ref: e137ad8b1a98542192eef20b21aa85d1719c7f33
parent: aa6fb7507252dec76e2c30ebfdc76b0e366851d7
author: Simon Tatham <[email protected]>
date: Thu Feb 22 04:31:43 EST 2007
Add James Harvey's excellent new puzzle, `Galaxies'. [originally from svn r7304]
--- /dev/null
+++ b/galaxies.R
@@ -1,0 +1,24 @@
+# -*- makefile -*-
+
+GALAXIES = galaxies dsf
+
+galaxies : [X] GTK COMMON GALAXIES galaxies-icon|no-icon
+
+galaxies : [G] WINDOWS COMMON GALAXIES galaxies.res?
+
+galaxiessolver : [U] galaxies[STANDALONE_SOLVER] dsf STANDALONE m.lib
+galaxiessolver : [C] galaxies[STANDALONE_SOLVER] dsf STANDALONE
+
+ALL += galaxies
+
+!begin gtk
+GAMES += galaxies
+!end
+
+!begin >list.c
+ A(galaxies) \
+!end
+
+!begin >wingames.lst
+galaxies.exe
+!end
--- /dev/null
+++ b/galaxies.c
@@ -1,0 +1,3416 @@
+/*
+ * galaxies.c: implementation of 'Tentai Show' from Nikoli,
+ * also sometimes called 'Spiral Galaxies'.
+ *
+ * Notes:
+ *
+ * Grid is stored as size (2n-1), holding edges as well as spaces
+ * (and thus vertices too, at edge intersections).
+ *
+ * Any dot will thus be positioned at one of our grid points,
+ * which saves any faffing with half-of-a-square stuff.
+ *
+ * Edges have on/off state; obviously the actual edges of the
+ * board are fixed to on, and everything else starts as off.
+ *
+ * TTD:
+ * Cleverer solver
+ * Think about how to display remote groups of tiles?
+ *
+ * Bugs:
+ *
+ * Notable puzzle IDs:
+ *
+ * Nikoli's example [web site has wrong highlighting]
+ * (at http://www.nikoli.co.jp/en/puzzles/astronomical_show/):
+ * 5x5:eBbbMlaBbOEnf
+ *
+ * The 'spiral galaxies puzzles are NP-complete' paper
+ * (at http://www.stetson.edu/~efriedma/papers/spiral.pdf):
+ * 7x7:chpgdqqqoezdddki
+ *
+ * Puzzle competition pdf examples
+ * (at http://www.puzzleratings.org/Yurekli2006puz.pdf):
+ * 6x6:EDbaMucCohbrecEi
+ * 10x10:beFbufEEzowDlxldibMHezBQzCdcFzjlci
+ * 13x13:dCemIHFFkJajjgDfdbdBzdzEgjccoPOcztHjBczLDjczqktJjmpreivvNcggFi
+ *
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+
+#ifdef DEBUGGING
+#define solvep debug
+#else
+int solver_show_working;
+#define solvep(x) do { if (solver_show_working) { printf x; } } while(0)
+#endif
+
+enum {
+ COL_BACKGROUND,
+ COL_WHITEBG,
+ COL_BLACKBG,
+ COL_WHITEDOT,
+ COL_BLACKDOT,
+ COL_GRID,
+ COL_EDGE,
+ COL_ARROW,
+ NCOLOURS
+};
+
+#define DIFFLIST(A) \
+ A(EASY,Easy,e) \
+ A(HARD,Hard,h) \
+ A(RECURSIVE,Recursive,r)
+
+#define ENUM(upper,title,lower) DIFF_ ## upper,
+#define TITLE(upper,title,lower) #title,
+#define ENCODE(upper,title,lower) #lower
+#define CONFIG(upper,title,lower) ":" #title
+enum { DIFFLIST(ENUM)
+ DIFF_IMPOSSIBLE, DIFF_AMBIGUOUS, DIFF_UNFINISHED, DIFF_MAX };
+static char const *const galaxies_diffnames[] = {
+ DIFFLIST(TITLE) "Impossible", "Ambiguous", "Unfinished" };
+static char const galaxies_diffchars[] = DIFFLIST(ENCODE);
+#define DIFFCONFIG DIFFLIST(CONFIG)
+
+struct game_params {
+ /* X and Y is the area of the board as seen by
+ * the user, not the (2n+1) area the game uses. */
+ int w, h, diff;
+};
+
+enum { s_tile, s_edge, s_vertex };
+
+#define F_DOT 1 /* there's a dot here */
+#define F_EDGE_SET 2 /* the edge is set */
+#define F_TILE_ASSOC 4 /* this tile is associated with a dot. */
+#define F_DOT_BLACK 8 /* (ui only) dot is black. */
+#define F_MARK 16 /* scratch flag */
+#define F_REACHABLE 32
+#define F_SCRATCH 64
+#define F_MULTIPLE 128
+#define F_DOT_HOLD 256
+#define F_GOOD 512
+
+typedef struct space {
+ int x, y; /* its position */
+ int type;
+ unsigned int flags;
+ int dotx, doty; /* if flags & F_TILE_ASSOC */
+ int nassoc; /* if flags & F_DOT */
+} space;
+
+#define INGRID(s,x,y) ((x) >= 0 && (y) >= 0 && \
+ (x) < (state)->sx && (y) < (state)->sy)
+#define INUI(s,x,y) ((x) > 0 && (y) > 0 && \
+ (x) < ((state)->sx-1) && (y) < ((state)->sy-1))
+
+#define GRID(s,g,x,y) ((s)->g[((y)*(s)->sx)+(x)])
+#define SPACE(s,x,y) GRID(s,grid,x,y)
+
+struct game_state {
+ int w, h; /* size from params */
+ int sx, sy; /* allocated size, (2x-1)*(2y-1) */
+ space *grid;
+ int completed, used_solve;
+ int ndots;
+ space **dots;
+
+ midend *me; /* to call supersede_game_desc */
+ int cdiff; /* difficulty of current puzzle (for status bar),
+ or -1 if stale. */
+};
+
+/* ----------------------------------------------------------
+ * Game parameters and presets
+ */
+
+/* make up some sensible default sizes */
+
+#define DEFAULT_PRESET 1
+
+static const game_params galaxies_presets[] = {
+ { 7, 7, DIFF_EASY },
+ { 7, 7, DIFF_HARD },
+ { 7, 7, DIFF_RECURSIVE },
+ { 10, 10, DIFF_EASY },
+ { 10, 10, DIFF_HARD },
+ { 15, 15, DIFF_EASY },
+ { 15, 15, DIFF_HARD },
+};
+
+static int game_fetch_preset(int i, char **name, game_params **params)
+{
+ game_params *ret;
+ char buf[80];
+
+ if (i < 0 || i >= lenof(galaxies_presets))
+ return FALSE;
+
+ ret = snew(game_params);
+ *ret = galaxies_presets[i]; /* structure copy */
+
+ sprintf(buf, "%dx%d %s", ret->w, ret->h,
+ galaxies_diffnames[ret->diff]);
+
+ if (name) *name = dupstr(buf);
+ *params = ret;
+ return TRUE;
+}
+
+static game_params *default_params(void)
+{
+ game_params *ret;
+ game_fetch_preset(DEFAULT_PRESET, NULL, &ret);
+ return ret;
+}
+
+static void free_params(game_params *params)
+{
+ sfree(params);
+}
+
+static game_params *dup_params(game_params *params)
+{
+ game_params *ret = snew(game_params);
+ *ret = *params; /* structure copy */
+ return ret;
+}
+
+static void decode_params(game_params *params, char const *string)
+{
+ params->h = params->w = atoi(string);
+ params->diff = DIFF_EASY;
+ while (*string && isdigit((unsigned char)*string)) string++;
+ if (*string == 'x') {
+ string++;
+ params->h = atoi(string);
+ while (*string && isdigit((unsigned char)*string)) string++;
+ }
+ if (*string == 'd') {
+ int i;
+ string++;
+ for (i = 0; i <= DIFF_RECURSIVE; i++)
+ if (*string == galaxies_diffchars[i])
+ params->diff = i;
+ if (*string) string++;
+ }
+}
+
+static char *encode_params(game_params *params, int full)
+{
+ char str[80];
+ sprintf(str, "%dx%d", params->w, params->h);
+ if (full)
+ sprintf(str + strlen(str), "d%c", galaxies_diffchars[params->diff]);
+ return dupstr(str);
+}
+
+static config_item *game_configure(game_params *params)
+{
+ config_item *ret;
+ char buf[80];
+
+ ret = snewn(4, config_item);
+
+ ret[0].name = "Width";
+ ret[0].type = C_STRING;
+ sprintf(buf, "%d", params->w);
+ ret[0].sval = dupstr(buf);
+ ret[0].ival = 0;
+
+ ret[1].name = "Height";
+ ret[1].type = C_STRING;
+ sprintf(buf, "%d", params->h);
+ ret[1].sval = dupstr(buf);
+ ret[1].ival = 0;
+
+ ret[2].name = "Difficulty";
+ ret[2].type = C_CHOICES;
+ ret[2].sval = DIFFCONFIG;
+ ret[2].ival = params->diff;
+
+ ret[3].name = NULL;
+ ret[3].type = C_END;
+ ret[3].sval = NULL;
+ ret[3].ival = 0;
+
+ return ret;
+}
+
+static game_params *custom_params(config_item *cfg)
+{
+ game_params *ret = snew(game_params);
+
+ ret->w = atoi(cfg[0].sval);
+ ret->h = atoi(cfg[1].sval);
+ ret->diff = cfg[2].ival;
+
+ return ret;
+}
+
+static char *validate_params(game_params *params, int full)
+{
+ if (params->w < 3 || params->h < 3)
+ return "Width and height must both be at least 3";
+ /*
+ * This shouldn't be able to happen at all, since decode_params
+ * and custom_params will never generate anything that isn't
+ * within range.
+ */
+ assert(params->diff <= DIFF_RECURSIVE);
+
+ return NULL;
+}
+
+/* ----------------------------------------------------------
+ * Game utility functions.
+ */
+
+static void add_dot(space *space) {
+ assert(!(space->flags & F_DOT));
+ space->flags |= F_DOT;
+ space->nassoc = 0;
+}
+
+static void remove_dot(space *space) {
+ assert(space->flags & F_DOT);
+ space->flags &= ~F_DOT;
+}
+
+static void remove_assoc(game_state *state, space *tile) {
+ if (tile->flags & F_TILE_ASSOC) {
+ SPACE(state, tile->dotx, tile->doty).nassoc--;
+ tile->flags &= ~F_TILE_ASSOC;
+ tile->dotx = -1;
+ tile->doty = -1;
+ }
+}
+
+static void add_assoc(game_state *state, space *tile, space *dot) {
+ remove_assoc(state, tile);
+
+ tile->flags |= F_TILE_ASSOC;
+ tile->dotx = dot->x;
+ tile->doty = dot->y;
+ dot->nassoc++;
+ debug(("add_assoc sp %d %d --> dot %d,%d, new nassoc %d.\n",
+ tile->x, tile->y, dot->x, dot->y, dot->nassoc));
+}
+
+static struct space *sp2dot(game_state *state, int x, int y)
+{
+ struct space *sp = &SPACE(state, x, y);
+ if (!(sp->flags & F_TILE_ASSOC)) return NULL;
+ return &SPACE(state, sp->dotx, sp->doty);
+}
+
+#define IS_VERTICAL_EDGE(x) ((x % 2) == 0)
+
+static char *game_text_format(game_state *state)
+{
+ int maxlen = (state->sx+1)*state->sy, x, y;
+ char *ret, *p;
+ space *sp;
+
+ ret = snewn(maxlen+1, char);
+ p = ret;
+
+ for (y = 0; y < state->sy; y++) {
+ for (x = 0; x < state->sx; x++) {
+ sp = &SPACE(state, x, y);
+ if (sp->flags & F_DOT)
+ *p++ = 'o';
+ else if (sp->flags & (F_REACHABLE|F_MULTIPLE|F_MARK))
+ *p++ = (sp->flags & F_MULTIPLE) ? 'M' :
+ (sp->flags & F_REACHABLE) ? 'R' : 'X';
+ else {
+ switch (sp->type) {
+ case s_tile:
+ if (sp->flags & F_TILE_ASSOC) {
+ space *dot = sp2dot(state, sp->x, sp->y);
+ if (dot->flags & F_DOT)
+ *p++ = (dot->flags & F_DOT_BLACK) ? 'B' : 'W';
+ else
+ *p++ = '?'; /* association with not-a-dot. */
+ } else
+ *p++ = ' ';
+ break;
+
+ case s_vertex:
+ *p++ = '+';
+ break;
+
+ case s_edge:
+ if (sp->flags & F_EDGE_SET)
+ *p++ = (IS_VERTICAL_EDGE(x)) ? '|' : '-';
+ else
+ *p++ = ' ';
+ break;
+
+ default:
+ assert(!"shouldn't get here!");
+ }
+ }
+ }
+ *p++ = '\n';
+ }
+
+ assert(p - ret == maxlen);
+ *p = '\0';
+
+ return ret;
+}
+
+static void dbg_state(game_state *state)
+{
+#ifdef DEBUGGING
+ char *temp = game_text_format(state);
+ debug(("%s\n", temp));
+ sfree(temp);
+#endif
+}
+
+/* Space-enumeration callbacks should all return 1 for 'progress made',
+ * -1 for 'impossible', and 0 otherwise. */
+typedef int (*space_cb)(game_state *state, space *sp, void *ctx);
+
+#define IMPOSSIBLE_QUITS 1
+
+static int foreach_sub(game_state *state, space_cb cb, unsigned int f,
+ void *ctx, int startx, int starty)
+{
+ int x, y, progress = 0, impossible = 0, ret;
+ space *sp;
+
+ for (y = starty; y < state->sy; y += 2) {
+ sp = &SPACE(state, startx, y);
+ for (x = startx; x < state->sx; x += 2) {
+ ret = cb(state, sp, ctx);
+ if (ret == -1) {
+ if (f & IMPOSSIBLE_QUITS) return -1;
+ impossible = -1;
+ } else if (ret == 1) {
+ progress = 1;
+ }
+ sp += 2;
+ }
+ }
+ return impossible ? -1 : progress;
+}
+
+static int foreach_tile(game_state *state, space_cb cb, unsigned int f,
+ void *ctx)
+{
+ return foreach_sub(state, cb, f, ctx, 1, 1);
+}
+
+static int foreach_edge(game_state *state, space_cb cb, unsigned int f,
+ void *ctx)
+{
+ int ret1, ret2;
+
+ ret1 = foreach_sub(state, cb, f, ctx, 0, 1);
+ ret2 = foreach_sub(state, cb, f, ctx, 1, 0);
+
+ if (ret1 == -1 || ret2 == -1) return -1;
+ return (ret1 || ret2) ? 1 : 0;
+}
+
+#if 0
+static int foreach_vertex(game_state *state, space_cb cb, unsigned int f,
+ void *ctx)
+{
+ return foreach_sub(state, cb, f, ctx, 0, 0);
+}
+#endif
+
+#if 0
+static int is_same_assoc(game_state *state,
+ int x1, int y1, int x2, int y2)
+{
+ struct space *s1, *s2;
+
+ if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2))
+ return 0;
+
+ s1 = &SPACE(state, x1, y1);
+ s2 = &SPACE(state, x2, y2);
+ assert(s1->type == s_tile && s2->type == s_tile);
+ if ((s1->flags & F_TILE_ASSOC) && (s2->flags & F_TILE_ASSOC) &&
+ s1->dotx == s2->dotx && s1->doty == s2->doty)
+ return 1;
+ return 0; /* 0 if not same or not both associated. */
+}
+#endif
+
+#if 0
+static int edges_into_vertex(game_state *state,
+ int x, int y)
+{
+ int dx, dy, nx, ny, count = 0;
+
+ assert(SPACE(state, x, y).type == s_vertex);
+ for (dx = -1; dx <= 1; dx++) {
+ for (dy = -1; dy <= 1; dy++) {
+ if (dx != 0 && dy != 0) continue;
+ if (dx == 0 && dy == 0) continue;
+
+ nx = x+dx; ny = y+dy;
+ if (!INGRID(state, nx, ny)) continue;
+ assert(SPACE(state, nx, ny).type == s_edge);
+ if (SPACE(state, nx, ny).flags & F_EDGE_SET)
+ count++;
+ }
+ }
+ return count;
+}
+#endif
+
+static struct space *space_opposite_dot(struct game_state *state,
+ struct space *sp, struct space *dot)
+{
+ int dx, dy, tx, ty;
+ space *sp2;
+
+ dx = sp->x - dot->x;
+ dy = sp->y - dot->y;
+ tx = dot->x - dx;
+ ty = dot->y - dy;
+ if (!INGRID(state, tx, ty)) return NULL;
+
+ sp2 = &SPACE(state, tx, ty);
+ assert(sp2->type == sp->type);
+ return sp2;
+}
+
+static struct space *tile_opposite(struct game_state *state, struct space *sp)
+{
+ struct space *dot;
+
+ assert(sp->flags & F_TILE_ASSOC);
+ dot = &SPACE(state, sp->dotx, sp->doty);
+ return space_opposite_dot(state, sp, dot);
+}
+
+static int dotfortile(game_state *state, space *tile, space *dot)
+{
+ space *tile_opp = space_opposite_dot(state, tile, dot);
+
+ if (!tile_opp) return 0; /* opposite would be off grid */
+ if (tile_opp->flags & F_TILE_ASSOC &&
+ (tile_opp->dotx != dot->x || tile_opp->doty != dot->y))
+ return 0; /* opposite already associated with diff. dot */
+ return 1;
+}
+
+static void adjacencies(struct game_state *state, struct space *sp,
+ struct space **a1s, struct space **a2s)
+{
+ int dxs[4] = {-1, 1, 0, 0}, dys[4] = {0, 0, -1, 1};
+ int n, x, y;
+
+ /* this function needs optimising. */
+
+ for (n = 0; n < 4; n++) {
+ x = sp->x+dxs[n];
+ y = sp->y+dys[n];
+
+ if (INGRID(state, x, y)) {
+ a1s[n] = &SPACE(state, x, y);
+
+ x += dxs[n]; y += dys[n];
+
+ if (INGRID(state, x, y))
+ a2s[n] = &SPACE(state, x, y);
+ else
+ a2s[n] = NULL;
+ } else {
+ a1s[n] = a2s[n] = NULL;
+ }
+ }
+}
+
+static int outline_tile_fordot(game_state *state, space *tile, int mark)
+{
+ struct space *tadj[4], *eadj[4];
+ int i, didsth = 0, edge, same;
+
+ assert(tile->type == s_tile);
+ adjacencies(state, tile, eadj, tadj);
+ for (i = 0; i < 4; i++) {
+ if (!eadj[i]) continue;
+
+ edge = (eadj[i]->flags & F_EDGE_SET) ? 1 : 0;
+ if (tadj[i]) {
+ if (!(tile->flags & F_TILE_ASSOC))
+ same = (tadj[i]->flags & F_TILE_ASSOC) ? 0 : 1;
+ else
+ same = ((tadj[i]->flags & F_TILE_ASSOC) &&
+ tile->dotx == tadj[i]->dotx &&
+ tile->doty == tadj[i]->doty) ? 1 : 0;
+ } else
+ same = 0;
+
+ if (!edge && !same) {
+ if (mark) eadj[i]->flags |= F_EDGE_SET;
+ didsth = 1;
+ } else if (edge && same) {
+ if (mark) eadj[i]->flags &= ~F_EDGE_SET;
+ didsth = 1;
+ }
+ }
+ return didsth;
+}
+
+static void tiles_from_edge(struct game_state *state,
+ struct space *sp, struct space **ts)
+{
+ int xs[2], ys[2];
+
+ if (IS_VERTICAL_EDGE(sp->x)) {
+ xs[0] = sp->x-1; ys[0] = sp->y;
+ xs[1] = sp->x+1; ys[1] = sp->y;
+ } else {
+ xs[0] = sp->x; ys[0] = sp->y-1;
+ xs[1] = sp->x; ys[1] = sp->y+1;
+ }
+ ts[0] = INGRID(state, xs[0], ys[0]) ? &SPACE(state, xs[0], ys[0]) : NULL;
+ ts[1] = INGRID(state, xs[1], ys[1]) ? &SPACE(state, xs[1], ys[1]) : NULL;
+}
+
+ /* Check all tiles are associated with something, and all shapes
+ * are the correct symmetry (i.e. all tiles have a matching tile
+ * the opposite direction from the dot) */
+static int cccb_assoc(game_state *state, space *tile, void *unused)
+{
+ assert(tile->type == s_tile);
+
+ if (!(tile->flags & F_TILE_ASSOC)) return -1;
+ return 0;
+}
+
+struct dgs_ctx {
+ space *dot;
+ int ndots;
+};
+
+static int dgs_cb_check(game_state *state, space *tile, void *vctx)
+{
+ struct dgs_ctx *ctx = (struct dgs_ctx *)vctx;
+ space *opp;
+
+ if (!(tile->flags & F_TILE_ASSOC)) return 0;
+ if (tile->dotx != ctx->dot->x ||
+ tile->doty != ctx->dot->y) return 0;
+
+ ctx->ndots += 1;
+
+ /* Check this tile has an opposite associated with same dot. */
+ opp = tile_opposite(state, tile);
+ if (!opp || !(opp->flags & F_TILE_ASSOC)) return -1;
+ if (opp->dotx != tile->dotx || opp->doty != tile->doty) return -1;
+
+ /* Check its edges are correct */
+ if (outline_tile_fordot(state, tile, 0) == 1)
+ return -1; /* there was some fixing required, we're wrong. */
+
+ return 0;
+}
+
+static int dot_good_shape(game_state *state, space *dot, int mark)
+{
+ struct dgs_ctx ctx;
+
+ ctx.dot = dot;
+ ctx.ndots = 0;
+
+ if (mark) dot->flags &= ~F_GOOD;
+
+ if (foreach_tile(state, dgs_cb_check, 0, &ctx) == -1)
+ return 0;
+ if (ctx.ndots == 0) return 0; /* no dots assoc. with tile. */
+
+ if (mark) {
+ debug(("marking dot %d,%d good tile.\n", dot->x, dot->y));
+ dot->flags |= F_GOOD;
+ }
+ return 1;
+}
+
+static int check_complete(game_state *state, int mark_errors)
+{
+ int i, complete = 1;
+
+ /* Are all tiles associated? */
+ if (foreach_tile(state, cccb_assoc, 0, NULL) == -1)
+ complete = 0;
+
+ /* Check all dots are associated, and their tiles are well-formed. */
+ for (i = 0; i < state->ndots; i++) {
+ if (!dot_good_shape(state, state->dots[i], mark_errors))
+ complete = 0;
+ }
+
+ /*if (complete == 1) printf("Complete!\n");*/
+ return complete;
+}
+
+/* Returns a move string for use by 'solve'; if you don't want the
+ * initial 'S;' use ret[2]. */
+static char *diff_game(game_state *src, game_state *dest, int issolve)
+{
+ int movelen = 0, movesize = 256, x, y, len;
+ char *move = snewn(movesize, char), buf[80], *sep = "";
+ char achar = issolve ? 'a' : 'A';
+ space *sps, *spd;
+
+ assert(src->sx == dest->sx && src->sy == dest->sy);
+
+ if (issolve) {
+ move[movelen++] = 'S';
+ sep = ";";
+ }
+ move[movelen] = '\0';
+ for (x = 0; x < src->sx; x++) {
+ for (y = 0; y < src->sy; y++) {
+ sps = &SPACE(src, x, y);
+ spd = &SPACE(dest, x, y);
+
+ assert(sps->type == spd->type);
+
+ len = 0;
+ if (sps->type == s_tile) {
+ if ((sps->flags & F_TILE_ASSOC) &&
+ (spd->flags & F_TILE_ASSOC)) {
+ if (sps->dotx != spd->dotx ||
+ sps->doty != spd->doty)
+ /* Both associated; change association, if different */
+ len = sprintf(buf, "%s%c%d,%d,%d,%d", sep,
+ (int)achar, x, y, spd->dotx, spd->doty);
+ } else if (sps->flags & F_TILE_ASSOC)
+ /* Only src associated; remove. */
+ len = sprintf(buf, "%sU%d,%d", sep, x, y);
+ else if (spd->flags & F_TILE_ASSOC)
+ /* Only dest associated; add. */
+ len = sprintf(buf, "%s%c%d,%d,%d,%d", sep,
+ (int)achar, x, y, spd->dotx, spd->doty);
+ } else if (sps->type == s_edge) {
+ if ((sps->flags & F_EDGE_SET) != (spd->flags & F_EDGE_SET))
+ /* edge flags are different; flip them. */
+ len = sprintf(buf, "%sE%d,%d", sep, x, y);
+ }
+ if (len) {
+ if (movelen + len >= movesize) {
+ movesize = movelen + len + 256;
+ move = sresize(move, movesize, char);
+ }
+ strcpy(move + movelen, buf);
+ movelen += len;
+ sep = ";";
+ }
+ }
+ }
+ debug(("diff_game src then dest:\n"));
+ dbg_state(src);
+ dbg_state(dest);
+ debug(("diff string %s\n", move));
+ return move;
+}
+
+/* Returns 1 if a dot here would not be too close to any other dots
+ * (and would avoid other game furniture). */
+static int dot_is_possible(game_state *state, space *sp, int allow_assoc)
+{
+ int bx = 0, by = 0, dx, dy;
+ space *adj;
+
+ switch (sp->type) {
+ case s_tile:
+ bx = by = 1; break;
+ case s_edge:
+ if (IS_VERTICAL_EDGE(sp->x)) {
+ bx = 2; by = 1;
+ } else {
+ bx = 1; by = 2;
+ }
+ break;
+ case s_vertex:
+ bx = by = 2; break;
+ }
+
+ for (dx = -bx; dx <= bx; dx++) {
+ for (dy = -by; dy <= by; dy++) {
+ if (!INGRID(state, sp->x+dx, sp->y+dy)) continue;
+
+ adj = &SPACE(state, sp->x+dx, sp->y+dy);
+
+ if (!allow_assoc && (adj->flags & F_TILE_ASSOC))
+ return 0;
+
+ if (dx != 0 || dy != 0) {
+ /* Other than our own square, no dots nearby. */
+ if (adj->flags & (F_DOT))
+ return 0;
+ }
+
+ /* We don't want edges within our rectangle
+ * (but don't care about edges on the edge) */
+ if (abs(dx) < bx && abs(dy) < by &&
+ adj->flags & F_EDGE_SET)
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* ----------------------------------------------------------
+ * Game generation, structure creation, and descriptions.
+ */
+
+static game_state *blank_game(int w, int h)
+{
+ game_state *state = snew(game_state);
+ int x, y;
+
+ state->w = w;
+ state->h = h;
+
+ state->sx = (w*2)+1;
+ state->sy = (h*2)+1;
+ state->grid = snewn(state->sx * state->sy, struct space);
+ state->completed = state->used_solve = 0;
+
+ for (x = 0; x < state->sx; x++) {
+ for (y = 0; y < state->sy; y++) {
+ struct space *sp = &SPACE(state, x, y);
+ memset(sp, 0, sizeof(struct space));
+ sp->x = x;
+ sp->y = y;
+ if ((x % 2) == 0 && (y % 2) == 0)
+ sp->type = s_vertex;
+ else if ((x % 2) == 0 || (y % 2) == 0) {
+ sp->type = s_edge;
+ if (x == 0 || y == 0 || x == state->sx-1 || y == state->sy-1)
+ sp->flags |= F_EDGE_SET;
+ } else
+ sp->type = s_tile;
+ }
+ }
+
+ state->ndots = 0;
+ state->dots = NULL;
+
+ state->me = NULL; /* filled in by new_game. */
+ state->cdiff = -1;
+
+ return state;
+}
+
+static void game_update_dots(game_state *state)
+{
+ int i, n, sz = state->sx * state->sy;
+
+ if (state->dots) sfree(state->dots);
+ state->ndots = 0;
+
+ for (i = 0; i < sz; i++) {
+ if (state->grid[i].flags & F_DOT) state->ndots++;
+ }
+ state->dots = snewn(state->ndots, space *);
+ n = 0;
+ for (i = 0; i < sz; i++) {
+ if (state->grid[i].flags & F_DOT)
+ state->dots[n++] = &state->grid[i];
+ }
+}
+
+static void clear_game(game_state *state, int cleardots)
+{
+ int x, y;
+
+ /* don't erase edge flags around outline! */
+ for (x = 1; x < state->sx-1; x++) {
+ for (y = 1; y < state->sy-1; y++) {
+ if (cleardots)
+ SPACE(state, x, y).flags = 0;
+ else
+ SPACE(state, x, y).flags &= (F_DOT|F_DOT_BLACK);
+ }
+ }
+ if (cleardots) game_update_dots(state);
+}
+
+static game_state *dup_game(game_state *state)
+{
+ game_state *ret = blank_game(state->w, state->h);
+
+ ret->completed = state->completed;
+ ret->used_solve = state->used_solve;
+
+ memcpy(ret->grid, state->grid,
+ ret->sx*ret->sy*sizeof(struct space));
+
+ game_update_dots(ret);
+
+ ret->me = state->me;
+ ret->cdiff = state->cdiff;
+
+ return ret;
+}
+
+static void free_game(game_state *state)
+{
+ if (state->dots) sfree(state->dots);
+ sfree(state->grid);
+ sfree(state);
+}
+
+/* Game description is a sequence of letters representing the number
+ * of spaces (a = 0, y = 24) before the next dot; a-y for a white dot,
+ * and A-Y for a black dot. 'z' is 25 spaces (and no dot).
+ *
+ * I know it's a bitch to generate by hand, so we provide
+ * an edit mode.
+ */
+
+static char *encode_game(game_state *state)
+{
+ char *desc, *p;
+ int run, x, y, area;
+ unsigned int f;
+
+ area = (state->sx-2) * (state->sy-2);
+
+ desc = snewn(area, char);
+ p = desc;
+ run = 0;
+ for (y = 1; y < state->sy-1; y++) {
+ for (x = 1; x < state->sx-1; x++) {
+ f = SPACE(state, x, y).flags;
+
+ /* a/A is 0 spaces between, b/B is 1 space, ...
+ * y/Y is 24 spaces, za/zA is 25 spaces, ...
+ * It's easier to count from 0 because we then
+ * don't have to special-case the top left-hand corner
+ * (which could be a dot with 0 spaces before it). */
+ if (!(f & F_DOT))
+ run++;
+ else {
+ while (run > 24) {
+ *p++ = 'z';
+ run -= 25;
+ }
+ *p++ = ((f & F_DOT_BLACK) ? 'A' : 'a') + run;
+ run = 0;
+ }
+ }
+ }
+ assert(p - desc < area);
+ *p++ = '\0';
+ desc = sresize(desc, p - desc, char);
+
+ return desc;
+}
+
+struct movedot {
+ int op;
+ space *olddot, *newdot;
+};
+
+enum { MD_CHECK, MD_MOVE };
+
+static int movedot_cb(game_state *state, space *tile, void *vctx)
+{
+ struct movedot *md = (struct movedot *)vctx;
+ space *newopp = NULL;
+
+ assert(tile->type == s_tile);
+ assert(md->olddot && md->newdot);
+
+ if (!(tile->flags & F_TILE_ASSOC)) return 0;
+ if (tile->dotx != md->olddot->x || tile->doty != md->olddot->y)
+ return 0;
+
+ newopp = space_opposite_dot(state, tile, md->newdot);
+
+ switch (md->op) {
+ case MD_CHECK:
+ /* If the tile is associated with the old dot, check its
+ * opposite wrt the _new_ dot is empty or same assoc. */
+ if (!newopp) return -1; /* no new opposite */
+ if (newopp->flags & F_TILE_ASSOC) {
+ if (newopp->dotx != md->olddot->x ||
+ newopp->doty != md->olddot->y)
+ return -1; /* associated, but wrong dot. */
+ }
+ break;
+
+ case MD_MOVE:
+ /* Move dot associations: anything that was associated
+ * with the old dot, and its opposite wrt the new dot,
+ * become associated with the new dot. */
+ assert(newopp);
+ debug(("Associating %d,%d and %d,%d with new dot %d,%d.\n",
+ tile->x, tile->y, newopp->x, newopp->y,
+ md->newdot->x, md->newdot->y));
+ add_assoc(state, tile, md->newdot);
+ add_assoc(state, newopp, md->newdot);
+ return 1; /* we did something! */
+ }
+ return 0;
+}
+
+/* For the given dot, first see if we could expand it into all the given
+ * extra spaces (by checking for empty spaces on the far side), and then
+ * see if we can move the dot to shift the CoG to include the new spaces.
+ */
+static int dot_expand_or_move(game_state *state, space *dot,
+ space **toadd, int nadd)
+{
+ space *tileopp;
+ int i, ret, nnew, cx, cy;
+ struct movedot md;
+
+ debug(("dot_expand_or_move: %d tiles for dot %d,%d\n",
+ nadd, dot->x, dot->y));
+ for (i = 0; i < nadd; i++)
+ debug(("dot_expand_or_move: dot %d,%d\n",
+ toadd[i]->x, toadd[i]->y));
+ assert(dot->flags & F_DOT);
+
+ /* First off, could we just expand the current dot's tile to cover
+ * the space(s) passed in and their opposites? */
+ for (i = 0; i < nadd; i++) {
+ tileopp = space_opposite_dot(state, toadd[i], dot);
+ if (!tileopp) goto noexpand;
+ if (tileopp->flags & F_TILE_ASSOC) goto noexpand;
+ }
+ /* OK, all spaces have valid empty opposites: associate spaces and
+ * opposites with our dot. */
+ for (i = 0; i < nadd; i++) {
+ tileopp = space_opposite_dot(state, toadd[i], dot);
+ add_assoc(state, toadd[i], dot);
+ add_assoc(state, tileopp, dot);
+ debug(("Added associations %d,%d and %d,%d --> %d,%d\n",
+ toadd[i]->x, toadd[i]->y,
+ tileopp->x, tileopp->y,
+ dot->x, dot->y));
+ dbg_state(state);
+ }
+ return 1;
+
+noexpand:
+ /* Otherwise, try to move dot so as to encompass given spaces: */
+ /* first, alculate the 'centre of gravity' of the new dot. */
+ nnew = dot->nassoc + nadd; /* number of tiles assoc. with new dot. */
+ cx = dot->x * dot->nassoc;
+ cy = dot->y * dot->nassoc;
+ for (i = 0; i < nadd; i++) {
+ cx += toadd[i]->x;
+ cy += toadd[i]->y;
+ }
+ /* If the CoG isn't a whole number, it's not possible. */
+ if ((cx % nnew) != 0 || (cy % nnew) != 0) {
+ debug(("Unable to move dot %d,%d, CoG not whole number.\n",
+ dot->x, dot->y));
+ return 0;
+ }
+ cx /= nnew; cy /= nnew;
+
+ /* Check whether all spaces in the old tile would have a good
+ * opposite wrt the new dot. */
+ md.olddot = dot;
+ md.newdot = &SPACE(state, cx, cy);
+ md.op = MD_CHECK;
+ ret = foreach_tile(state, movedot_cb, IMPOSSIBLE_QUITS, &md);
+ if (ret == -1) {
+ debug(("Unable to move dot %d,%d, new dot not symmetrical.\n",
+ dot->x, dot->y));
+ return 0;
+ }
+ /* Also check whether all spaces we're adding would have a good
+ * opposite wrt the new dot. */
+ for (i = 0; i < nadd; i++) {
+ tileopp = space_opposite_dot(state, toadd[i], md.newdot);
+ if (tileopp && (tileopp->flags & F_TILE_ASSOC) &&
+ (tileopp->dotx != dot->x || tileopp->doty != dot->y)) {
+ tileopp = NULL;
+ }
+ if (!tileopp) {
+ debug(("Unable to move dot %d,%d, new dot not symmetrical.\n",
+ dot->x, dot->y));
+ return 0;
+ }
+ }
+
+ /* If we've got here, we're ok. First, associate all of 'toadd'
+ * with the _old_ dot (so they'll get fixed up, with their opposites,
+ * in the next step). */
+ for (i = 0; i < nadd; i++) {
+ debug(("Associating to-add %d,%d with old dot %d,%d.\n",
+ toadd[i]->x, toadd[i]->y, dot->x, dot->y));
+ add_assoc(state, toadd[i], dot);
+ }
+
+ /* Finally, move the dot and fix up all the old associations. */
+ debug(("Moving dot at %d,%d to %d,%d\n",
+ dot->x, dot->y, md.newdot->x, md.newdot->y));
+ remove_dot(dot);
+ add_dot(md.newdot);
+
+ md.op = MD_MOVE;
+ ret = foreach_tile(state, movedot_cb, 0, &md);
+ assert(ret == 1);
+ dbg_state(state);
+
+ return 1;
+}
+
+/* Hard-code to a max. of 2x2 squares, for speed (less malloc) */
+#define MAX_TOADD 4
+#define MAX_OUTSIDE 8
+
+#define MAX_TILE_PERC 20
+
+static int generate_try_block(game_state *state, random_state *rs,
+ int x1, int y1, int x2, int y2)
+{
+ int x, y, nadd = 0, nout = 0, i, maxsz;
+ space *sp, *toadd[MAX_TOADD], *outside[MAX_OUTSIDE], *dot;
+
+ if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2)) return 0;
+
+ /* We limit the maximum size of tiles to be ~2*sqrt(area); so,
+ * a 5x5 grid shouldn't have anything >10 tiles, a 20x20 grid
+ * nothing >40 tiles. */
+ maxsz = (int)sqrt((double)(state->w * state->h)) * 2;
+ debug(("generate_try_block, maxsz %d\n", maxsz));
+
+ /* Make a static list of the spaces; if any space is already
+ * associated then quit immediately. */
+ for (x = x1; x <= x2; x += 2) {
+ for (y = y1; y <= y2; y += 2) {
+ assert(nadd < MAX_TOADD);
+ sp = &SPACE(state, x, y);
+ assert(sp->type == s_tile);
+ if (sp->flags & F_TILE_ASSOC) return 0;
+ toadd[nadd++] = sp;
+ }
+ }
+
+ /* Make a list of the spaces outside of our block, and shuffle it. */
+#define OUTSIDE(x, y) do { \
+ if (INGRID(state, (x), (y))) { \
+ assert(nout < MAX_OUTSIDE); \
+ outside[nout++] = &SPACE(state, (x), (y)); \
+ } \
+} while(0)
+ for (x = x1; x <= x2; x += 2) {
+ OUTSIDE(x, y1-2);
+ OUTSIDE(x, y2+2);
+ }
+ for (y = y1; y <= y2; y += 2) {
+ OUTSIDE(x1-2, y);
+ OUTSIDE(x2+2, y);
+ }
+ shuffle(outside, nout, sizeof(space *), rs);
+
+ for (i = 0; i < nout; i++) {
+ if (!(outside[i]->flags & F_TILE_ASSOC)) continue;
+ dot = &SPACE(state, outside[i]->dotx, outside[i]->doty);
+ if (dot->nassoc >= maxsz) {
+ debug(("Not adding to dot %d,%d, large enough (%d) already.\n",
+ dot->x, dot->y, dot->nassoc));
+ continue;
+ }
+ if (dot_expand_or_move(state, dot, toadd, nadd)) return 1;
+ }
+ return 0;
+}
+
+#ifdef STANDALONE_SOLVER
+int maxtries;
+#define MAXTRIES maxtries
+#else
+#define MAXTRIES 50
+#endif
+
+static int solver_obvious_dot(game_state *state,space *dot);
+
+#define GP_DOTS 1
+
+static void generate_pass(game_state *state, random_state *rs, int *scratch,
+ int perc, unsigned int flags)
+{
+ int sz = state->sx*state->sy, nspc, i, ret;
+
+ shuffle(scratch, sz, sizeof(int), rs);
+
+ /* This bug took me a, er, little while to track down. On PalmOS,
+ * which has 16-bit signed ints, puzzles over about 9x9 started
+ * failing to generate because the nspc calculation would start
+ * to overflow, causing the dots not to be filled in properly. */
+ nspc = (int)(((long)perc * (long)sz) / 100L);
+ debug(("generate_pass: %d%% (%d of %dx%d) squares, flags 0x%x\n",
+ perc, nspc, state->sx, state->sy, flags));
+
+ for (i = 0; i < nspc; i++) {
+ space *sp = &state->grid[scratch[i]];
+ int x1 = sp->x, y1 = sp->y, x2 = sp->x, y2 = sp->y;
+
+ if (sp->type == s_edge) {
+ if (IS_VERTICAL_EDGE(sp->x)) {
+ x1--; x2++;
+ } else {
+ y1--; y2++;
+ }
+ }
+ if (sp->type != s_vertex) {
+ /* heuristic; expanding from vertices tends to generate lots of
+ * too-big regions of tiles. */
+ if (generate_try_block(state, rs, x1, y1, x2, y2))
+ continue; /* we expanded successfully. */
+ }
+
+ if (!(flags & GP_DOTS)) continue;
+
+ if ((sp->type == s_edge) && (i % 2)) {
+ debug(("Omitting edge %d,%d as half-of.\n", sp->x, sp->y));
+ continue;
+ }
+
+ /* If we've got here we might want to put a dot down. Check
+ * if we can, and add one if so. */
+ if (dot_is_possible(state, sp, 0)) {
+ add_dot(sp);
+ ret = solver_obvious_dot(state, sp);
+ assert(ret != -1);
+ debug(("Added dot (and obvious associations) at %d,%d\n",
+ sp->x, sp->y));
+ dbg_state(state);
+ }
+ }
+ dbg_state(state);
+}
+
+static int solver_state(game_state *state, int maxdiff);
+
+static char *new_game_desc(game_params *params, random_state *rs,
+ char **aux, int interactive)
+{
+ game_state *state = blank_game(params->w, params->h), *copy;
+ char *desc;
+ int *scratch, sz = state->sx*state->sy, i;
+ int diff, ntries = 0;
+
+ /* Random list of squares to try and process, one-by-one. */
+ scratch = snewn(sz, int);
+ for (i = 0; i < sz; i++) scratch[i] = i;
+
+generate:
+ clear_game(state, 1);
+ ntries++;
+
+ //generate_pass(state, rs, scratch, 10, GP_DOTS);
+ //generate_pass(state, rs, scratch, 100, 0);
+ generate_pass(state, rs, scratch, 100, GP_DOTS);
+
+ game_update_dots(state);
+
+#ifdef DEBUGGING
+ {
+ char *tmp = encode_game(state);
+ debug(("new_game_desc state %dx%d:%s\n", params->w, params->h, tmp));
+ sfree(tmp);
+ }
+#endif
+
+ copy = dup_game(state);
+ clear_game(copy, 0);
+ dbg_state(copy);
+ diff = solver_state(copy, params->diff);
+ free_game(copy);
+
+ assert(diff != DIFF_IMPOSSIBLE);
+ if (diff != params->diff) {
+ if (ntries < MAXTRIES) goto generate;
+ }
+
+ desc = encode_game(state);
+#ifndef STANDALONE_SOLVER
+ debug(("new_game_desc generated: \n"));
+ dbg_state(state);
+#endif
+
+ free_game(state);
+ sfree(scratch);
+
+ return desc;
+}
+
+static int solver_obvious(game_state *state);
+
+static int dots_too_close(game_state *state)
+{
+ /* Quick-and-dirty check, using half the solver:
+ * solver_obvious will only fail if the dots are
+ * too close together, so dot-proximity associations
+ * overlap. */
+ game_state *tmp = dup_game(state);
+ int ret = solver_obvious(tmp);
+ free_game(tmp);
+ return (ret == -1) ? 1 : 0;
+}
+
+static game_state *load_game(game_params *params, char *desc,
+ char **why_r)
+{
+ game_state *state = blank_game(params->w, params->h);
+ char *why = NULL;
+ int i, x, y, n;
+ unsigned int df;
+
+ i = 0;
+ while (*desc) {
+ n = *desc++;
+ if (n == 'z') {
+ i += 25;
+ continue;
+ }
+ if (n >= 'a' && n <= 'y') {
+ i += n - 'a';
+ df = 0;
+ } else if (n >= 'A' && n <= 'Y') {
+ i += n - 'A';
+ df = F_DOT_BLACK;
+ } else {
+ why = "Invalid characters in game description"; goto fail;
+ }
+ /* if we got here we incremented i and have a dot to add. */
+ y = (i / (state->sx-2)) + 1;
+ x = (i % (state->sx-2)) + 1;
+ if (!INUI(state, x, y)) {
+ why = "Too much data to fit in grid"; goto fail;
+ }
+ add_dot(&SPACE(state, x, y));
+ SPACE(state, x, y).flags |= df;
+ i++;
+ }
+ game_update_dots(state);
+
+ if (dots_too_close(state)) {
+ why = "Dots too close together"; goto fail;
+ }
+
+ return state;
+
+fail:
+ free_game(state);
+ if (why_r) *why_r = why;
+ return NULL;
+}
+
+static char *validate_desc(game_params *params, char *desc)
+{
+ char *why = NULL;
+ game_state *dummy = load_game(params, desc, &why);
+ if (dummy) {
+ free_game(dummy);
+ assert(!why);
+ } else
+ assert(why);
+ return why;
+}
+
+static game_state *new_game(midend *me, game_params *params, char *desc)
+{
+ game_state *state = load_game(params, desc, NULL);
+ if (!state) {
+ assert("Unable to load ?validated game.");
+ return NULL;
+ }
+#ifdef EDITOR
+ state->me = me;
+#endif
+ return state;
+}
+
+/* ----------------------------------------------------------
+ * Solver and all its little wizards.
+ */
+
+int solver_recurse_depth;
+
+typedef struct solver_ctx {
+ game_state *state;
+ int sz; /* state->sx * state->sy */
+ space **scratch; /* size sz */
+
+} solver_ctx;
+
+static solver_ctx *new_solver(game_state *state)
+{
+ solver_ctx *sctx = snew(solver_ctx);
+ sctx->state = state;
+ sctx->sz = state->sx*state->sy;
+ sctx->scratch = snewn(sctx->sz, space *);
+ return sctx;
+}
+
+static void free_solver(solver_ctx *sctx)
+{
+ sfree(sctx->scratch);
+ sfree(sctx);
+}
+
+ /* Solver ideas so far:
+ *
+ * For any empty space, work out how many dots it could associate
+ * with:
+ * it needs line-of-sight
+ * it needs an empty space on the far side
+ * any adjacent lines need corresponding line possibilities.
+ */
+
+/* The solver_ctx should keep a list of dot positions, for quicker looping.
+ *
+ * Solver techniques, in order of difficulty:
+ * obvious adjacency to dots
+ * transferring tiles to opposite side
+ * transferring lines to opposite side
+ * one possible dot for a given tile based on opposite availability
+ * tile with 3 definite edges next to an associated tile must associate
+ with same dot.
+ *
+ * one possible dot for a given tile based on line-of-sight
+ */
+
+static int solver_add_assoc(game_state *state, space *tile, int dx, int dy,
+ const char *why)
+{
+ space *dot, *tile_opp;
+
+ dot = &SPACE(state, dx, dy);
+ tile_opp = space_opposite_dot(state, tile, dot);
+
+ assert(tile->type == s_tile);
+ if (tile->flags & F_TILE_ASSOC) {
+ if ((tile->dotx != dx) || (tile->doty != dy)) {
+ solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; "
+ "already --> %d,%d.\n",
+ solver_recurse_depth*4, "",
+ tile->x, tile->y, dx, dy, why,
+ tile->dotx, tile->doty));
+ return -1;
+ }
+ return 0; /* no-op */
+ }
+ if (!tile_opp) {
+ solvep(("%*s%d,%d --> %d,%d impossible, no opposite tile.\n",
+ solver_recurse_depth*4, "", tile->x, tile->y, dx, dy));
+ return -1;
+ }
+ if (tile_opp->flags & F_TILE_ASSOC &&
+ (tile_opp->dotx != dx || tile_opp->doty != dy)) {
+ solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; "
+ "opposite already --> %d,%d.\n",
+ solver_recurse_depth*4, "",
+ tile->x, tile->y, dx, dy, why,
+ tile_opp->dotx, tile_opp->doty));
+ return -1;
+ }
+
+ add_assoc(state, tile, dot);
+ add_assoc(state, tile_opp, dot);
+ solvep(("%*sSetting %d,%d --> %d,%d (%s).\n",
+ solver_recurse_depth*4, "",
+ tile->x, tile->y,dx, dy, why));
+ solvep(("%*sSetting %d,%d --> %d,%d (%s, opposite).\n",
+ solver_recurse_depth*4, "",
+ tile_opp->x, tile_opp->y, dx, dy, why));
+ return 1;
+}
+
+static int solver_obvious_dot(game_state *state, space *dot)
+{
+ int dx, dy, ret, didsth = 0;
+ space *tile;
+
+ debug(("%*ssolver_obvious_dot for %d,%d.\n",
+ solver_recurse_depth*4, "", dot->x, dot->y));
+
+ assert(dot->flags & F_DOT);
+ for (dx = -1; dx <= 1; dx++) {
+ for (dy = -1; dy <= 1; dy++) {
+ if (!INGRID(state, dot->x+dx, dot->y+dy)) continue;
+
+ tile = &SPACE(state, dot->x+dx, dot->y+dy);
+ if (tile->type == s_tile) {
+ ret = solver_add_assoc(state, tile, dot->x, dot->y,
+ "next to dot");
+ if (ret < 0) return -1;
+ if (ret > 0) didsth = 1;
+ }
+ }
+ }
+ return didsth;
+}
+
+static int solver_obvious(game_state *state)
+{
+ int i, didsth = 0, ret;
+
+ debug(("%*ssolver_obvious.\n", solver_recurse_depth*4, ""));
+
+ for (i = 0; i < state->ndots; i++) {
+ ret = solver_obvious_dot(state, state->dots[i]);
+ if (ret < 0) return -1;
+ if (ret > 0) didsth = 1;
+ }
+ return didsth;
+}
+
+static int solver_lines_opposite_cb(game_state *state, space *edge, void *ctx)
+{
+ int didsth = 0, n, dx, dy;
+ space *tiles[2], *tile_opp, *edge_opp;
+
+ assert(edge->type == s_edge);
+
+ tiles_from_edge(state, edge, tiles);
+
+ /* if tiles[0] && tiles[1] && they're both associated
+ * and they're both associated with different dots,
+ * ensure the line is set. */
+ if (!(edge->flags & F_EDGE_SET) &&
+ tiles[0] && tiles[1] &&
+ (tiles[0]->flags & F_TILE_ASSOC) &&
+ (tiles[1]->flags & F_TILE_ASSOC) &&
+ (tiles[0]->dotx != tiles[1]->dotx ||
+ tiles[0]->doty != tiles[1]->doty)) {
+ /* No edge, but the two adjacent tiles are both
+ * associated with different dots; add the edge. */
+ solvep(("%*sSetting edge %d,%d - tiles different dots.\n",
+ solver_recurse_depth*4, "", edge->x, edge->y));
+ edge->flags |= F_EDGE_SET;
+ didsth = 1;
+ }
+
+ if (!(edge->flags & F_EDGE_SET)) return didsth;
+ for (n = 0; n < 2; n++) {
+ if (!tiles[n]) continue;
+ assert(tiles[n]->type == s_tile);
+ if (!(tiles[n]->flags & F_TILE_ASSOC)) continue;
+
+ tile_opp = tile_opposite(state, tiles[n]);
+ if (!tile_opp) {
+ solvep(("%*simpossible: edge %d,%d has assoc. tile %d,%d"
+ " with no opposite.\n",
+ solver_recurse_depth*4, "",
+ edge->x, edge->y, tiles[n]->x, tiles[n]->y));
+ /* edge of tile has no opposite edge (off grid?);
+ * this is impossible. */
+ return -1;
+ }
+
+ dx = tiles[n]->x - edge->x;
+ dy = tiles[n]->y - edge->y;
+ assert(INGRID(state, tile_opp->x+dx, tile_opp->y+dy));
+ edge_opp = &SPACE(state, tile_opp->x+dx, tile_opp->y+dy);
+ if (!(edge_opp->flags & F_EDGE_SET)) {
+ solvep(("%*sSetting edge %d,%d as opposite %d,%d\n",
+ solver_recurse_depth*4, "",
+ tile_opp->x-dx, tile_opp->y-dy, edge->x, edge->y));
+ edge_opp->flags |= F_EDGE_SET;
+ didsth = 1;
+ }
+ }
+ return didsth;
+}
+
+static int solver_spaces_oneposs_cb(game_state *state, space *tile, void *ctx)
+{
+ int n, eset, ret;
+ struct space *edgeadj[4], *tileadj[4];
+ int dotx, doty;
+
+ assert(tile->type == s_tile);
+ if (tile->flags & F_TILE_ASSOC) return 0;
+
+ adjacencies(state, tile, edgeadj, tileadj);
+
+ /* Empty tile. If each edge is either set, or associated with
+ * the same dot, we must also associate with dot. */
+ eset = 0; dotx = -1; doty = -1;
+ for (n = 0; n < 4; n++) {
+ assert(edgeadj[n]);
+ assert(edgeadj[n]->type == s_edge);
+ if (edgeadj[n]->flags & F_EDGE_SET) {
+ eset++;
+ } else {
+ assert(tileadj[n]);
+ assert(tileadj[n]->type == s_tile);
+
+ /* If an adjacent tile is empty we can't make any deductions.*/
+ if (!(tileadj[n]->flags & F_TILE_ASSOC))
+ return 0;
+
+ /* If an adjacent tile is assoc. with a different dot
+ * we can't make any deductions. */
+ if (dotx != -1 && doty != -1 &&
+ (tileadj[n]->dotx != dotx ||
+ tileadj[n]->doty != doty))
+ return 0;
+
+ dotx = tileadj[n]->dotx;
+ doty = tileadj[n]->doty;
+ }
+ }
+ if (eset == 4) {
+ solvep(("%*simpossible: empty tile %d,%d has 4 edges\n",
+ solver_recurse_depth*4, "",
+ tile->x, tile->y));
+ return -1;
+ }
+ assert(dotx != -1 && doty != -1);
+
+ ret = solver_add_assoc(state, tile, dotx, doty, "rest are edges");
+ if (ret == -1) return -1;
+ assert(ret != 0); /* really should have done something. */
+
+ return 1;
+}
+
+/* Improved algorithm for tracking line-of-sight from dots, and not spaces.
+ *
+ * The solver_ctx already stores a list of dots: the algorithm proceeds by
+ * expanding outwards from each dot in turn, expanding first to the boundary
+ * of its currently-connected tile and then to all empty tiles that could see
+ * it. Empty tiles will be flagged with a 'can see dot <x,y>' sticker.
+ *
+ * Expansion will happen by (symmetrically opposite) pairs of squares; if
+ * a square hasn't an opposite number there's no point trying to expand through
+ * it. Empty tiles will therefore also be tagged in pairs.
+ *
+ * If an empty tile already has a 'can see dot <x,y>' tag from a previous dot,
+ * it (and its partner) gets untagged (or, rather, a 'can see two dots' tag)
+ * because we're looking for single-dot possibilities.
+ *
+ * Once we've gone through all the dots, any which still have a 'can see dot'
+ * tag get associated with that dot (because it must have been the only one);
+ * any without any tag (i.e. that could see _no_ dots) cause an impossibility
+ * marked.
+ *
+ * The expansion will happen each time with a stored list of (space *) pairs,
+ * rather than a mark-and-sweep idea; that's horrifically inefficient.
+ *
+ * expansion algorithm:
+ *
+ * * allocate list of (space *) the size of s->sx*s->sy.
+ * * allocate second grid for (flags, dotx, doty) size of sx*sy.
+ *
+ * clear second grid (flags = 0, all dotx and doty = 0)
+ * flags: F_REACHABLE, F_MULTIPLE
+ *
+ *
+ * * for each dot, start with one pair of tiles that are associated with it --
+ * * vertex --> (dx+1, dy+1), (dx-1, dy-1)
+ * * edge --> (adj1, adj2)
+ * * tile --> (tile, tile) ???
+ * * mark that pair of tiles with F_MARK, clear all other F_MARKs.
+ * * add two tiles to start of list.
+ *
+ * set start = 0, end = next = 2
+ *
+ * from (start to end-1, step 2) {
+ * * we have two tiles (t1, t2), opposites wrt our dot.
+ * * for each (at1) sensible adjacent tile to t1 (i.e. not past an edge):
+ * * work out at2 as the opposite to at1
+ * * assert at1 and at2 have the same F_MARK values.
+ * * if at1 & F_MARK ignore it (we've been there on a previous sweep)
+ * * if either are associated with a different dot
+ * * mark both with F_MARK (so we ignore them later)
+ * * otherwise (assoc. with our dot, or empty):
+ * * mark both with F_MARK
+ * * add their space * values to the end of the list, set next += 2.
+ * }
+ *
+ * if (end == next)
+ * * we didn't add any new squares; exit the loop.
+ * else
+ * * set start = next+1, end = next. go round again
+ *
+ * We've finished expanding from the dot. Now, for each square we have
+ * in our list (--> each square with F_MARK):
+ * * if the tile is empty:
+ * * if F_REACHABLE was already set
+ * * set F_MULTIPLE
+ * * otherwise
+ * * set F_REACHABLE, set dotx and doty to our dot.
+ *
+ * Then, continue the whole thing for each dot in turn.
+ *
+ * Once we've done for each dot, go through the entire grid looking for
+ * empty tiles: for each empty tile:
+ * if F_REACHABLE and not F_MULTIPLE, set that dot (and its double)
+ * if !F_REACHABLE, return as impossible.
+ *
+ */
+
+/* Returns 1 if this tile is either already associated with this dot,
+ * or blank. */
+static int solver_expand_checkdot(space *tile, space *dot)
+{
+ if (!(tile->flags & F_TILE_ASSOC)) return 1;
+ if (tile->dotx == dot->x && tile->doty == dot->y) return 1;
+ return 0;
+}
+
+static void solver_expand_fromdot(game_state *state, space *dot, solver_ctx *sctx)
+{
+ int i, j, x, y, start, end, next;
+ space *sp;
+
+ /* Clear the grid of the (space) flags we'll use. */
+
+ /* This is well optimised; analysis showed that:
+ for (i = 0; i < sctx->sz; i++) state->grid[i].flags &= ~F_MARK;
+ took up ~85% of the total function time! */
+ for (y = 1; y < state->sy; y += 2) {
+ sp = &SPACE(state, 1, y);
+ for (x = 1; x < state->sx; x += 2, sp += 2)
+ sp->flags &= ~F_MARK;
+ }
+
+ /* Seed the list of marked squares with two that must be associated
+ * with our dot (possibly the same space) */
+ if (dot->type == s_tile) {
+ sctx->scratch[0] = sctx->scratch[1] = dot;
+ } else if (dot->type == s_edge) {
+ tiles_from_edge(state, dot, sctx->scratch);
+ } else if (dot->type == s_vertex) {
+ /* pick two of the opposite ones arbitrarily. */
+ sctx->scratch[0] = &SPACE(state, dot->x-1, dot->y-1);
+ sctx->scratch[1] = &SPACE(state, dot->x+1, dot->y+1);
+ }
+ assert(sctx->scratch[0]->flags & F_TILE_ASSOC);
+ assert(sctx->scratch[1]->flags & F_TILE_ASSOC);
+
+ sctx->scratch[0]->flags |= F_MARK;
+ sctx->scratch[1]->flags |= F_MARK;
+
+ debug(("%*sexpand from dot %d,%d seeded with %d,%d and %d,%d.\n",
+ solver_recurse_depth*4, "", dot->x, dot->y,
+ sctx->scratch[0]->x, sctx->scratch[0]->y,
+ sctx->scratch[1]->x, sctx->scratch[1]->y));
+
+ start = 0; end = 2; next = 2;
+
+expand:
+ debug(("%*sexpand: start %d, end %d, next %d\n",
+ solver_recurse_depth*4, "", start, end, next));
+ for (i = start; i < end; i += 2) {
+ space *t1 = sctx->scratch[i]/*, *t2 = sctx->scratch[i+1]*/;
+ space *edges[4], *tileadj[4], *tileadj2;
+
+ adjacencies(state, t1, edges, tileadj);
+
+ for (j = 0; j < 4; j++) {
+ assert(edges[j]);
+ if (edges[j]->flags & F_EDGE_SET) continue;
+ assert(tileadj[j]);
+
+ if (tileadj[j]->flags & F_MARK) continue; /* seen before. */
+
+ /* We have a tile adjacent to t1; find its opposite. */
+ tileadj2 = space_opposite_dot(state, tileadj[j], dot);
+ if (!tileadj2) {
+ debug(("%*sMarking %d,%d, no opposite.\n",
+ solver_recurse_depth*4, "",
+ tileadj[j]->x, tileadj[j]->y));
+ tileadj[j]->flags |= F_MARK;
+ continue; /* no opposite, so mark for next time. */
+ }
+ /* If the tile had an opposite we should have either seen both of
+ * these, or neither of these, before. */
+ assert(!(tileadj2->flags & F_MARK));
+
+ if (solver_expand_checkdot(tileadj[j], dot) &&
+ solver_expand_checkdot(tileadj2, dot)) {
+ /* Both tiles could associate with this dot; add them to
+ * our list. */
+ debug(("%*sAdding %d,%d and %d,%d to possibles list.\n",
+ solver_recurse_depth*4, "",
+ tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y));
+ sctx->scratch[next++] = tileadj[j];
+ sctx->scratch[next++] = tileadj2;
+ }
+ /* Either way, we've seen these tiles already so mark them. */
+ debug(("%*sMarking %d,%d and %d,%d.\n",
+ solver_recurse_depth*4, "",
+ tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y));
+ tileadj[j]->flags |= F_MARK;
+ tileadj2->flags |= F_MARK;
+ }
+ }
+ if (next > end) {
+ /* We added more squares; go back and try again. */
+ start = end; end = next; goto expand;
+ }
+
+ /* We've expanded as far as we can go. Now we update the main flags
+ * on all tiles we've expanded into -- if they were empty, we have
+ * found possible associations for this dot. */
+ for (i = 0; i < end; i++) {
+ if (sctx->scratch[i]->flags & F_TILE_ASSOC) continue;
+ if (sctx->scratch[i]->flags & F_REACHABLE) {
+ /* This is (at least) the second dot this tile could
+ * associate with. */
+ debug(("%*sempty tile %d,%d could assoc. other dot %d,%d\n",
+ solver_recurse_depth*4, "",
+ sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y));
+ sctx->scratch[i]->flags |= F_MULTIPLE;
+ } else {
+ /* This is the first (possibly only) dot. */
+ debug(("%*sempty tile %d,%d could assoc. 1st dot %d,%d\n",
+ solver_recurse_depth*4, "",
+ sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y));
+ sctx->scratch[i]->flags |= F_REACHABLE;
+ sctx->scratch[i]->dotx = dot->x;
+ sctx->scratch[i]->doty = dot->y;
+ }
+ }
+ dbg_state(state);
+}
+
+static int solver_expand_postcb(game_state *state, space *tile, void *ctx)
+{
+ assert(tile->type == s_tile);
+
+ if (tile->flags & F_TILE_ASSOC) return 0;
+
+ if (!(tile->flags & F_REACHABLE)) {
+ solvep(("%*simpossible: space (%d,%d) can reach no dots.\n",
+ solver_recurse_depth*4, "", tile->x, tile->y));
+ return -1;
+ }
+ if (tile->flags & F_MULTIPLE) return 0;
+
+ return solver_add_assoc(state, tile, tile->dotx, tile->doty,
+ "single possible dot after expansion");
+}
+
+static int solver_expand_dots(game_state *state, solver_ctx *sctx)
+{
+ int i;
+
+ for (i = 0; i < sctx->sz; i++)
+ state->grid[i].flags &= ~(F_REACHABLE|F_MULTIPLE);
+
+ for (i = 0; i < state->ndots; i++)
+ solver_expand_fromdot(state, state->dots[i], sctx);
+
+ return foreach_tile(state, solver_expand_postcb, IMPOSSIBLE_QUITS, sctx);
+}
+
+struct recurse_ctx {
+ space *best;
+ int bestn;
+};
+
+static int solver_recurse_cb(game_state *state, space *tile, void *ctx)
+{
+ struct recurse_ctx *rctx = (struct recurse_ctx *)ctx;
+ int i, n = 0;
+
+ assert(tile->type == s_tile);
+ if (tile->flags & F_TILE_ASSOC) return 0;
+
+ /* We're unassociated: count up all the dots we could associate with. */
+ for (i = 0; i < state->ndots; i++) {
+ if (dotfortile(state, tile, state->dots[i]))
+ n++;
+ }
+ if (n > rctx->bestn) {
+ rctx->bestn = n;
+ rctx->best = tile;
+ }
+ return 0;
+}
+
+static int solver_state(game_state *state, int maxdiff);
+
+#define MAXRECURSE 5
+
+static int solver_recurse(game_state *state, int maxdiff)
+{
+ int diff = DIFF_IMPOSSIBLE, ret, n, gsz = state->sx * state->sy;
+ space *ingrid, *outgrid = NULL, *bestopp;
+ struct recurse_ctx rctx;
+
+ if (solver_recurse_depth >= MAXRECURSE) {
+ solvep(("Limiting recursion to %d, returning.", MAXRECURSE));
+ return DIFF_UNFINISHED;
+ }
+
+ /* Work out the cell to recurse on; go through all unassociated tiles
+ * and find which one has the most possible dots it could associate
+ * with. */
+ rctx.best = NULL;
+ rctx.bestn = 0;
+
+ foreach_tile(state, solver_recurse_cb, 0, &rctx);
+ if (rctx.bestn == 0) return DIFF_IMPOSSIBLE; /* or assert? */
+ assert(rctx.best);
+
+ solvep(("%*sRecursing around %d,%d, with %d possible dots.\n",
+ solver_recurse_depth*4, "",
+ rctx.best->x, rctx.best->y, rctx.bestn));
+
+#ifdef STANDALONE_SOLVER
+ solver_recurse_depth++;
+#endif
+
+ ingrid = snewn(gsz, struct space);
+ memcpy(ingrid, state->grid, gsz * sizeof(struct space));
+
+ for (n = 0; n < state->ndots; n++) {
+ memcpy(state->grid, ingrid, gsz * sizeof(struct space));
+
+ if (!dotfortile(state, rctx.best, state->dots[n])) continue;
+
+ /* set cell (temporarily) pointing to that dot. */
+ solver_add_assoc(state, rctx.best,
+ state->dots[n]->x, state->dots[n]->y,
+ "Attempting for recursion");
+
+ ret = solver_state(state, maxdiff);
+
+ if (diff == DIFF_IMPOSSIBLE && ret != DIFF_IMPOSSIBLE) {
+ /* we found our first solved grid; copy it away. */
+ assert(!outgrid);
+ outgrid = snewn(gsz, struct space);
+ memcpy(outgrid, state->grid, gsz * sizeof(struct space));
+ }
+ /* reset cell back to unassociated. */
+ bestopp = tile_opposite(state, rctx.best);
+ assert(bestopp && bestopp->flags & F_TILE_ASSOC);
+
+ remove_assoc(state, rctx.best);
+ remove_assoc(state, bestopp);
+
+ if (ret == DIFF_AMBIGUOUS || ret == DIFF_UNFINISHED)
+ diff = ret;
+ else if (ret == DIFF_IMPOSSIBLE)
+ /* no change */;
+ else {
+ /* precisely one solution */
+ if (diff == DIFF_IMPOSSIBLE)
+ diff = DIFF_RECURSIVE;
+ else
+ diff = DIFF_AMBIGUOUS;
+ }
+ /* if we've found >1 solution, or ran out of recursion,
+ * give up immediately. */
+ if (diff == DIFF_AMBIGUOUS || diff == DIFF_UNFINISHED)
+ break;
+ }
+
+#ifdef STANDALONE_SOLVER
+ solver_recurse_depth--;
+#endif
+
+ if (outgrid) {
+ /* we found (at least one) soln; copy it back to state */
+ memcpy(state->grid, outgrid, gsz * sizeof(struct space));
+ sfree(outgrid);
+ }
+ sfree(ingrid);
+ return diff;
+}
+
+static int solver_state(game_state *state, int maxdiff)
+{
+ solver_ctx *sctx = new_solver(state);
+ int ret, diff = DIFF_EASY;
+
+ ret = solver_obvious(state);
+ if (ret < 0) {
+ diff = DIFF_IMPOSSIBLE;
+ goto got_result;
+ }
+
+#define CHECKRET(d) do { \
+ if (ret < 0) { diff = DIFF_IMPOSSIBLE; goto got_result; } \
+ if (ret > 0) { diff = max(diff, (d)); goto cont; } \
+} while(0)
+
+ while (1) {
+cont:
+ ret = foreach_edge(state, solver_lines_opposite_cb,
+ IMPOSSIBLE_QUITS, sctx);
+ CHECKRET(DIFF_EASY);
+
+ ret = foreach_tile(state, solver_spaces_oneposs_cb,
+ IMPOSSIBLE_QUITS, sctx);
+ CHECKRET(DIFF_EASY);
+
+ /* more easy stuff? */
+
+ if (maxdiff <= DIFF_EASY)
+ break;
+
+ ret = solver_expand_dots(state, sctx);
+ CHECKRET(DIFF_HARD);
+
+ if (maxdiff <= DIFF_HARD)
+ break;
+
+ /* harder still? */
+
+ /* if we reach here, we've made no deductions, so we terminate. */
+ break;
+ }
+
+ if (check_complete(state, 0)) goto got_result;
+
+ diff = (maxdiff >= DIFF_RECURSIVE) ?
+ solver_recurse(state, maxdiff) : DIFF_UNFINISHED;
+
+got_result:
+ free_solver(sctx);
+#ifndef STANDALONE_SOLVER
+ debug(("solver_state ends:\n"));
+ dbg_state(state);
+#endif
+
+ return diff;
+}
+
+#ifndef EDITOR
+static char *solve_game(game_state *state, game_state *currstate,
+ char *aux, char **error)
+{
+ game_state *tosolve;
+ char *ret;
+ int i;
+ int diff;
+
+ tosolve = dup_game(currstate);
+ diff = solver_state(tosolve, DIFF_RECURSIVE);
+ if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) {
+ debug(("solve_game solved with current state.\n"));
+ goto solved;
+ }
+ free_game(tosolve);
+
+ tosolve = dup_game(state);
+ diff = solver_state(tosolve, DIFF_RECURSIVE);
+ if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) {
+ debug(("solve_game solved with original state.\n"));
+ goto solved;
+ }
+ free_game(tosolve);
+
+ return NULL;
+
+solved:
+ /*
+ * Clear tile associations: the solution will only include the
+ * edges.
+ */
+ for (i = 0; i < tosolve->sx*tosolve->sy; i++)
+ tosolve->grid[i].flags &= ~F_TILE_ASSOC;
+ ret = diff_game(currstate, tosolve, 1);
+ free_game(tosolve);
+ return ret;
+}
+#endif
+
+/* ----------------------------------------------------------
+ * User interface.
+ */
+
+struct game_ui {
+ int dragging;
+ int dx, dy; /* pixel coords of drag pos. */
+ int dotx, doty; /* grid coords of dot we're dragging from. */
+ int srcx, srcy; /* grid coords of drag start */
+};
+
+static game_ui *new_ui(game_state *state)
+{
+ game_ui *ui = snew(game_ui);
+ ui->dragging = FALSE;
+ return ui;
+}
+
+static void free_ui(game_ui *ui)
+{
+ sfree(ui);
+}
+
+static char *encode_ui(game_ui *ui)
+{
+ return NULL;
+}
+
+static void decode_ui(game_ui *ui, char *encoding)
+{
+}
+
+static void game_changed_state(game_ui *ui, game_state *oldstate,
+ game_state *newstate)
+{
+}
+
+#define FLASH_TIME 0.15F
+
+#define PREFERRED_TILE_SIZE 32
+#define TILE_SIZE (ds->tilesize)
+#define DOT_SIZE (TILE_SIZE / 4)
+#define EDGE_THICKNESS (TILE_SIZE / 16)
+#define BORDER TILE_SIZE
+
+#define COORD(x) ( (x) * TILE_SIZE + BORDER )
+#define SCOORD(x) ( ((x) * TILE_SIZE)/2 + BORDER )
+#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
+
+#define DRAW_WIDTH (BORDER * 2 + ds->w * TILE_SIZE)
+#define DRAW_HEIGHT (BORDER * 2 + ds->h * TILE_SIZE)
+
+struct game_drawstate {
+ int started;
+ int w, h;
+ int tilesize;
+ unsigned long *grid;
+ int *dx, *dy;
+ blitter *bl;
+
+ int dragging, dragx, dragy;
+
+ int *colour_scratch;
+};
+
+#define CORNER_TOLERANCE 0.15F
+#define CENTRE_TOLERANCE 0.15F
+
+/*
+ * Round FP coordinates to the centre of the nearest edge.
+ */
+#ifndef EDITOR
+static void coord_round_to_edge(float x, float y, int *xr, int *yr)
+{
+ float xs, ys, xv, yv, dx, dy;
+
+ /*
+ * Find the nearest square-centre.
+ */
+ xs = (float)floor(x) + 0.5F;
+ ys = (float)floor(y) + 0.5F;
+
+ /*
+ * Find the nearest grid vertex.
+ */
+ xv = (float)floor(x + 0.5F);
+ yv = (float)floor(y + 0.5F);
+
+ /*
+ * Determine whether the horizontal or vertical edge from that
+ * vertex alongside that square is closer to us, by comparing
+ * distances from the square cente.
+ */
+ dx = (float)fabs(x - xs);
+ dy = (float)fabs(y - ys);
+ if (dx > dy) {
+ /* Vertical edge: x-coord of corner,
+ * y-coord of square centre. */
+ *xr = 2 * (int)xv;
+ *yr = 1 + 2 * (int)floor(ys);
+ } else {
+ /* Horizontal edge: x-coord of square centre,
+ * y-coord of corner. */
+ *xr = 1 + 2 * (int)floor(xs);
+ *yr = 2 * (int)yv;
+ }
+}
+#endif
+
+#ifdef EDITOR
+static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
+ int x, int y, int button)
+{
+ char buf[80];
+ int px, py;
+ struct space *sp;
+
+ px = 2*FROMCOORD((float)x) + 0.5;
+ py = 2*FROMCOORD((float)y) + 0.5;
+
+ state->cdiff = -1;
+
+ if (button == 'C' || button == 'c') return dupstr("C");
+
+ if (button == 'S' || button == 's') {
+ char *ret;
+ game_state *tmp = dup_game(state);
+ state->cdiff = solver_state(tmp, DIFF_RECURSIVE-1);
+ ret = diff_game(state, tmp, 0);
+ free_game(tmp);
+ return ret;
+ }
+
+ if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
+ if (!INUI(state, px, py)) return NULL;
+ sp = &SPACE(state, px, py);
+ if (!dot_is_possible(state, sp, 1)) return NULL;
+ sprintf(buf, "%c%d,%d",
+ (char)((button == LEFT_BUTTON) ? 'D' : 'd'), px, py);
+ return dupstr(buf);
+ }
+
+ return NULL;
+}
+#else
+static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
+ int x, int y, int button)
+{
+ /* UI operations (play mode):
+ *
+ * Toggle edge (set/unset) (left-click on edge)
+ * Associate space with dot (left-drag from dot)
+ * Unassociate space (left-drag from space off grid)
+ * Autofill lines around shape? (right-click?)
+ *
+ * (edit mode; will clear all lines/associations)
+ *
+ * Add or remove dot (left-click)
+ */
+ char buf[80];
+ const char *sep;
+ int px, py;
+ struct space *sp, *dot;
+
+ if (button == 'H' || button == 'h' ||
+ button == 'S' || button == 's') {
+ char *ret;
+ game_state *tmp = dup_game(state);
+ if (button == 'H' || button == 'h')
+ solver_obvious(tmp);
+ else
+ solver_state(tmp, DIFF_RECURSIVE-1);
+ ret = diff_game(state, tmp, 0);
+ free_game(tmp);
+ return ret;
+ }
+
+ if (button == LEFT_BUTTON) {
+ coord_round_to_edge(FROMCOORD((float)x), FROMCOORD((float)y),
+ &px, &py);
+
+ if (!INUI(state, px, py)) return NULL;
+
+ sp = &SPACE(state, px, py);
+ assert(sp->type == s_edge);
+ {
+ sprintf(buf, "E%d,%d", px, py);
+ return dupstr(buf);
+ }
+ } else if (button == RIGHT_BUTTON) {
+ int px1, py1;
+
+ px = 2*FROMCOORD((float)x) + 0.5;
+ py = 2*FROMCOORD((float)y) + 0.5;
+
+ dot = NULL;
+
+ /*
+ * If there's a dot anywhere nearby, we pick up an arrow
+ * pointing at that dot.
+ */
+ for (py1 = py-1; py1 <= py+1; py1++)
+ for (px1 = px-1; px1 <= px+1; px1++) {
+ if (px1 >= 0 && px1 < state->sx &&
+ py1 >= 0 && py1 < state->sx &&
+ x >= SCOORD(px1-1) && x < SCOORD(px1+1) &&
+ y >= SCOORD(py1-1) && y < SCOORD(py1+1) &&
+ SPACE(state, px1, py1).flags & F_DOT) {
+ /*
+ * Found a dot. Begin a drag from it.
+ */
+ dot = &SPACE(state, px1, py1);
+ ui->srcx = px;
+ ui->srcy = py;
+ goto done; /* multi-level break */
+ }
+ }
+
+ /*
+ * Otherwise, find the nearest _square_, and pick up the
+ * same arrow as it's got on it, if any.
+ */
+ if (!dot) {
+ px = 2*FROMCOORD(x+TILE_SIZE) - 1;
+ py = 2*FROMCOORD(y+TILE_SIZE) - 1;
+ if (px >= 0 && px < state->sx && py >= 0 && py < state->sx) {
+ sp = &SPACE(state, px, py);
+ if (sp->flags & F_TILE_ASSOC) {
+ dot = &SPACE(state, sp->dotx, sp->doty);
+ ui->srcx = px;
+ ui->srcy = py;
+ }
+ }
+ }
+
+ done:
+ /*
+ * Now, if we've managed to find a dot, begin a drag.
+ */
+ if (dot) {
+ ui->dragging = TRUE;
+ ui->dx = x;
+ ui->dy = y;
+ ui->dotx = dot->x;
+ ui->doty = dot->y;
+ return "";
+ }
+ } else if (button == RIGHT_DRAG && ui->dragging) {
+ /* just move the drag coords. */
+ ui->dx = x;
+ ui->dy = y;
+ return "";
+ } else if (button == RIGHT_RELEASE && ui->dragging) {
+ ui->dragging = FALSE;
+
+ /*
+ * Drags are always targeted at a single square.
+ */
+ px = 2*FROMCOORD(x+TILE_SIZE) - 1;
+ py = 2*FROMCOORD(y+TILE_SIZE) - 1;
+
+ /*
+ * Dragging an arrow on to the same square it started from
+ * is a null move; just update the ui and finish.
+ */
+ if (px == ui->srcx && py == ui->srcy)
+ return "";
+
+ sep = "";
+ buf[0] = '\0';
+
+ /*
+ * Otherwise, we remove the arrow from its starting
+ * square if we didn't start from a dot...
+ */
+ if ((ui->srcx != ui->dotx || ui->srcy != ui->doty) &&
+ SPACE(state, ui->srcx, ui->srcy).flags & F_TILE_ASSOC) {
+ sprintf(buf + strlen(buf), "%sU%d,%d", sep, ui->srcx, ui->srcy);
+ sep = ";";
+ }
+
+ /*
+ * ... and if the square we're moving it _to_ is valid, we
+ * add one there instead.
+ */
+ if (INUI(state, px, py)) {
+ sp = &SPACE(state, px, py);
+
+ if (!(sp->flags & F_DOT) && !(sp->flags & F_TILE_ASSOC))
+ sprintf(buf + strlen(buf), "%sA%d,%d,%d,%d",
+ sep, px, py, ui->dotx, ui->doty);
+ }
+
+ if (buf[0])
+ return dupstr(buf);
+ else
+ return "";
+ }
+
+ return NULL;
+}
+#endif
+
+static int check_complete_in_play(game_state *state, int *dsf, int *colours)
+{
+ int w = state->w, h = state->h;
+ int x, y, i, ret;
+
+ int free_dsf;
+ struct sqdata {
+ int minx, miny, maxx, maxy;
+ int cx, cy;
+ int valid, colour;
+ } *sqdata;
+
+ if (!dsf) {
+ dsf = snew_dsf(w*h);
+ free_dsf = TRUE;
+ } else {
+ dsf_init(dsf, w*h);
+ free_dsf = FALSE;
+ }
+
+ /*
+ * During actual game play, completion checking is done on the
+ * basis of the edges rather than the square associations. So
+ * first we must go through the grid figuring out the connected
+ * components into which the edges divide it.
+ */
+ for (y = 0; y < h; y++)
+ for (x = 0; x < w; x++) {
+ if (y+1 < h && !(SPACE(state, 2*x+1, 2*y+2).flags & F_EDGE_SET))
+ dsf_merge(dsf, y*w+x, (y+1)*w+x);
+ if (x+1 < w && !(SPACE(state, 2*x+2, 2*y+1).flags & F_EDGE_SET))
+ dsf_merge(dsf, y*w+x, y*w+(x+1));
+ }
+
+ /*
+ * That gives us our connected components. Now, for each
+ * component, decide whether it's _valid_. A valid component is
+ * one which:
+ *
+ * - is 180-degree rotationally symmetric
+ * - has a dot at its centre of symmetry
+ * - has no other dots anywhere within it (including on its
+ * boundary)
+ * - contains no internal edges (i.e. edges separating two
+ * squares which are both part of the component).
+ */
+
+ /*
+ * First, go through the grid finding the bounding box of each
+ * component.
+ */
+ sqdata = snewn(w*h, struct sqdata);
+ for (i = 0; i < w*h; i++) {
+ sqdata[i].minx = w+1;
+ sqdata[i].miny = h+1;
+ sqdata[i].maxx = sqdata[i].maxy = -1;
+ sqdata[i].valid = FALSE;
+ }
+ for (y = 0; y < h; y++)
+ for (x = 0; x < w; x++) {
+ i = dsf_canonify(dsf, y*w+x);
+ if (sqdata[i].minx > x)
+ sqdata[i].minx = x;
+ if (sqdata[i].maxx < x)
+ sqdata[i].maxx = x;
+ if (sqdata[i].miny > y)
+ sqdata[i].miny = y;
+ if (sqdata[i].maxy < y)
+ sqdata[i].maxy = y;
+ sqdata[i].valid = TRUE;
+ }
+
+ /*
+ * Now we're in a position to loop over each actual component
+ * and figure out where its centre of symmetry has to be if
+ * it's anywhere.
+ */
+ for (i = 0; i < w*h; i++)
+ if (sqdata[i].valid) {
+ sqdata[i].cx = sqdata[i].minx + sqdata[i].maxx + 1;
+ sqdata[i].cy = sqdata[i].miny + sqdata[i].maxy + 1;
+ if (!(SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT))
+ sqdata[i].valid = FALSE; /* no dot at centre of symmetry */
+ if (SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT_BLACK)
+ sqdata[i].colour = 2;
+ else
+ sqdata[i].colour = 1;
+ }
+
+ /*
+ * Now we loop over the whole grid again, this time finding
+ * extraneous dots (any dot which wholly or partially overlaps
+ * a square and is not at the centre of symmetry of that
+ * square's component disqualifies the component from validity)
+ * and extraneous edges (any edge separating two squares
+ * belonging to the same component also disqualifies that
+ * component).
+ */
+ for (y = 1; y < state->sy-1; y++)
+ for (x = 1; x < state->sx-1; x++) {
+ space *sp = &SPACE(state, x, y);
+
+ if (sp->flags & F_DOT) {
+ /*
+ * There's a dot here. Use it to disqualify any
+ * component which deserves it.
+ */
+ int cx, cy;
+ for (cy = (y-1) >> 1; cy <= y >> 1; cy++)
+ for (cx = (x-1) >> 1; cx <= x >> 1; cx++) {
+ i = dsf_canonify(dsf, cy*w+cx);
+ if (x != sqdata[i].cx || y != sqdata[i].cy)
+ sqdata[i].valid = FALSE;
+ }
+ }
+
+ if (sp->flags & F_EDGE_SET) {
+ /*
+ * There's an edge here. Use it to disqualify a
+ * component if necessary.
+ */
+ int cx1 = (x-1) >> 1, cx2 = x >> 1;
+ int cy1 = (y-1) >> 1, cy2 = y >> 1;
+ assert((cx1==cx2) ^ (cy1==cy2));
+ i = dsf_canonify(dsf, cy1*w+cx1);
+ if (i == dsf_canonify(dsf, cy2*w+cx2))
+ sqdata[i].valid = FALSE;
+ }
+ }
+
+ /*
+ * And finally we test rotational symmetry: for each square in
+ * the grid, find which component it's in, test that that
+ * component also has a square in the symmetric position, and
+ * disqualify it if it doesn't.
+ */
+ for (y = 0; y < h; y++)
+ for (x = 0; x < w; x++) {
+ int x2, y2;
+
+ i = dsf_canonify(dsf, y*w+x);
+
+ x2 = sqdata[i].cx - 1 - x;
+ y2 = sqdata[i].cy - 1 - y;
+ if (i != dsf_canonify(dsf, y2*w+x2))
+ sqdata[i].valid = FALSE;
+ }
+
+ /*
+ * That's it. We now have all the connected components marked
+ * as valid or not valid. So now we return a `colours' array if
+ * we were asked for one, and also we return an overall
+ * true/false value depending on whether _every_ square in the
+ * grid is part of a valid component.
+ */
+ ret = TRUE;
+ for (i = 0; i < w*h; i++) {
+ int ci = dsf_canonify(dsf, i);
+ int thisok = sqdata[ci].valid;
+ if (colours)
+ colours[i] = thisok ? sqdata[ci].colour : 0;
+ ret = ret && thisok;
+ }
+
+ sfree(sqdata);
+ if (free_dsf)
+ sfree(dsf);
+
+ return ret;
+}
+
+static game_state *execute_move(game_state *state, char *move)
+{
+ int x, y, ax, ay, n, dx, dy;
+ game_state *ret = dup_game(state);
+ struct space *sp, *dot;
+
+ debug(("%s\n", move));
+
+ while (*move) {
+ char c = *move;
+ if (c == 'E' || c == 'U' || c == 'M'
+#ifdef EDITOR
+ || c == 'D' || c == 'd'
+#endif
+ ) {
+ move++;
+ if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
+ !INUI(state, x, y))
+ goto badmove;
+
+ sp = &SPACE(ret, x, y);
+#ifdef EDITOR
+ if (c == 'D' || c == 'd') {
+ unsigned int currf, newf, maskf;
+
+ if (!dot_is_possible(state, sp, 1)) goto badmove;
+
+ newf = F_DOT | (c == 'd' ? F_DOT_BLACK : 0);
+ currf = GRID(ret, grid, x, y).flags;
+ maskf = F_DOT | F_DOT_BLACK;
+ /* if we clicked 'white dot':
+ * white --> empty, empty --> white, black --> white.
+ * if we clicker 'black dot':
+ * black --> empty, empty --> black, white --> black.
+ */
+ if (currf & maskf) {
+ sp->flags &= ~maskf;
+ if ((currf & maskf) != newf)
+ sp->flags |= newf;
+ } else
+ sp->flags |= newf;
+ sp->nassoc = 0; /* edit-mode disallows associations. */
+ game_update_dots(ret);
+ } else
+#endif
+ if (c == 'E') {
+ if (sp->type != s_edge) goto badmove;
+ sp->flags ^= F_EDGE_SET;
+ } else if (c == 'U') {
+ if (sp->type != s_tile || !(sp->flags & F_TILE_ASSOC))
+ goto badmove;
+ remove_assoc(ret, sp);
+ } else if (c == 'M') {
+ if (!(sp->flags & F_DOT)) goto badmove;
+ sp->flags ^= F_DOT_HOLD;
+ }
+ move += n;
+ } else if (c == 'A' || c == 'a') {
+ move++;
+ if (sscanf(move, "%d,%d,%d,%d%n", &x, &y, &ax, &ay, &n) != 4 ||
+ x < 1 || y < 1 || x >= (state->sx-1) || y >= (state->sy-1) ||
+ ax < 1 || ay < 1 || ax >= (state->sx-1) || ay >= (state->sy-1))
+ goto badmove;
+
+ dot = &GRID(ret, grid, ax, ay);
+ if (!(dot->flags & F_DOT))goto badmove;
+ if (dot->flags & F_DOT_HOLD) goto badmove;
+
+ for (dx = -1; dx <= 1; dx++) {
+ for (dy = -1; dy <= 1; dy++) {
+ sp = &GRID(ret, grid, x+dx, y+dy);
+ if (sp->type != s_tile) continue;
+ if (sp->flags & F_TILE_ASSOC) {
+ space *dot = &SPACE(state, sp->dotx, sp->doty);
+ if (dot->flags & F_DOT_HOLD) continue;
+ }
+ add_assoc(state, sp, dot);
+ }
+ }
+ move += n;
+#ifdef EDITOR
+ } else if (c == 'C') {
+ move++;
+ clear_game(ret, 1);
+#endif
+ } else if (c == 'S') {
+ move++;
+ } else
+ goto badmove;
+
+ if (*move == ';')
+ move++;
+ else if (*move)
+ goto badmove;
+ }
+ if (check_complete_in_play(ret, NULL, NULL))
+ ret->completed = 1;
+ return ret;
+
+badmove:
+ free_game(ret);
+ return NULL;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing routines.
+ */
+
+/* Lines will be much smaller size than squares; say, 1/8 the size?
+ *
+ * Need a 'top-left corner of location XxY' to take this into account;
+ * alternaticaly, that could give the middle of that location, and the
+ * drawing code would just know the expected dimensions.
+ *
+ * We also need something to take a click and work out what it was
+ * we were interested in. Clicking on vertices is required because
+ * we may want to drag from them, for example.
+ */
+
+static void game_compute_size(game_params *params, int sz,
+ int *x, int *y)
+{
+ struct { int tilesize, w, h; } ads, *ds = &ads;
+
+ ds->tilesize = sz;
+ ds->w = params->w;
+ ds->h = params->h;
+
+ *x = DRAW_WIDTH;
+ *y = DRAW_HEIGHT;
+}
+
+static void game_set_size(drawing *dr, game_drawstate *ds,
+ game_params *params, int sz)
+{
+ ds->tilesize = sz;
+
+ assert(TILE_SIZE > 0);
+
+ assert(!ds->bl);
+ ds->bl = blitter_new(dr, TILE_SIZE, TILE_SIZE);
+}
+
+static float *game_colours(frontend *fe, int *ncolours)
+{
+ float *ret = snewn(3 * NCOLOURS, float);
+ int i;
+
+ /*
+ * We call game_mkhighlight to ensure the background colour
+ * isn't completely white. We don't actually use the high- and
+ * lowlight colours it generates.
+ */
+ game_mkhighlight(fe, ret, COL_BACKGROUND, COL_WHITEBG, COL_BLACKBG);
+
+ for (i = 0; i < 3; i++) {
+ /*
+ * Currently, white dots and white-background squares are
+ * both pure white.
+ */
+ ret[COL_WHITEDOT * 3 + i] = 1.0F;
+ ret[COL_WHITEBG * 3 + i] = 1.0F;
+
+ /*
+ * But black-background squares are a dark grey, whereas
+ * black dots are really black.
+ */
+ ret[COL_BLACKDOT * 3 + i] = 0.0F;
+ ret[COL_BLACKBG * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.3F;
+
+ /*
+ * In unfilled squares, we draw a faint gridwork.
+ */
+ ret[COL_GRID * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
+
+ /*
+ * Edges and arrows are filled in in pure black.
+ */
+ ret[COL_EDGE * 3 + i] = 0.0F;
+ ret[COL_ARROW * 3 + i] = 0.0F;
+ }
+
+#ifdef EDITOR
+ /* tinge the edit background to bluey */
+ ret[COL_BACKGROUND * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
+ ret[COL_BACKGROUND * 3 + 1] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
+ ret[COL_BACKGROUND * 3 + 2] = ret[COL_BACKGROUND * 3 + 0] * 1.4F;
+ if (ret[COL_BACKGROUND * 3 + 2] > 1.0F) ret[COL_BACKGROUND * 3 + 2] = 1.0F;
+#endif
+
+ *ncolours = NCOLOURS;
+ return ret;
+}
+
+static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
+{
+ struct game_drawstate *ds = snew(struct game_drawstate);
+ int i;
+
+ ds->started = 0;
+ ds->w = state->w;
+ ds->h = state->h;
+
+ ds->grid = snewn(ds->w*ds->h, unsigned long);
+ for (i = 0; i < ds->w*ds->h; i++)
+ ds->grid[i] = 0xFFFFFFFFUL;
+ ds->dx = snewn(ds->w*ds->h, int);
+ ds->dy = snewn(ds->w*ds->h, int);
+
+ ds->bl = NULL;
+ ds->dragging = FALSE;
+ ds->dragx = ds->dragy = 0;
+
+ ds->colour_scratch = snewn(ds->w * ds->h, int);
+
+ return ds;
+}
+
+static void game_free_drawstate(drawing *dr, game_drawstate *ds)
+{
+ sfree(ds->colour_scratch);
+ if (ds->bl) blitter_free(dr, ds->bl);
+ sfree(ds->dx);
+ sfree(ds->dy);
+ sfree(ds->grid);
+ sfree(ds);
+}
+
+#define DRAW_EDGE_L 0x0001
+#define DRAW_EDGE_R 0x0002
+#define DRAW_EDGE_U 0x0004
+#define DRAW_EDGE_D 0x0008
+#define DRAW_CORNER_UL 0x0010
+#define DRAW_CORNER_UR 0x0020
+#define DRAW_CORNER_DL 0x0040
+#define DRAW_CORNER_DR 0x0080
+#define DRAW_WHITE 0x0100
+#define DRAW_BLACK 0x0200
+#define DRAW_ARROW 0x0400
+#define DOT_SHIFT_C 11
+#define DOT_SHIFT_M 2
+#define DOT_WHITE 1UL
+#define DOT_BLACK 2UL
+
+/*
+ * Draw an arrow centred on (cx,cy), pointing in the direction
+ * (ddx,ddy). (I.e. pointing at the point (cx+ddx, cy+ddy).
+ */
+static void draw_arrow(drawing *dr, game_drawstate *ds,
+ int cx, int cy, int ddx, int ddy)
+{
+ float vlen = sqrt(ddx*ddx+ddy*ddy);
+ float xdx = ddx/vlen, xdy = ddy/vlen;
+ float ydx = -xdy, ydy = xdx;
+ int e1x = cx + xdx*TILE_SIZE/3, e1y = cy + xdy*TILE_SIZE/3;
+ int e2x = cx - xdx*TILE_SIZE/3, e2y = cy - xdy*TILE_SIZE/3;
+ int adx = (ydx-xdx)*TILE_SIZE/8, ady = (ydy-xdy)*TILE_SIZE/8;
+ int adx2 = (-ydx-xdx)*TILE_SIZE/8, ady2 = (-ydy-xdy)*TILE_SIZE/8;
+
+ draw_line(dr, e1x, e1y, e2x, e2y, COL_ARROW);
+ draw_line(dr, e1x, e1y, e1x+adx, e1y+ady, COL_ARROW);
+ draw_line(dr, e1x, e1y, e1x+adx2, e1y+ady2, COL_ARROW);
+}
+
+static void draw_square(drawing *dr, game_drawstate *ds, int x, int y,
+ unsigned long flags, int ddx, int ddy)
+{
+ int lx = COORD(x), ly = COORD(y);
+ int dx, dy;
+ int gridcol;
+
+ clip(dr, lx, ly, TILE_SIZE, TILE_SIZE);
+
+ /*
+ * Draw the tile background.
+ */
+ draw_rect(dr, lx, ly, TILE_SIZE, TILE_SIZE,
+ (flags & DRAW_WHITE ? COL_WHITEBG :
+ flags & DRAW_BLACK ? COL_BLACKBG : COL_BACKGROUND));
+
+ /*
+ * Draw the grid.
+ */
+ gridcol = (flags & DRAW_BLACK ? COL_BLACKDOT : COL_GRID);
+ draw_rect(dr, lx, ly, 1, TILE_SIZE, gridcol);
+ draw_rect(dr, lx, ly, TILE_SIZE, 1, gridcol);
+
+ /*
+ * Draw the arrow.
+ */
+ if (flags & DRAW_ARROW)
+ draw_arrow(dr, ds, lx + TILE_SIZE/2, ly + TILE_SIZE/2, ddx, ddy);
+
+ /*
+ * Draw the edges.
+ */
+ if (flags & DRAW_EDGE_L)
+ draw_rect(dr, lx, ly, EDGE_THICKNESS, TILE_SIZE, COL_EDGE);
+ if (flags & DRAW_EDGE_R)
+ draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly,
+ EDGE_THICKNESS - 1, TILE_SIZE, COL_EDGE);
+ if (flags & DRAW_EDGE_U)
+ draw_rect(dr, lx, ly, TILE_SIZE, EDGE_THICKNESS, COL_EDGE);
+ if (flags & DRAW_EDGE_D)
+ draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1,
+ TILE_SIZE, EDGE_THICKNESS - 1, COL_EDGE);
+ if (flags & DRAW_CORNER_UL)
+ draw_rect(dr, lx, ly, EDGE_THICKNESS, EDGE_THICKNESS, COL_EDGE);
+ if (flags & DRAW_CORNER_UR)
+ draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly,
+ EDGE_THICKNESS - 1, EDGE_THICKNESS, COL_EDGE);
+ if (flags & DRAW_CORNER_DL)
+ draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1,
+ EDGE_THICKNESS, EDGE_THICKNESS - 1, COL_EDGE);
+ if (flags & DRAW_CORNER_DR)
+ draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1,
+ ly + TILE_SIZE - EDGE_THICKNESS + 1,
+ EDGE_THICKNESS - 1, EDGE_THICKNESS - 1, COL_EDGE);
+
+ /*
+ * Draw the dots.
+ */
+ for (dy = 0; dy < 3; dy++)
+ for (dx = 0; dx < 3; dx++) {
+ int dotval = (flags >> (DOT_SHIFT_C + DOT_SHIFT_M*(dy*3+dx)));
+ dotval &= (1 << DOT_SHIFT_M)-1;
+
+ if (dotval)
+ draw_circle(dr, lx+dx*TILE_SIZE/2, ly+dy*TILE_SIZE/2,
+ DOT_SIZE,
+ (dotval == 1 ? COL_WHITEDOT : COL_BLACKDOT),
+ COL_BLACKDOT);
+ }
+
+ unclip(dr);
+ draw_update(dr, lx, ly, TILE_SIZE, TILE_SIZE);
+}
+
+static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
+ game_state *state, int dir, game_ui *ui,
+ float animtime, float flashtime)
+{
+ int w = ds->w, h = ds->h;
+ int x, y, flashing = FALSE;
+
+ if (flashtime > 0) {
+ int frame = (int)(flashtime / FLASH_TIME);
+ flashing = (frame % 2 == 0);
+ }
+
+ if (ds->dragging) {
+ assert(ds->bl);
+ blitter_load(dr, ds->bl, ds->dragx, ds->dragy);
+ draw_update(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE);
+ ds->dragging = FALSE;
+ }
+
+ if (!ds->started) {
+ draw_rect(dr, 0, 0, DRAW_WIDTH, DRAW_HEIGHT, COL_BACKGROUND);
+ draw_rect(dr, BORDER - EDGE_THICKNESS + 1, BORDER - EDGE_THICKNESS + 1,
+ w*TILE_SIZE + EDGE_THICKNESS*2 - 1,
+ h*TILE_SIZE + EDGE_THICKNESS*2 - 1, COL_EDGE);
+ draw_update(dr, 0, 0, DRAW_WIDTH, DRAW_HEIGHT);
+ ds->started = TRUE;
+ }
+
+ check_complete_in_play(state, NULL, ds->colour_scratch);
+
+ for (y = 0; y < h; y++)
+ for (x = 0; x < w; x++) {
+ unsigned long flags = 0;
+ int ddx = 0, ddy = 0;
+ space *sp;
+ int dx, dy;
+
+ /*
+ * Set up the flags for this square. Firstly, see if we
+ * have edges.
+ */
+ if (SPACE(state, x*2, y*2+1).flags & F_EDGE_SET)
+ flags |= DRAW_EDGE_L;
+ if (SPACE(state, x*2+2, y*2+1).flags & F_EDGE_SET)
+ flags |= DRAW_EDGE_R;
+ if (SPACE(state, x*2+1, y*2).flags & F_EDGE_SET)
+ flags |= DRAW_EDGE_U;
+ if (SPACE(state, x*2+1, y*2+2).flags & F_EDGE_SET)
+ flags |= DRAW_EDGE_D;
+
+ /*
+ * Also, mark corners of neighbouring edges.
+ */
+ if ((x > 0 && SPACE(state, x*2-1, y*2).flags & F_EDGE_SET) ||
+ (y > 0 && SPACE(state, x*2, y*2-1).flags & F_EDGE_SET))
+ flags |= DRAW_CORNER_UL;
+ if ((x+1 < w && SPACE(state, x*2+3, y*2).flags & F_EDGE_SET) ||
+ (y > 0 && SPACE(state, x*2+2, y*2-1).flags & F_EDGE_SET))
+ flags |= DRAW_CORNER_UR;
+ if ((x > 0 && SPACE(state, x*2-1, y*2+2).flags & F_EDGE_SET) ||
+ (y+1 < h && SPACE(state, x*2, y*2+3).flags & F_EDGE_SET))
+ flags |= DRAW_CORNER_DL;
+ if ((x+1 < w && SPACE(state, x*2+3, y*2+2).flags & F_EDGE_SET) ||
+ (y+1 < h && SPACE(state, x*2+2, y*2+3).flags & F_EDGE_SET))
+ flags |= DRAW_CORNER_DR;
+
+ /*
+ * If this square is part of a valid region, paint it
+ * that region's colour. Exception: if we're flashing,
+ * everything goes briefly back to background colour.
+ */
+ sp = &SPACE(state, x*2+1, y*2+1);
+ if (ds->colour_scratch[y*w+x] && !flashing) {
+ flags |= (ds->colour_scratch[y*w+x] == 2 ?
+ DRAW_BLACK : DRAW_WHITE);
+ }
+
+ /*
+ * If this square is associated with a dot but it isn't
+ * part of a valid region, draw an arrow in it pointing
+ * in the direction of that dot.
+ *
+ * Exception: if this is the source point of an active
+ * drag, we don't draw the arrow.
+ */
+ if ((sp->flags & F_TILE_ASSOC) && !ds->colour_scratch[y*w+x]) {
+ if (ui->dragging && ui->srcx == x*2+1 && ui->srcy == y*2+1) {
+ /* don't do it */
+ } else if (sp->doty != y*2+1 || sp->dotx != x*2+1) {
+ flags |= DRAW_ARROW;
+ ddy = sp->doty - (y*2+1);
+ ddx = sp->dotx - (x*2+1);
+ }
+ }
+
+ /*
+ * Now go through the nine possible places we could
+ * have dots.
+ */
+ for (dy = 0; dy < 3; dy++)
+ for (dx = 0; dx < 3; dx++) {
+ sp = &SPACE(state, x*2+dx, y*2+dy);
+ if (sp->flags & F_DOT) {
+ unsigned long dotval = (sp->flags & F_DOT_BLACK ?
+ DOT_BLACK : DOT_WHITE);
+ flags |= dotval << (DOT_SHIFT_C +
+ DOT_SHIFT_M*(dy*3+dx));
+ }
+ }
+
+ /*
+ * Now we have everything we're going to need. Draw the
+ * square.
+ */
+ if (ds->grid[y*w+x] != flags ||
+ ds->dx[y*w+x] != ddx ||
+ ds->dy[y*w+x] != ddy) {
+ draw_square(dr, ds, x, y, flags, ddx, ddy);
+ ds->grid[y*w+x] = flags;
+ ds->dx[y*w+x] = ddx;
+ ds->dy[y*w+x] = ddy;
+ }
+ }
+
+ if (ui->dragging) {
+ ds->dragging = TRUE;
+ ds->dragx = ui->dx - TILE_SIZE/2;
+ ds->dragy = ui->dy - TILE_SIZE/2;
+ blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
+ draw_arrow(dr, ds, ui->dx, ui->dy,
+ SCOORD(ui->dotx) - ui->dx,
+ SCOORD(ui->doty) - ui->dy);
+ }
+#ifdef EDITOR
+ {
+ char buf[256];
+ if (state->cdiff != -1)
+ sprintf(buf, "Puzzle is %s.", galaxies_diffnames[state->cdiff]);
+ else
+ buf[0] = '\0';
+ status_bar(dr, buf);
+ }
+#endif
+}
+
+static float game_anim_length(game_state *oldstate, game_state *newstate,
+ int dir, game_ui *ui)
+{
+ return 0.0F;
+}
+
+static float game_flash_length(game_state *oldstate, game_state *newstate,
+ int dir, game_ui *ui)
+{
+ if ((!oldstate->completed && newstate->completed) &&
+ !(newstate->used_solve))
+ return 3 * FLASH_TIME;
+ else
+ return 0.0F;
+}
+
+static int game_timing_state(game_state *state, game_ui *ui)
+{
+ return TRUE;
+}
+
+#ifndef EDITOR
+static void game_print_size(game_params *params, float *x, float *y)
+{
+ int pw, ph;
+
+ /*
+ * 8mm squares by default. (There isn't all that much detail
+ * that needs to go in each square.)
+ */
+ game_compute_size(params, 800, &pw, &ph);
+ *x = pw / 100.0F;
+ *y = ph / 100.0F;
+}
+
+static void game_print(drawing *dr, game_state *state, int sz)
+{
+ int w = state->w, h = state->h;
+ int white, black, blackish;
+ int x, y, i, j;
+ int *colours, *dsf;
+ int *coords = NULL;
+ int ncoords = 0, coordsize = 0;
+
+ /* Ick: fake up `ds->tilesize' for macro expansion purposes */
+ game_drawstate ads, *ds = &ads;
+ ds->tilesize = sz;
+
+ white = print_grey_colour(dr, HATCH_CLEAR, 1.0F);
+ black = print_grey_colour(dr, HATCH_SOLID, 0.0F);
+ blackish = print_grey_colour(dr, HATCH_X, 0.5F);
+
+ /*
+ * Get the completion information.
+ */
+ dsf = snewn(w * h, int);
+ colours = snewn(w * h, int);
+ check_complete_in_play(state, dsf, colours);
+
+ /*
+ * Draw the grid.
+ */
+ print_line_width(dr, TILE_SIZE / 64);
+ for (x = 1; x < w; x++)
+ draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), black);
+ for (y = 1; y < h; y++)
+ draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), black);
+
+ /*
+ * Shade the completed regions. Just in case any particular
+ * printing platform deals badly with adjacent
+ * similarly-hatched regions, we'll fill each one as a single
+ * polygon.
+ */
+ for (i = 0; i < w*h; i++) {
+ j = dsf_canonify(dsf, i);
+ if (colours[j] != 0) {
+ int dx, dy, t;
+
+ /*
+ * This is the first square we've run into belonging to
+ * this polyomino, which means an edge of the polyomino
+ * is certain to be to our left. (After we finish
+ * tracing round it, we'll set the colours[] entry to
+ * zero to prevent accidentally doing it again.)
+ */
+
+ x = i % w;
+ y = i / w;
+ dx = -1;
+ dy = 0;
+ ncoords = 0;
+ while (1) {
+ /*
+ * We are currently sitting on square (x,y), which
+ * we know to be in our polyomino, and we also know
+ * that (x+dx,y+dy) is not. The way I visualise
+ * this is that we're standing to the right of a
+ * boundary line, stretching our left arm out to
+ * point to the exterior square on the far side.
+ */
+
+ /*
+ * First, check if we've gone round the entire
+ * polyomino.
+ */
+ if (ncoords > 0 &&
+ (x == i%w && y == i/w && dx == -1 && dy == 0))
+ break;
+
+ /*
+ * Add to our coordinate list the coordinate
+ * backwards and to the left of where we are.
+ */
+ if (ncoords + 2 > coordsize) {
+ coordsize = (ncoords * 3 / 2) + 64;
+ coords = sresize(coords, coordsize, int);
+ }
+ coords[ncoords++] = COORD((2*x+1 + dx + dy) / 2);
+ coords[ncoords++] = COORD((2*y+1 + dy - dx) / 2);
+
+ /*
+ * Follow the edge round. If the square directly in
+ * front of us is not part of the polyomino, we
+ * turn right; if it is and so is the square in
+ * front of (x+dx,y+dy), we turn left; otherwise we
+ * go straight on.
+ */
+ if (x-dy < 0 || x-dy >= w || y+dx < 0 || y+dx >= h ||
+ dsf_canonify(dsf, (y+dx)*w+(x-dy)) != j) {
+ /* Turn right. */
+ t = dx;
+ dx = -dy;
+ dy = t;
+ } else if (x+dx-dy >= 0 && x+dx-dy < w &&
+ y+dy+dx >= 0 && y+dy+dx < h &&
+ dsf_canonify(dsf, (y+dy+dx)*w+(x+dx-dy)) == j) {
+ /* Turn left. */
+ x += dx;
+ y += dy;
+ t = dx;
+ dx = dy;
+ dy = -t;
+ x -= dx;
+ y -= dy;
+ } else {
+ /* Straight on. */
+ x -= dy;
+ y += dx;
+ }
+ }
+
+ /*
+ * Now we have our polygon complete, so fill it.
+ */
+ draw_polygon(dr, coords, ncoords/2,
+ colours[j] == 2 ? blackish : -1, black);
+
+ /*
+ * And mark this polyomino as done.
+ */
+ colours[j] = 0;
+ }
+ }
+
+ /*
+ * Draw the edges.
+ */
+ for (y = 0; y <= h; y++)
+ for (x = 0; x <= w; x++) {
+ if (x < w && SPACE(state, x*2+1, y*2).flags & F_EDGE_SET)
+ draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS,
+ EDGE_THICKNESS * 2 + TILE_SIZE, EDGE_THICKNESS * 2,
+ black);
+ if (y < h && SPACE(state, x*2, y*2+1).flags & F_EDGE_SET)
+ draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS,
+ EDGE_THICKNESS * 2, EDGE_THICKNESS * 2 + TILE_SIZE,
+ black);
+ }
+
+ /*
+ * Draw the dots.
+ */
+ for (y = 0; y <= 2*h; y++)
+ for (x = 0; x <= 2*w; x++)
+ if (SPACE(state, x, y).flags & F_DOT) {
+ draw_circle(dr, COORD(x/2.0), COORD(y/2.0), DOT_SIZE,
+ (SPACE(state, x, y).flags & F_DOT_BLACK ?
+ black : white), black);
+ }
+
+ sfree(dsf);
+ sfree(colours);
+ sfree(coords);
+}
+#endif
+
+#ifdef COMBINED
+#define thegame galaxies
+#endif
+
+const struct game thegame = {
+ "Galaxies", "games.galaxies", "galaxies",
+ default_params,
+ game_fetch_preset,
+ decode_params,
+ encode_params,
+ free_params,
+ dup_params,
+ TRUE, game_configure, custom_params,
+ validate_params,
+ new_game_desc,
+ validate_desc,
+ new_game,
+ dup_game,
+ free_game,
+#ifdef EDITOR
+ FALSE, NULL,
+#else
+ TRUE, solve_game,
+#endif
+ TRUE, game_text_format,
+ new_ui,
+ free_ui,
+ encode_ui,
+ decode_ui,
+ game_changed_state,
+ interpret_move,
+ execute_move,
+ PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
+ game_colours,
+ game_new_drawstate,
+ game_free_drawstate,
+ game_redraw,
+ game_anim_length,
+ game_flash_length,
+#ifdef EDITOR
+ FALSE, FALSE, NULL, NULL,
+ TRUE, /* wants_statusbar */
+#else
+ TRUE, TRUE, game_print_size, game_print,
+ FALSE, /* wants_statusbar */
+#endif
+ FALSE, game_timing_state,
+ 0, /* flags */
+};
+
+#ifdef STANDALONE_SOLVER
+
+const char *quis;
+
+#include <time.h>
+
+static void usage_exit(const char *msg)
+{
+ if (msg)
+ fprintf(stderr, "%s: %s\n", quis, msg);
+ fprintf(stderr, "Usage: %s [--seed SEED] --soak <params> | [game_id [game_id ...]]\n", quis);
+ exit(1);
+}
+
+static void dump_state(game_state *state)
+{
+ char *temp = game_text_format(state);
+ printf("%s\n", temp);
+ sfree(temp);
+}
+
+static int gen(game_params *p, random_state *rs, int debug)
+{
+ char *desc;
+ int diff;
+ game_state *state;
+
+#ifndef DEBUGGING
+ solver_show_working = debug;
+#endif
+ printf("Generating a %dx%d %s puzzle.\n",
+ p->w, p->h, galaxies_diffnames[p->diff]);
+
+ desc = new_game_desc(p, rs, NULL, 0);
+ state = new_game(NULL, p, desc);
+ dump_state(state);
+
+ diff = solver_state(state, DIFF_RECURSIVE);
+ printf("Generated %s game %dx%d:%s\n",
+ galaxies_diffnames[diff], p->w, p->h, desc);
+ dump_state(state);
+
+ free_game(state);
+ sfree(desc);
+
+ return diff;
+}
+
+static void soak(game_params *p, random_state *rs)
+{
+ time_t tt_start, tt_now, tt_last;
+ char *desc;
+ game_state *st;
+ int diff, n = 0, i, diffs[DIFF_MAX], ndots = 0, nspaces = 0;
+
+#ifndef DEBUGGING
+ solver_show_working = 0;
+#endif
+ tt_start = tt_now = time(NULL);
+ for (i = 0; i < DIFF_MAX; i++) diffs[i] = 0;
+ maxtries = 1;
+
+ printf("Soak-generating a %dx%d grid, max. diff %s.\n",
+ p->w, p->h, galaxies_diffnames[p->diff]);
+ printf(" [");
+ for (i = 0; i < DIFF_MAX; i++)
+ printf("%s%s", (i == 0) ? "" : ", ", galaxies_diffnames[i]);
+ printf("]\n");
+
+ while (1) {
+ desc = new_game_desc(p, rs, NULL, 0);
+ st = new_game(NULL, p, desc);
+ diff = solver_state(st, p->diff);
+ nspaces += st->w*st->h;
+ for (i = 0; i < st->sx*st->sy; i++)
+ if (st->grid[i].flags & F_DOT) ndots++;
+ free_game(st);
+ sfree(desc);
+
+ diffs[diff]++;
+ n++;
+ tt_last = time(NULL);
+ if (tt_last > tt_now) {
+ tt_now = tt_last;
+ printf("%d total, %3.1f/s, [",
+ n, (double)n / ((double)tt_now - tt_start));
+ for (i = 0; i < DIFF_MAX; i++)
+ printf("%s%.1f%%", (i == 0) ? "" : ", ",
+ 100.0 * ((double)diffs[i] / (double)n));
+ printf("], %.1f%% dots\n",
+ 100.0 * ((double)ndots / (double)nspaces));
+ }
+ }
+}
+
+int main(int argc, char **argv)
+{
+ game_params *p;
+ char *id = NULL, *desc, *err;
+ game_state *s;
+ int diff, do_soak = 0, verbose = 0;
+ random_state *rs;
+ time_t seed = time(NULL);
+
+ quis = argv[0];
+ while (--argc > 0) {
+ char *p = *++argv;
+ if (!strcmp(p, "-v")) {
+ verbose = 1;
+ } else if (!strcmp(p, "--seed")) {
+ if (argc == 0) usage_exit("--seed needs an argument");
+ seed = (time_t)atoi(*++argv);
+ argc--;
+ } else if (!strcmp(p, "--soak")) {
+ do_soak = 1;
+ } else if (*p == '-') {
+ usage_exit("unrecognised option");
+ } else {
+ id = p;
+ }
+ }
+
+ maxtries = 50;
+
+ p = default_params();
+ rs = random_new((void*)&seed, sizeof(time_t));
+
+ if (do_soak) {
+ if (!id) usage_exit("need one argument for --soak");
+ decode_params(p, *argv);
+ soak(p, rs);
+ return 0;
+ }
+
+ if (!id) {
+ while (1) {
+ p->w = random_upto(rs, 15) + 3;
+ p->h = random_upto(rs, 15) + 3;
+ p->diff = random_upto(rs, DIFF_RECURSIVE);
+ diff = gen(p, rs, 0);
+ }
+ return 0;
+ }
+
+ desc = strchr(id, ':');
+ if (!desc) {
+ decode_params(p, id);
+ gen(p, rs, verbose);
+ } else {
+#ifndef DEBUGGING
+ solver_show_working = 1;
+#endif
+ *desc++ = '\0';
+ decode_params(p, id);
+ err = validate_desc(p, desc);
+ if (err) {
+ fprintf(stderr, "%s: %s\n", argv[0], err);
+ exit(1);
+ }
+ s = new_game(NULL, p, desc);
+ diff = solver_state(s, DIFF_RECURSIVE);
+ dump_state(s);
+ printf("Puzzle is %s.\n", galaxies_diffnames[diff]);
+ free_game(s);
+ }
+
+ free_params(p);
+
+ return 0;
+}
+
+#endif
+
+/* vim: set shiftwidth=4 tabstop=8: */
--- a/icons/Makefile
+++ b/icons/Makefile
@@ -1,8 +1,8 @@
# Makefile for Puzzles icons.
-PUZZLES = blackbox bridges cube dominosa fifteen flip guess inertia lightup \
- loopy map mines net netslide pattern pegs rect samegame sixteen \
- slant solo tents twiddle unequal untangle
+PUZZLES = blackbox bridges cube dominosa fifteen flip galaxies guess inertia \
+ lightup loopy map mines net netslide pattern pegs rect samegame \
+ sixteen slant solo tents twiddle unequal untangle
BASE = $(patsubst %,%-base.png,$(PUZZLES))
WEB = $(patsubst %,%-web.png,$(PUZZLES))
@@ -56,6 +56,7 @@
dominosa-ibase.png : override CROP=304x272 152x152+152+0
fifteen-ibase.png : override CROP=240x240 120x120+0+120
flip-ibase.png : override CROP=288x288 145x145+120+72
+galaxies-ibase.png : override CROP=288x288 165x165+0+0
guess-ibase.png : override CROP=263x420 178x178+75+17
inertia-ibase.png : override CROP=321x321 128x128+193+0
lightup-ibase.png : override CROP=256x256 112x112+144+0
--- /dev/null
+++ b/icons/galaxies.sav
@@ -1,0 +1,51 @@
+SAVEFILE:41:Simon Tatham's Portable Puzzle Collection
+VERSION :1:1
+GAME :8:Galaxies
+PARAMS :5:7x7dh
+CPARAMS :5:7x7dh
+SEED :15:483644862786314
+DESC :13:ikrqfedzljjsp
+NSTATES :2:43
+STATEPOS:2:37
+MOVE :5:E12,9
+MOVE :5:E8,11
+MOVE :5:E5,12
+MOVE :5:E7,12
+MOVE :5:E4,13
+MOVE :5:E2,11
+MOVE :5:E3,10
+MOVE :4:E2,5
+MOVE :4:E4,5
+MOVE :4:E6,7
+MOVE :4:E8,1
+MOVE :5:E10,1
+MOVE :4:E9,2
+MOVE :4:E6,3
+MOVE :4:E7,4
+MOVE :5:E10,3
+MOVE :5:E10,5
+MOVE :5:E11,6
+MOVE :5:E13,6
+MOVE :5:E8,13
+MOVE :5:E12,7
+MOVE :6:E12,11
+MOVE :6:E13,12
+MOVE :4:E8,9
+MOVE :4:E7,8
+MOVE :4:E7,6
+MOVE :4:E9,6
+MOVE :4:E8,5
+MOVE :4:E9,4
+MOVE :4:E5,2
+MOVE :4:E4,1
+MOVE :4:E3,6
+MOVE :4:E2,7
+MOVE :4:E3,8
+MOVE :4:E3,4
+MOVE :4:E4,9
+MOVE :4:E2,9
+MOVE :5:E5,10
+MOVE :5:E6,11
+MOVE :4:E2,3
+MOVE :4:E2,1
+MOVE :5:E1,12
--- a/nullfe.c
+++ b/nullfe.c
@@ -27,6 +27,7 @@
void blitter_save(drawing *dr, blitter *bl, int x, int y) {}
void blitter_load(drawing *dr, blitter *bl, int x, int y) {}
int print_mono_colour(drawing *dr, int grey) { return 0; }
+int print_grey_colour(drawing *dr, int hatch, float grey) { return 0; }
int print_rgb_colour(drawing *dr, int hatch, float r, float g, float b)
{ return 0; }
void print_line_width(drawing *dr, int width) {}
@@ -47,3 +48,12 @@
exit(1);
}
+#ifdef DEBUGGING
+void debug_printf(char *fmt, ...)
+{
+ va_list ap;
+ va_start(ap, fmt);
+ vfprintf(stdout, fmt, ap);
+ va_end(ap);
+}
+#endif
--- a/puzzles.but
+++ b/puzzles.but
@@ -2143,6 +2143,66 @@
require increasingly complex reasoning to avoid having to backtrack.
+
+\C{galaxies} \i{Galaxies}
+
+\cfg{winhelp-topic}{games.galaxies}
+
+You have a rectangular grid containing a number of dots. Your aim is
+to draw edges along the grid lines which divide the rectangle into
+regions in such a way that every region is 180\u00b0{-degree}
+rotationally symmetric, and contains exactly one dot which is
+located at its centre of symmetry.
+
+This puzzle was invented by \i{Nikoli} \k{nikoli-galaxies}, under
+the name 'Tentai Show'; its name is commonly translated into English
+as 'Spiral Galaxies'.
+
+\B{nikoli-galaxies} \W{http://www.nikoli.co.jp/en/puzzles/astronomical_show/}\cw{http://www.nikoli.co.jp/en/puzzles/astronomical_show/}
+
+\H{galaxies-controls} \i{Galaxies controls}
+
+\IM{Galaxies controls} controls, for Galaxies
+
+Left-click on any grid line to draw an edge if there isn't one
+already, or to remove one if there is. When you create a valid
+region (one which is closed, contains exactly one dot, is
+180\u00b0{-degree} symmetric about that dot, and contains no
+extraneous edges inside it) it will be highlighted automatically; so
+your aim is to have the whole grid highlighted in that way.
+
+During solving, you might know that a particular grid square belongs
+to a specific dot, but not be sure of where the edges go and which
+other squares are connected to the dot. In order to mark this so you
+don't forget, you can right-click on the dot and drag, which will
+create an arrow marker pointing at the dot. Drop that in a square of
+your choice and it will remind you which dot it's associated with.
+You can also right-click on existing arrows to pick them up and move
+them, or destroy them by dropping them off the edge of the grid.
+(Also, if you're not sure which dot an arrow is pointing at, you can
+pick it up and move it around to make it clearer. It will swivel
+constantly as you drag it, to stay pointed at its parent dot.)
+
+(All the actions described in \k{common-actions} are also available.)
+
+\H{galaxies-parameters} \I{parameters, for Galaxies}Galaxies parameters
+
+These parameters are available from the \q{Custom...} option on the
+\q{Type} menu.
+
+\dt \e{Width}, \e{Height}
+
+\dd Size of grid in squares.
+
+\dt \e{Difficulty}
+
+\dd Controls the difficulty of the generated puzzle. More difficult
+puzzles require more complex deductions, and the 'Recursive' difficulty
+level may require backtracking.
+
+
+
+
\A{licence} \I{MIT licence}\ii{Licence}
This software is \i{copyright} 2004-2007 Simon Tatham.
--- a/windows.c
+++ b/windows.c
@@ -84,7 +84,7 @@
va_list ap;
va_start(ap, fmt);
- vsprintf(buf, fmt, ap);
+ _vsnprintf(buf, 4095, fmt, ap);
dputs(buf);
va_end(ap);
}