (++recursive_soln_count) { \
- case 1: \
- debug(("One solution found\n")); \
- sstate_rec_solved = sstate_tmp; \
- break; \
- case 2: \
- debug(("Ambiguous solutions found\n")); \
- free_solver_state(sstate_tmp); \
- sstate_rec_solved->solver_status = SOLVER_AMBIGUOUS; \
- goto finished_recursion; \
- default: \
- assert(!"recursive_soln_count out of range"); \
- break; \
- } \
- break; \
- case SOLVER_MISTAKE: \
- debug(("Non-solution found\n")); \
- free_solver_state(sstate_tmp); \
- free_solver_state(sstate_saved); \
- LV_##dir_dot(sstate->state, i, j) = LINE_NO; \
- goto nonrecursive_solver; \
- case SOLVER_INCOMPLETE: \
- debug(("Recursive step inconclusive\n")); \
- free_solver_state(sstate_tmp); \
- break; \
- } \
- free_solver_state(sstate); \
- sstate = dup_solver_state(sstate_saved); \
- }
-
- FORALL_DOTS(state, i, j) {
- /* Only perform recursive calls on 'loose ends' */
- if (DOT_YES_COUNT(sstate, i, j) == 1) {
- DO_RECURSIVE_CALL(LEFTOF_DOT);
- DO_RECURSIVE_CALL(RIGHTOF_DOT);
- DO_RECURSIVE_CALL(ABOVE_DOT);
- DO_RECURSIVE_CALL(BELOW_DOT);
- }
- }
-
-finished_recursion:
-
- if (sstate_rec_solved) {
- free_solver_state(sstate);
- sstate = sstate_rec_solved;
- }
- }
-
return sstate;
}
-#if 0
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
- if (sstate->normal->dot_atmostone[i+a + (sstate->state->w + 1) * (j+b)] & \
- 1<<dline) { \
- if (square_order(sstate->state, i, j, LINE_UNKNOWN) - 1 == \
- CLUE_AT(sstate->state, i, j) - '0') { \
- square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES); \
- /* XXX the following may overwrite known data! */ \
- dir1_sq(sstate->state, i, j) = LINE_UNKNOWN; \
- dir2_sq(sstate->state, i, j) = LINE_UNKNOWN; \
- } \
- }
- SQUARE_DLINES;
-#undef HANDLE_DLINE
-#endif
-
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
@@ -3272,8 +2734,9 @@
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
- int hl_selected;
- int i, j, p, q;
+ grid *g = state->game_grid;
+ grid_edge *e;
+ int i;
char *ret, buf[80];
char button_char = ' ';
enum line_state old_state;
@@ -3280,91 +2743,56 @@
button &= ~MOD_MASK;
- /* Around each line is a diamond-shaped region where points within that
- * region are closer to this line than any other. We assume any click
- * within a line's diamond was meant for that line. It would all be a lot
- * simpler if the / and % operators respected modulo arithmetic properly
- * for negative numbers. */
-
- x -= BORDER;
- y -= BORDER;
+ /* Convert mouse-click (x,y) to grid coordinates */
+ x -= BORDER(ds->tilesize);
+ y -= BORDER(ds->tilesize);
+ x = x * g->tilesize / ds->tilesize;
+ y = y * g->tilesize / ds->tilesize;
+ x += g->lowest_x;
+ y += g->lowest_y;
- /* Get the coordinates of the square the click was in */
- i = (x + TILE_SIZE) / TILE_SIZE - 1;
- j = (y + TILE_SIZE) / TILE_SIZE - 1;
-
- /* Get the precise position inside square [i,j] */
- p = (x + TILE_SIZE) % TILE_SIZE;
- q = (y + TILE_SIZE) % TILE_SIZE;
-
- /* After this bit of magic [i,j] will correspond to the point either above
- * or to the left of the line selected */
- if (p > q) {
- if (TILE_SIZE - p > q) {
- hl_selected = TRUE;
- } else {
- hl_selected = FALSE;
- ++i;
- }
- } else {
- if (TILE_SIZE - q > p) {
- hl_selected = FALSE;
- } else {
- hl_selected = TRUE;
- ++j;
- }
- }
-
- if (i < 0 || j < 0)
+ e = grid_nearest_edge(g, x, y);
+ if (e == NULL)
return NULL;
- if (hl_selected) {
- if (i >= state->w || j >= state->h + 1)
- return NULL;
- } else {
- if (i >= state->w + 1 || j >= state->h)
- return NULL;
- }
+ i = e - g->edges;
/* I think it's only possible to play this game with mouse clicks, sorry */
/* Maybe will add mouse drag support some time */
- if (hl_selected)
- old_state = RIGHTOF_DOT(state, i, j);
- else
- old_state = BELOW_DOT(state, i, j);
+ old_state = state->lines[i];
switch (button) {
- case LEFT_BUTTON:
- switch (old_state) {
- case LINE_UNKNOWN:
- button_char = 'y';
- break;
- case LINE_YES:
- case LINE_NO:
- button_char = 'u';
- break;
- }
- break;
- case MIDDLE_BUTTON:
- button_char = 'u';
- break;
- case RIGHT_BUTTON:
- switch (old_state) {
- case LINE_UNKNOWN:
- button_char = 'n';
- break;
- case LINE_NO:
- case LINE_YES:
- button_char = 'u';
- break;
- }
- break;
- default:
- return NULL;
+ case LEFT_BUTTON:
+ switch (old_state) {
+ case LINE_UNKNOWN:
+ button_char = 'y';
+ break;
+ case LINE_YES:
+ case LINE_NO:
+ button_char = 'u';
+ break;
+ }
+ break;
+ case MIDDLE_BUTTON:
+ button_char = 'u';
+ break;
+ case RIGHT_BUTTON:
+ switch (old_state) {
+ case LINE_UNKNOWN:
+ button_char = 'n';
+ break;
+ case LINE_NO:
+ case LINE_YES:
+ button_char = 'u';
+ break;
+ }
+ break;
+ default:
+ return NULL;
}
- sprintf(buf, "%d,%d%c%c", i, j, (int)(hl_selected ? 'h' : 'v'), (int)button_char);
+ sprintf(buf, "%d%c", i, (int)button_char);
ret = dupstr(buf);
return ret;
@@ -3372,8 +2800,9 @@
static game_state *execute_move(game_state *state, char *move)
{
- int i, j;
+ int i;
game_state *newstate = dup_game(state);
+ grid *g = state->game_grid;
if (move[0] == 'S') {
move++;
@@ -3382,48 +2811,19 @@
while (*move) {
i = atoi(move);
- move = strchr(move, ',');
- if (!move)
- goto fail;
- j = atoi(++move);
move += strspn(move, "1234567890");
switch (*(move++)) {
- case 'h':
- if (i >= newstate->w || j > newstate->h)
- goto fail;
- switch (*(move++)) {
- case 'y':
- LV_RIGHTOF_DOT(newstate, i, j) = LINE_YES;
- break;
- case 'n':
- LV_RIGHTOF_DOT(newstate, i, j) = LINE_NO;
- break;
- case 'u':
- LV_RIGHTOF_DOT(newstate, i, j) = LINE_UNKNOWN;
- break;
- default:
- goto fail;
- }
- break;
- case 'v':
- if (i > newstate->w || j >= newstate->h)
- goto fail;
- switch (*(move++)) {
- case 'y':
- LV_BELOW_DOT(newstate, i, j) = LINE_YES;
- break;
- case 'n':
- LV_BELOW_DOT(newstate, i, j) = LINE_NO;
- break;
- case 'u':
- LV_BELOW_DOT(newstate, i, j) = LINE_UNKNOWN;
- break;
- default:
- goto fail;
- }
- break;
- default:
- goto fail;
+ case 'y':
+ newstate->lines[i] = LINE_YES;
+ break;
+ case 'n':
+ newstate->lines[i] = LINE_NO;
+ break;
+ case 'u':
+ newstate->lines[i] = LINE_UNKNOWN;
+ break;
+ default:
+ goto fail;
}
}
@@ -3430,57 +2830,42 @@
/*
* Check for completion.
*/
- i = 0; /* placate optimiser */
- for (j = 0; j <= newstate->h; j++) {
- for (i = 0; i < newstate->w; i++)
- if (LV_RIGHTOF_DOT(newstate, i, j) == LINE_YES)
- break;
- if (i < newstate->w)
+ for (i = 0; i < g->num_edges; i++) {
+ if (newstate->lines[i] == LINE_YES)
break;
}
- if (j <= newstate->h) {
- int prevdir = 'R';
- int x = i, y = j;
+ if (i < g->num_edges) {
int looplen, count;
-
+ grid_edge *start_edge = g->edges + i;
+ grid_edge *e = start_edge;
+ grid_dot *d = e->dot1;
/*
- * We've found a horizontal edge at (i,j). Follow it round
+ * We've found an edge i. Follow it round
* to see if it's part of a loop.
*/
looplen = 0;
while (1) {
- int order = dot_order(newstate, x, y, LINE_YES);
+ int j;
+ int order = dot_order(newstate, d - g->dots, LINE_YES);
if (order != 2)
goto completion_check_done;
- if (LEFTOF_DOT(newstate, x, y) == LINE_YES && prevdir != 'L') {
- x--;
- prevdir = 'R';
- } else if (RIGHTOF_DOT(newstate, x, y) == LINE_YES &&
- prevdir != 'R') {
- x++;
- prevdir = 'L';
- } else if (ABOVE_DOT(newstate, x, y) == LINE_YES &&
- prevdir != 'U') {
- y--;
- prevdir = 'D';
- } else if (BELOW_DOT(newstate, x, y) == LINE_YES &&
- prevdir != 'D') {
- y++;
- prevdir = 'U';
- } else {
- assert(!"Can't happen"); /* dot_order guarantees success */
+ /* Find other edge around this dot */
+ for (j = 0; j < d->order; j++) {
+ grid_edge *e2 = d->edges[j];
+ if (e2 != e && newstate->lines[e2 - g->edges] == LINE_YES)
+ break;
}
+ assert(j != d->order); /* dot_order guarantees success */
+ e = d->edges[j];
+ d = (e->dot1 == d) ? e->dot2 : e->dot1;
looplen++;
- if (x == i && y == j)
+ if (e == start_edge)
break;
}
- if (x != i || y != j || looplen == 0)
- goto completion_check_done;
-
/*
* We've traced our way round a loop, and we know how many
* line segments were involved. Count _all_ the line
@@ -3488,9 +2873,9 @@
* all.
*/
count = 0;
- FORALL_DOTS(newstate, i, j) {
- count += ((RIGHTOF_DOT(newstate, i, j) == LINE_YES) +
- (BELOW_DOT(newstate, i, j) == LINE_YES));
+ for (i = 0; i < g->num_edges; i++) {
+ if (newstate->lines[i] == LINE_YES)
+ count++;
}
assert(count >= looplen);
if (count != looplen)
@@ -3500,10 +2885,10 @@
* The grid contains one closed loop and nothing else.
* Check that all the clues are satisfied.
*/
- FORALL_SQUARES(newstate, i, j) {
- if (CLUE_AT(newstate, i, j) >= 0) {
- if (square_order(newstate, i, j, LINE_YES) !=
- CLUE_AT(newstate, i, j)) {
+ for (i = 0; i < g->num_faces; i++) {
+ int c = newstate->clues[i];
+ if (c >= 0) {
+ if (face_order(newstate, i, LINE_YES) != c) {
goto completion_check_done;
}
}
@@ -3515,10 +2900,10 @@
newstate->solved = TRUE;
}
-completion_check_done:
+ completion_check_done:
return newstate;
-fail:
+ fail:
free_game(newstate);
return NULL;
}
@@ -3526,14 +2911,58 @@
/* ----------------------------------------------------------------------
* Drawing routines.
*/
+
+/* Convert from grid coordinates to screen coordinates */
+static void grid_to_screen(const game_drawstate *ds, const grid *g,
+ int grid_x, int grid_y, int *x, int *y)
+{
+ *x = grid_x - g->lowest_x;
+ *y = grid_y - g->lowest_y;
+ *x = *x * ds->tilesize / g->tilesize;
+ *y = *y * ds->tilesize / g->tilesize;
+ *x += BORDER(ds->tilesize);
+ *y += BORDER(ds->tilesize);
+}
+
+/* Returns (into x,y) position of centre of face for rendering the text clue.
+ */
+static void face_text_pos(const game_drawstate *ds, const grid *g,
+ const grid_face *f, int *x, int *y)
+{
+ int i;
+
+ /* Simplest solution is the centroid. Might not work in some cases. */
+
+ /* Another algorithm to look into:
+ * Find the midpoints of the sides, find the bounding-box,
+ * then take the centre of that. */
+
+ /* Best solution probably involves incentres (inscribed circles) */
+
+ int sx = 0, sy = 0; /* sums */
+ for (i = 0; i < f->order; i++) {
+ grid_dot *d = f->dots[i];
+ sx += d->x;
+ sy += d->y;
+ }
+ sx /= f->order;
+ sy /= f->order;
+
+ /* convert to screen coordinates */
+ grid_to_screen(ds, g, sx, sy, x, y);
+}
+
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
- int i, j, n;
+ grid *g = state->game_grid;
+ int border = BORDER(ds->tilesize);
+ int i, n;
char c[2];
int line_colour, flash_changed;
int clue_mistake;
+ int clue_satisfied;
if (!ds->started) {
/*
@@ -3542,76 +2971,126 @@
* should start by drawing a big background-colour rectangle
* covering the whole window.
*/
- draw_rect(dr, 0, 0, SIZE(state->w), SIZE(state->h), COL_BACKGROUND);
+ int grid_width = g->highest_x - g->lowest_x;
+ int grid_height = g->highest_y - g->lowest_y;
+ int w = grid_width * ds->tilesize / g->tilesize;
+ int h = grid_height * ds->tilesize / g->tilesize;
+ draw_rect(dr, 0, 0, w + 2 * border, h + 2 * border, COL_BACKGROUND);
- /* Draw dots */
- FORALL_DOTS(state, i, j) {
- draw_rect(dr,
- BORDER + i * TILE_SIZE - LINEWIDTH/2,
- BORDER + j * TILE_SIZE - LINEWIDTH/2,
- LINEWIDTH, LINEWIDTH, COL_FOREGROUND);
- }
-
/* Draw clues */
- FORALL_SQUARES(state, i, j) {
- c[0] = CLUE2CHAR(CLUE_AT(state, i, j));
+ for (i = 0; i < g->num_faces; i++) {
+ c[0] = CLUE2CHAR(state->clues[i]);
c[1] = '\0';
- draw_text(dr,
- BORDER + i * TILE_SIZE + TILE_SIZE/2,
- BORDER + j * TILE_SIZE + TILE_SIZE/2,
- FONT_VARIABLE, TILE_SIZE/2,
+ int x, y;
+ grid_face *f = g->faces + i;
+ face_text_pos(ds, g, f, &x, &y);
+ draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2,
ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
}
- draw_update(dr, 0, 0,
- state->w * TILE_SIZE + 2*BORDER + 1,
- state->h * TILE_SIZE + 2*BORDER + 1);
- ds->started = TRUE;
+ draw_update(dr, 0, 0, w + 2 * border, h + 2 * border);
}
- if (flashtime > 0 &&
+ if (flashtime > 0 &&
(flashtime <= FLASH_TIME/3 ||
flashtime >= FLASH_TIME*2/3)) {
flash_changed = !ds->flashing;
ds->flashing = TRUE;
- line_colour = COL_HIGHLIGHT;
} else {
flash_changed = ds->flashing;
ds->flashing = FALSE;
- line_colour = COL_FOREGROUND;
}
-#define CROSS_SIZE (3 * LINEWIDTH / 2)
-
+ /* Some platforms may perform anti-aliasing, which may prevent clean
+ * repainting of lines when the colour is changed.
+ * If a line needs to be over-drawn in a different colour, erase a
+ * bounding-box around the line, then flag all nearby objects for redraw.
+ */
+ if (ds->started) {
+ const char redraw_flag = 1<<7;
+ for (i = 0; i < g->num_edges; i++) {
+ /* If we're changing state, AND
+ * the previous state was a coloured line */
+ if ((state->lines[i] != (ds->lines[i] & ~redraw_flag)) &&
+ ((ds->lines[i] & ~redraw_flag) != LINE_NO)) {
+ grid_edge *e = g->edges + i;
+ int x1 = e->dot1->x;
+ int y1 = e->dot1->y;
+ int x2 = e->dot2->x;
+ int y2 = e->dot2->y;
+ int xmin, xmax, ymin, ymax;
+ int j;
+ grid_to_screen(ds, g, x1, y1, &x1, &y1);
+ grid_to_screen(ds, g, x2, y2, &x2, &y2);
+ /* Allow extra margin for dots, and thickness of lines */
+ xmin = min(x1, x2) - 2;
+ xmax = max(x1, x2) + 2;
+ ymin = min(y1, y2) - 2;
+ ymax = max(y1, y2) + 2;
+ /* For testing, I find it helpful to change COL_BACKGROUND
+ * to COL_SATISFIED here. */
+ draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1,
+ COL_BACKGROUND);
+ draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
+
+ /* Mark nearby lines for redraw */
+ for (j = 0; j < e->dot1->order; j++)
+ ds->lines[e->dot1->edges[j] - g->edges] |= redraw_flag;
+ for (j = 0; j < e->dot2->order; j++)
+ ds->lines[e->dot2->edges[j] - g->edges] |= redraw_flag;
+ /* Mark nearby clues for redraw. Use a value that is
+ * neither TRUE nor FALSE for this. */
+ if (e->face1)
+ ds->clue_error[e->face1 - g->faces] = 2;
+ if (e->face2)
+ ds->clue_error[e->face2 - g->faces] = 2;
+ }
+ }
+ }
+
/* Redraw clue colours if necessary */
- FORALL_SQUARES(state, i, j) {
- n = CLUE_AT(state, i, j);
+ for (i = 0; i < g->num_faces; i++) {
+ grid_face *f = g->faces + i;
+ int sides = f->order;
+ int j;
+ n = state->clues[i];
if (n < 0)
continue;
- assert(n >= 0 && n <= 4);
-
- c[0] = CLUE2CHAR(CLUE_AT(state, i, j));
+ c[0] = CLUE2CHAR(n);
c[1] = '\0';
- clue_mistake = (square_order(state, i, j, LINE_YES) > n ||
- square_order(state, i, j, LINE_NO ) > (4-n));
+ clue_mistake = (face_order(state, i, LINE_YES) > n ||
+ face_order(state, i, LINE_NO ) > (sides-n));
- if (clue_mistake != ds->clue_error[SQUARE_INDEX(state, i, j)]) {
- draw_rect(dr,
- BORDER + i * TILE_SIZE + CROSS_SIZE,
- BORDER + j * TILE_SIZE + CROSS_SIZE,
- TILE_SIZE - CROSS_SIZE * 2, TILE_SIZE - CROSS_SIZE * 2,
+ clue_satisfied = (face_order(state, i, LINE_YES) == n &&
+ face_order(state, i, LINE_NO ) == (sides-n));
+
+ if (clue_mistake != ds->clue_error[i]
+ || clue_satisfied != ds->clue_satisfied[i]) {
+ int x, y;
+ face_text_pos(ds, g, f, &x, &y);
+ /* There seems to be a certain amount of trial-and-error
+ * involved in working out the correct bounding-box for
+ * the text. */
+ draw_rect(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
+ ds->tilesize/2 + 2, ds->tilesize/2 + 5,
COL_BACKGROUND);
- draw_text(dr,
- BORDER + i * TILE_SIZE + TILE_SIZE/2,
- BORDER + j * TILE_SIZE + TILE_SIZE/2,
- FONT_VARIABLE, TILE_SIZE/2,
- ALIGN_VCENTRE | ALIGN_HCENTRE,
- clue_mistake ? COL_MISTAKE : COL_FOREGROUND, c);
- draw_update(dr, i * TILE_SIZE + BORDER, j * TILE_SIZE + BORDER,
- TILE_SIZE, TILE_SIZE);
+ draw_text(dr, x, y,
+ FONT_VARIABLE, ds->tilesize/2,
+ ALIGN_VCENTRE | ALIGN_HCENTRE,
+ clue_mistake ? COL_MISTAKE :
+ clue_satisfied ? COL_SATISFIED : COL_FOREGROUND, c);
+ draw_update(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3,
+ ds->tilesize/2 + 2, ds->tilesize/2 + 5);
- ds->clue_error[SQUARE_INDEX(state, i, j)] = clue_mistake;
+ ds->clue_error[i] = clue_mistake;
+ ds->clue_satisfied[i] = clue_satisfied;
+
+ /* Sometimes, the bounding-box encroaches into the surrounding
+ * lines (particularly if the window is resized fairly small).
+ * So redraw them. */
+ for (j = 0; j < f->order; j++)
+ ds->lines[f->edges[j] - g->edges] = -1;
}
}
@@ -3619,115 +3098,69 @@
* loop, or if more than two lines go into any point. I think that would
* be good some time. */
-#define CLEAR_VL(i, j) \
- do { \
- draw_rect(dr, \
- BORDER + i * TILE_SIZE - CROSS_SIZE, \
- BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
- CROSS_SIZE * 2, \
- TILE_SIZE - LINEWIDTH, \
- COL_BACKGROUND); \
- draw_update(dr, \
- BORDER + i * TILE_SIZE - CROSS_SIZE, \
- BORDER + j * TILE_SIZE - CROSS_SIZE, \
- CROSS_SIZE*2, \
- TILE_SIZE + CROSS_SIZE*2); \
- } while (0)
+ /* Lines */
+ for (i = 0; i < g->num_edges; i++) {
+ grid_edge *e = g->edges + i;
+ int x1, x2, y1, y2;
+ int xmin, ymin, xmax, ymax;
+ int need_draw = (state->lines[i] != ds->lines[i]) ? TRUE : FALSE;
+ if (flash_changed && (state->lines[i] == LINE_YES))
+ need_draw = TRUE;
+ if (!ds->started)
+ need_draw = TRUE; /* draw everything at the start */
+ ds->lines[i] = state->lines[i];
+ if (!need_draw)
+ continue;
+ if (state->lines[i] == LINE_UNKNOWN)
+ line_colour = COL_LINEUNKNOWN;
+ else if (state->lines[i] == LINE_NO)
+ line_colour = COL_BACKGROUND;
+ else if (ds->flashing)
+ line_colour = COL_HIGHLIGHT;
+ else
+ line_colour = COL_FOREGROUND;
-#define CLEAR_HL(i, j) \
- do { \
- draw_rect(dr, \
- BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
- BORDER + j * TILE_SIZE - CROSS_SIZE, \
- TILE_SIZE - LINEWIDTH, \
- CROSS_SIZE * 2, \
- COL_BACKGROUND); \
- draw_update(dr, \
- BORDER + i * TILE_SIZE - CROSS_SIZE, \
- BORDER + j * TILE_SIZE - CROSS_SIZE, \
- TILE_SIZE + CROSS_SIZE*2, \
- CROSS_SIZE*2); \
- } while (0)
+ /* Convert from grid to screen coordinates */
+ grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
+ grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
- /* Vertical lines */
- FORALL_VL(state, i, j) {
- switch (BELOW_DOT(state, i, j)) {
- case LINE_UNKNOWN:
- if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j)) {
- CLEAR_VL(i, j);
- }
- break;
- case LINE_YES:
- if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j) ||
- flash_changed) {
- CLEAR_VL(i, j);
- draw_rect(dr,
- BORDER + i * TILE_SIZE - LINEWIDTH/2,
- BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
- LINEWIDTH, TILE_SIZE - LINEWIDTH,
- line_colour);
- }
- break;
- case LINE_NO:
- if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j)) {
- CLEAR_VL(i, j);
- draw_line(dr,
- BORDER + i * TILE_SIZE - CROSS_SIZE,
- BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
- BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
- BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
- COL_FOREGROUND);
- draw_line(dr,
- BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
- BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
- BORDER + i * TILE_SIZE - CROSS_SIZE,
- BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
- COL_FOREGROUND);
- }
- break;
+ xmin = min(x1, x2);
+ xmax = max(x1, x2);
+ ymin = min(y1, y2);
+ ymax = max(y1, y2);
+
+ if (line_colour != COL_BACKGROUND) {
+ /* (dx, dy) points roughly from (x1, y1) to (x2, y2).
+ * The line is then "fattened" in a (roughly) perpendicular
+ * direction to create a thin rectangle. */
+ int dx = (x1 > x2) ? -1 : ((x1 < x2) ? 1 : 0);
+ int dy = (y1 > y2) ? -1 : ((y1 < y2) ? 1 : 0);
+ int points[] = {
+ x1 + dy, y1 - dx,
+ x1 - dy, y1 + dx,
+ x2 - dy, y2 + dx,
+ x2 + dy, y2 - dx
+ };
+ draw_polygon(dr, points, 4, line_colour, line_colour);
}
- ds->vl[VL_INDEX(state, i, j)] = BELOW_DOT(state, i, j);
+ if (ds->started) {
+ /* Draw dots at ends of the line */
+ draw_circle(dr, x1, y1, 2, COL_FOREGROUND, COL_FOREGROUND);
+ draw_circle(dr, x2, y2, 2, COL_FOREGROUND, COL_FOREGROUND);
+ }
+ draw_update(dr, xmin-2, ymin-2, xmax - xmin + 4, ymax - ymin + 4);
}
- /* Horizontal lines */
- FORALL_HL(state, i, j) {
- switch (RIGHTOF_DOT(state, i, j)) {
- case LINE_UNKNOWN:
- if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j)) {
- CLEAR_HL(i, j);
- }
- break;
- case LINE_YES:
- if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j) ||
- flash_changed) {
- CLEAR_HL(i, j);
- draw_rect(dr,
- BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
- BORDER + j * TILE_SIZE - LINEWIDTH/2,
- TILE_SIZE - LINEWIDTH, LINEWIDTH,
- line_colour);
- }
- break;
- case LINE_NO:
- if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j)) {
- CLEAR_HL(i, j);
- draw_line(dr,
- BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
- BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
- BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
- BORDER + j * TILE_SIZE - CROSS_SIZE,
- COL_FOREGROUND);
- draw_line(dr,
- BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
- BORDER + j * TILE_SIZE - CROSS_SIZE,
- BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
- BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
- COL_FOREGROUND);
- break;
- }
+ /* Draw dots */
+ if (!ds->started) {
+ for (i = 0; i < g->num_dots; i++) {
+ grid_dot *d = g->dots + i;
+ int x, y;
+ grid_to_screen(ds, g, d->x, d->y, &x, &y);
+ draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
}
- ds->hl[HL_INDEX(state, i, j)] = RIGHTOF_DOT(state, i, j);
}
+ ds->started = TRUE;
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
@@ -3746,7 +3179,7 @@
int pw, ph;
/*
- * I'll use 7mm squares by default.
+ * I'll use 7mm "squares" by default.
*/
game_compute_size(params, 700, &pw, &ph);
*x = pw / 100.0F;
@@ -3756,53 +3189,75 @@
static void game_print(drawing *dr, game_state *state, int tilesize)
{
int ink = print_mono_colour(dr, 0);
- int x, y;
+ int i;
game_drawstate ads, *ds = &ads;
+ grid *g = state->game_grid;
game_set_size(dr, ds, NULL, tilesize);
- /*
- * Dots. I'll deliberately make the dots a bit wider than the
- * lines, so you can still see them. (And also because it's
- * annoyingly tricky to make them _exactly_ the same size...)
- */
- FORALL_DOTS(state, x, y) {
- draw_circle(dr, BORDER + x * TILE_SIZE, BORDER + y * TILE_SIZE,
- LINEWIDTH, ink, ink);
+ for (i = 0; i < g->num_dots; i++) {
+ int x, y;
+ grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
+ draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
}
/*
* Clues.
*/
- FORALL_SQUARES(state, x, y) {
- if (CLUE_AT(state, x, y) >= 0) {
+ for (i = 0; i < g->num_faces; i++) {
+ grid_face *f = g->faces + i;
+ int clue = state->clues[i];
+ if (clue >= 0) {
char c[2];
-
- c[0] = CLUE2CHAR(CLUE_AT(state, x, y));
+ int x, y;
+ c[0] = CLUE2CHAR(clue);
c[1] = '\0';
- draw_text(dr,
- BORDER + x * TILE_SIZE + TILE_SIZE/2,
- BORDER + y * TILE_SIZE + TILE_SIZE/2,
- FONT_VARIABLE, TILE_SIZE/2,
+ face_text_pos(ds, g, f, &x, &y);
+ draw_text(dr, x, y,
+ FONT_VARIABLE, ds->tilesize / 2,
ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
}
}
/*
- * Lines. (At the moment, I'm not bothering with crosses.)
+ * Lines.
*/
- FORALL_HL(state, x, y) {
- if (RIGHTOF_DOT(state, x, y) == LINE_YES)
- draw_rect(dr, BORDER + x * TILE_SIZE,
- BORDER + y * TILE_SIZE - LINEWIDTH/2,
- TILE_SIZE, (LINEWIDTH/2) * 2 + 1, ink);
- }
-
- FORALL_VL(state, x, y) {
- if (BELOW_DOT(state, x, y) == LINE_YES)
- draw_rect(dr, BORDER + x * TILE_SIZE - LINEWIDTH/2,
- BORDER + y * TILE_SIZE,
- (LINEWIDTH/2) * 2 + 1, TILE_SIZE, ink);
+ for (i = 0; i < g->num_edges; i++) {
+ int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
+ grid_edge *e = g->edges + i;
+ int x1, y1, x2, y2;
+ grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
+ grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
+ if (state->lines[i] == LINE_YES)
+ {
+ /* (dx, dy) points from (x1, y1) to (x2, y2).
+ * The line is then "fattened" in a perpendicular
+ * direction to create a thin rectangle. */
+ double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
+ double dx = (x2 - x1) / d;
+ double dy = (y2 - y1) / d;
+ dx = (dx * ds->tilesize) / thickness;
+ dy = (dy * ds->tilesize) / thickness;
+ int points[] = {
+ x1 + dy, y1 - dx,
+ x1 - dy, y1 + dx,
+ x2 - dy, y2 + dx,
+ x2 + dy, y2 - dx
+ };
+ draw_polygon(dr, points, 4, ink, ink);
+ }
+ else
+ {
+ /* Draw a dotted line */
+ int divisions = 6;
+ int j;
+ for (j = 1; j < divisions; j++) {
+ /* Weighted average */
+ int x = (x1 * (divisions -j) + x2 * j) / divisions;
+ int y = (y1 * (divisions -j) + y2 * j) / divisions;
+ draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
+ }
+ }
}
}
--- a/puzzles.but
+++ b/puzzles.but
@@ -1797,18 +1797,27 @@
\cfg{winhelp-topic}{games.loopy}
-You are given a grid of dots. Your aim is to draw a single unbroken
+You are given a grid of dots, marked with yellow lines to indicate
+which dots you are allowed to connect directly together. Your aim is
+to use some subset of those yellow lines to draw a single unbroken
loop from dot to dot within the grid.
-Some of the square spaces between the dots contain numbers. These
-numbers indicate how many of the four edges of that square are part
-of the loop. The loop you draw must correctly satisfy all of these
-clues to be considered a correct solution.
+Some of the spaces between the lines contain numbers. These numbers
+indicate how many of the lines around that space form part of the
+loop. The loop you draw must correctly satisfy all of these clues to
+be considered a correct solution.
-Credit for this puzzle goes to \i{Nikoli} \k{nikoli-loopy}.
+In the default mode, the dots are arranged in a grid of squares;
+however, you can also play on triangular or hexagonal grids, or even
+more exotic ones.
-Loopy was contributed to this collection by Mike Pinna.
+Credit for the basic puzzle idea goes to \i{Nikoli}
+\k{nikoli-loopy}.
+Loopy was originally contributed to this collection by Mike Pinna,
+and subsequently enhanced to handle various types of non-square grid
+by Lambros Lambrou.
+
\B{nikoli-loopy}
\W{http://www.nikoli.co.jp/puzzles/3/index-e.htm}\cw{http://www.nikoli.co.jp/puzzles/3/index-e.htm}
(beware of Flash)
@@ -1817,12 +1826,14 @@
\IM{Loopy controls} controls, for Loopy
-Click the left mouse button between two dots to add a line segment
-connecting them. Click again to remove that line segment.
+Click the left mouse button on a yellow line to turn it black,
+indicating that you think it is part of the loop. Click again to
+turn the line yellow again (meaning you aren't sure yet).
If you are sure that a particular line segment is \e{not} part of
-the loop, you can click the right mouse button to add a small cross
-indicating this. Click again to remove the cross.
+the loop, you can click the right mouse button to remove it
+completely. Again, clicking a second time will turn the line back to
+yellow.
(All the actions described in \k{common-actions} are also available.)
@@ -1833,7 +1844,20 @@
\dt \e{Width}, \e{Height}
-\dd Size of grid in squares.
+\dd Size of grid, measured in number of regions across and down. For
+square grids, it's clear how this is counted; for other types of
+grid you may have to think a bit to see how the dimensions are
+measured.
+
+\dt \e{Grid type}
+
+\dd Allows you to choose between a selection of types of tiling.
+Some have all the faces the same but may have multiple different
+types of vertex (e.g. the \e{Cairo} or \e{Kites} mode); others have
+all the vertices the same but may have differnt types of face (e.g.
+the \e{Great Hexagonal}). The square, triangular and honeycomb grids
+are fully regular, and have all their vertices \e{and} faces the
+same; this makes them the least confusing to play.
\dt \e{Difficulty}