shithub: puzzles

Download patch

ref: df31d4f4195ea2cc3a1213da14717813aacbf404
parent: 8b1b6bc9a38d90ab30bf6abdd3c14a8e98f29b26
author: Simon Tatham <[email protected]>
date: Sun Feb 25 06:37:05 EST 2007

New puzzle: `Filling', a Fillomino implementation by Jonas Koelker.

[originally from svn r7326]

--- a/LICENCE
+++ b/LICENCE
@@ -1,6 +1,7 @@
 This software is copyright (c) 2004-2007 Simon Tatham.
 
-Portions copyright Richard Boulton, James Harvey and Mike Pinna.
+Portions copyright Richard Boulton, James Harvey, Mike Pinna and
+Jonas K�lker.
 
 Permission is hereby granted, free of charge, to any person
 obtaining a copy of this software and associated documentation files
--- a/dsf.c
+++ b/dsf.c
@@ -64,11 +64,13 @@
 {
     int i;
 
-    for (i = 0; i < size; i++) {
-        /* Bottom bit of each element of this array stores whether that element
-         * is opposite to its parent, which starts off as false */
-        dsf[i] = i << 1;
-    }
+    for (i = 0; i < size; i++) dsf[i] = 6;
+    /* Bottom bit of each element of this array stores whether that
+     * element is opposite to its parent, which starts off as
+     * false. Second bit of each element stores whether that element
+     * is the root of its tree or not.  If it's not the root, the
+     * remaining 30 bits are the parent, otherwise the remaining 30
+     * bits are the number of elements in the tree.  */
 }
 
 int *snew_dsf(int size)
@@ -93,6 +95,10 @@
     edsf_merge(dsf, v1, v2, FALSE);
 }
 
+int dsf_size(int *dsf, int index) {
+    return dsf[dsf_canonify(dsf, index)] >> 2;
+}
+
 int edsf_canonify(int *dsf, int index, int *inverse_return)
 {
     int start_index = index, canonical_index;
@@ -106,9 +112,9 @@
     /* Find the index of the canonical element of the 'equivalence class' of
      * which start_index is a member, and figure out whether start_index is the
      * same as or inverse to that. */
-    while ((dsf[index] >> 1) != index) {
+    while ((dsf[index] & 2) == 0) {
         inverse ^= (dsf[index] & 1);
-	index = dsf[index] >> 1;
+	index = dsf[index] >> 2;
 /*        fprintf(stderr, "index = %2d, ", index); */
 /*        fprintf(stderr, "inverse = %d\n", inverse); */
     }
@@ -121,9 +127,9 @@
      * canonical member. */
     index = start_index;
     while (index != canonical_index) {
-	int nextindex = dsf[index] >> 1;
+	int nextindex = dsf[index] >> 2;
         int nextinverse = inverse ^ (dsf[index] & 1);
-	dsf[index] = (canonical_index << 1) | inverse;
+	dsf[index] = (canonical_index << 2) | inverse;
         inverse = nextinverse;
 	index = nextindex;
     }
@@ -138,13 +144,15 @@
 void edsf_merge(int *dsf, int v1, int v2, int inverse)
 {
     int i1, i2;
-    
+
 /*    fprintf(stderr, "dsf = %p\n", dsf); */
 /*    fprintf(stderr, "Merge [%2d,%2d], %d\n", v1, v2, inverse); */
     
     v1 = edsf_canonify(dsf, v1, &i1);
+    assert(dsf[v1] & 2);
     inverse ^= i1;
     v2 = edsf_canonify(dsf, v2, &i2);
+    assert(dsf[v2] & 2);
     inverse ^= i2;
 
 /*    fprintf(stderr, "Doing [%2d,%2d], %d\n", v1, v2, inverse); */
@@ -151,8 +159,16 @@
 
     if (v1 == v2)
         assert(!inverse);
-    else
-        dsf[v2] = (v1 << 1) | !!inverse;
+    else {
+	assert(inverse == 0 || inverse == 1);
+	if ((dsf[v2] >> 2) > (dsf[v1] >> 2)) {
+	    int v3 = v1;
+	    v1 = v2;
+	    v2 = v3;
+	}
+	dsf[v1] += (dsf[v2] >> 2) << 2;
+	dsf[v2] = (v1 << 2) | !!inverse;
+    }
     
     v2 = edsf_canonify(dsf, v2, &i2);
     assert(v2 == v1);
--- /dev/null
+++ b/filling.R
@@ -1,0 +1,24 @@
+# -*- makefile -*-
+
+FILLING = filling dsf filling-icon|no-icon
+
+fillingsolver :	[U] filling[STANDALONE_SOLVER] dsf STANDALONE
+fillingsolver :	[C] filling[STANDALONE_SOLVER] dsf STANDALONE
+
+filling : [X] GTK COMMON FILLING
+
+filling : [G] WINDOWS COMMON FILLING
+
+ALL += filling
+
+!begin gtk
+GAMES += filling
+!end
+
+!begin >list.c
+    A(filling) \
+!end
+
+!begin >wingames.lst
+filling.exe:Filling
+!end
--- /dev/null
+++ b/filling.c
@@ -1,0 +1,1539 @@
+/* -*- tab-width: 8; indent-tabs-mode: t -*-
+ * filling.c: An implementation of the Nikoli game fillomino.
+ * Copyright (C) 2007 Jonas K�lker.  See LICENSE for the license.
+ */
+
+/* TODO:
+ *
+ *  - use a typedef instead of int for numbers on the board
+ *     + replace int with something else (signed char?)
+ *        - the type should be signed (I use -board[i] temporarily)
+ *        - problems are small (<= 9?): type can be char?
+ *
+ *  - make a somewhat more clever solver
+ *
+ *  - make the solver do recursion/backtracking.
+ *     + This is for user-submitted puzzles, not for puzzle
+ *       generation (on the other hand, never say never).
+ *
+ *  - prove that only w=h=2 needs a special case
+ *
+ *  - solo-like pencil marks?
+ *
+ *  - speed up generation of puzzles of size >= 11x11
+ *
+ *  - Allow square contents > 9?
+ *     + I could use letters for digits (solo does this), but
+ *       letters don't have numeric significance (normal people hate
+ *       base36), which is relevant here (much more than in solo).
+ *     + How much information is needed to solve?  Does one need to
+ *       know the algorithm by which the largest number is set?
+ *
+ *  - eliminate puzzle instances with done chunks (1's in particular)?
+ *     + that's what the qsort call is all about.
+ *     + the 1's don't bother me that much.
+ *     + but this takes a LONG time (not always possible)?
+ *        - this may be affected by solver (lack of) quality.
+ *        - weed them out by construction instead of post-cons check
+ *           + but that interleaves make_board and new_game_desc: you
+ *             have to alternate between changing the board and
+ *             changing the hint set (instead of just creating the
+ *             board once, then changing the hint set once -> done).
+ *
+ *  - use binary search when discovering the minimal sovable point
+ *     + profile to show a need (but when the solver gets slower...)
+ *     + avg 0.1s per 9x9, which _is_ human-patience noticable.
+ */
+
+#include <assert.h>
+#include <ctype.h>
+#include <errno.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "puzzles.h"
+
+struct game_params {
+    int w, h;
+};
+
+struct shared_state {
+    struct game_params params;
+    int *clues;
+    int refcnt;
+};
+
+struct game_state {
+    int *board;
+    struct shared_state *shared;
+    int completed, cheated;
+};
+
+static const struct game_params defaults[3] = {{5, 5}, {7, 7}, {9, 9}};
+
+static game_params *default_params(void)
+{
+    game_params *ret = snew(game_params);
+
+    *ret = defaults[1]; /* struct copy */
+
+    return ret;
+}
+
+static int game_fetch_preset(int i, char **name, game_params **params)
+{
+    char buf[64];
+
+    if (i < 0 || i >= lenof(defaults)) return FALSE;
+    *params = snew(game_params);
+    **params = defaults[i]; /* struct copy */
+    sprintf(buf, "%dx%d", defaults[i].w, defaults[i].h);
+    *name = dupstr(buf);
+
+    return TRUE;
+}
+
+static void free_params(game_params *params)
+{
+    sfree(params);
+}
+
+static game_params *dup_params(game_params *params)
+{
+    game_params *ret = snew(game_params);
+    *ret = *params; /* struct copy */
+    return ret;
+}
+
+static void decode_params(game_params *ret, char const *string)
+{
+    ret->w = ret->h = atoi(string);
+    while (*string && isdigit((unsigned char) *string)) ++string;
+    if (*string == 'x') ret->h = atoi(++string);
+}
+
+static char *encode_params(game_params *params, int full)
+{
+    char buf[64];
+    sprintf(buf, "%dx%d", params->w, params->h);
+    return dupstr(buf);
+}
+
+static config_item *game_configure(game_params *params)
+{
+    config_item *ret;
+    char buf[64];
+
+    ret = snewn(3, config_item);
+
+    ret[0].name = "Width";
+    ret[0].type = C_STRING;
+    sprintf(buf, "%d", params->w);
+    ret[0].sval = dupstr(buf);
+    ret[0].ival = 0;
+
+    ret[1].name = "Height";
+    ret[1].type = C_STRING;
+    sprintf(buf, "%d", params->h);
+    ret[1].sval = dupstr(buf);
+    ret[1].ival = 0;
+
+    ret[2].name = NULL;
+    ret[2].type = C_END;
+    ret[2].sval = NULL;
+    ret[2].ival = 0;
+
+    return ret;
+}
+
+static game_params *custom_params(config_item *cfg)
+{
+    game_params *ret = snew(game_params);
+
+    ret->w = atoi(cfg[0].sval);
+    ret->h = atoi(cfg[1].sval);
+
+    return ret;
+}
+
+static char *validate_params(game_params *params, int full)
+{
+    if (params->w < 1) return "Width must be at least one";
+    if (params->h < 1) return "Height must be at least one";
+
+    return NULL;
+}
+
+/*****************************************************************************
+ * STRINGIFICATION OF GAME STATE                                             *
+ *****************************************************************************/
+
+#define EMPTY 0
+
+/* Example of plaintext rendering:
+ *  +---+---+---+---+---+---+---+
+ *  | 6 |   |   | 2 |   |   | 2 |
+ *  +---+---+---+---+---+---+---+
+ *  |   | 3 |   | 6 |   | 3 |   |
+ *  +---+---+---+---+---+---+---+
+ *  | 3 |   |   |   |   |   | 1 |
+ *  +---+---+---+---+---+---+---+
+ *  |   | 2 | 3 |   | 4 | 2 |   |
+ *  +---+---+---+---+---+---+---+
+ *  | 2 |   |   |   |   |   | 3 |
+ *  +---+---+---+---+---+---+---+
+ *  |   | 5 |   | 1 |   | 4 |   |
+ *  +---+---+---+---+---+---+---+
+ *  | 4 |   |   | 3 |   |   | 3 |
+ *  +---+---+---+---+---+---+---+
+ *
+ * This puzzle instance is taken from the nikoli website
+ * Encoded (unsolved and solved), the strings are these:
+ * 7x7:6002002030603030000010230420200000305010404003003
+ * 7x7:6662232336663232331311235422255544325413434443313
+ */
+static char *board_to_string(int *board, int w, int h) {
+    const int sz = w * h;
+    const int chw = (4*w + 2); /* +2 for trailing '+' and '\n' */
+    const int chh = (2*h + 1); /* +1: n fence segments, n+1 posts */
+    const int chlen = chw * chh;
+    char *repr = snewn(chlen + 1, char);
+    int i;
+
+    assert(board);
+
+    /* build the first line ("^(\+---){n}\+$") */
+    for (i = 0; i < w; ++i) {
+        repr[4*i + 0] = '+';
+        repr[4*i + 1] = '-';
+        repr[4*i + 2] = '-';
+        repr[4*i + 3] = '-';
+    }
+    repr[4*i + 0] = '+';
+    repr[4*i + 1] = '\n';
+
+    /* ... and copy it onto the odd-numbered lines */
+    for (i = 0; i < h; ++i) memcpy(repr + (2*i + 2) * chw, repr, chw);
+
+    /* build the second line ("^(\|\t){n}\|$") */
+    for (i = 0; i < w; ++i) {
+        repr[chw + 4*i + 0] = '|';
+        repr[chw + 4*i + 1] = ' ';
+        repr[chw + 4*i + 2] = ' ';
+        repr[chw + 4*i + 3] = ' ';
+    }
+    repr[chw + 4*i + 0] = '|';
+    repr[chw + 4*i + 1] = '\n';
+
+    /* ... and copy it onto the even-numbered lines */
+    for (i = 1; i < h; ++i) memcpy(repr + (2*i + 1) * chw, repr + chw, chw);
+
+    /* fill in the numbers */
+    for (i = 0; i < sz; ++i) {
+        const int x = i % w;
+        const int y = i / w;
+        if (board[i] == EMPTY) continue;
+        repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0';
+    }
+
+    repr[chlen] = '\0';
+    return repr;
+}
+
+static char *game_text_format(game_state *state)
+{
+    const int w = state->shared->params.w;
+    const int h = state->shared->params.h;
+    return board_to_string(state->board, w, h);
+}
+
+/*****************************************************************************
+ * GAME GENERATION AND SOLVER                                                *
+ *****************************************************************************/
+
+static const int dx[4] = {-1, 1, 0, 0};
+static const int dy[4] = {0, 0, -1, 1};
+
+/*
+static void print_board(int *board, int w, int h) {
+    char *repr = board_to_string(board, w, h);
+    fputs(repr, stdout);
+    free(repr);
+}
+*/
+
+#define SENTINEL sz
+
+/* determines whether a board (in dsf form) is valid.  If possible,
+ * return a conflicting pair in *a and *b and a non-*b neighbour of *a
+ * in *c.  If not possible, leave them unmodified. */
+static void
+validate_board(int *dsf, int w, int h, int *sq, int *a, int *b, int *c) {
+    const int sz = w * h;
+    int i;
+    assert(*a == SENTINEL);
+    assert(*b == SENTINEL);
+    assert(*c == SENTINEL);
+    for (i = 0; i < sz && *a == sz; ++i) {
+        const int aa = dsf_canonify(dsf, sq[i]);
+        int cc = sz;
+        int j;
+        for (j = 0; j < 4; ++j) {
+            const int x = (sq[i] % w) + dx[j];
+            const int y = (sq[i] / w) + dy[j];
+            int bb;
+            if (x < 0 || x >= w || y < 0 || y >= h) continue;
+            bb = dsf_canonify(dsf, w*y + x);
+            if (aa == bb) continue;
+            else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) {
+                *a = aa;
+                *b = bb;
+                *c = cc;
+            } else if (cc == sz) *c = cc = bb;
+        }
+    }
+}
+
+static game_state *new_game(midend *, game_params *, char *);
+static void free_game(game_state *);
+
+/* generate a random valid board; uses validate_board.  */
+void make_board(int *board, int w, int h, random_state *rs) {
+    int *dsf;
+
+    const unsigned int sz = w * h;
+
+    /* w=h=2 is a special case which requires a number > max(w, h) */
+    /* TODO prove that this is the case ONLY for w=h=2. */
+    const int maxsize = min(max(max(w, h), 3), 9);
+
+    /* Note that if 1 in {w, h} then it's impossible to have a region
+     * of size > w*h, so the special case only affects w=h=2. */
+
+    int nboards = 0;
+
+    int i;
+
+    assert(w >= 1);
+    assert(h >= 1);
+
+    assert(board);
+
+    dsf = snew_dsf(sz); /* implicit dsf_init */
+
+    /* I abuse the board variable: when generating the puzzle, it
+     * contains a shuffled list of numbers {0, ..., nsq-1}. */
+    for (i = 0; i < sz; ++i) board[i] = i;
+
+    while (1) {
+        ++nboards;
+        shuffle(board, sz, sizeof (int), rs);
+        /* while the board can in principle be fixed */
+        while (1) {
+            int a = SENTINEL;
+            int b = SENTINEL;
+            int c = SENTINEL;
+            validate_board(dsf, w, h, board, &a, &b, &c);
+            if (a == SENTINEL /* meaning the board is valid */) {
+                int i;
+                for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i);
+                sfree(dsf);
+                /* printf("returning board number %d\n", nboards); */
+                return;
+            } else {
+                /* try to repair the invalid board */
+                a = dsf_canonify(dsf, a);
+                assert(a != dsf_canonify(dsf, b));
+                if (c != sz) assert(a != dsf_canonify(dsf, c));
+                dsf_merge(dsf, a, c == sz? b: c);
+                /* if repair impossible; make a new board */
+                if (dsf_size(dsf, a) > maxsize) break;
+            }
+        }
+        dsf_init(dsf, sz); /* re-init the dsf */
+    }
+    assert(FALSE); /* unreachable */
+}
+
+static int rhofree(int *hop, int start) {
+    int turtle = start, rabbit = hop[start];
+    while (rabbit != turtle) { /* find a cycle */
+        turtle = hop[turtle];
+        rabbit = hop[hop[rabbit]];
+    }
+    do { /* check that start is in the cycle */
+        rabbit = hop[rabbit];
+        if (start == rabbit) return 1;
+    } while (rabbit != turtle);
+    return 0;
+}
+
+static void merge(int *dsf, int *connected, int a, int b) {
+    int c;
+    assert(dsf);
+    assert(connected);
+    assert(rhofree(connected, a));
+    assert(rhofree(connected, b));
+    a = dsf_canonify(dsf, a);
+    b = dsf_canonify(dsf, b);
+    if (a == b) return;
+    dsf_merge(dsf, a, b);
+    c = connected[a];
+    connected[a] = connected[b];
+    connected[b] = c;
+    assert(rhofree(connected, a));
+    assert(rhofree(connected, b));
+}
+
+static void *memdup(const void *ptr, size_t len, size_t esz) {
+    void *dup = smalloc(len * esz);
+    assert(ptr);
+    memcpy(dup, ptr, len * esz);
+    return dup;
+}
+
+static void expand(int *board, int *connected, int *dsf, int w, int h,
+                   int dst, int src, int *empty, int *learn) {
+    int j;
+    assert(board);
+    assert(connected);
+    assert(dsf);
+    assert(empty);
+    assert(learn);
+    assert(board[dst] == EMPTY);
+    assert(board[src] != EMPTY);
+    board[dst] = board[src];
+    for (j = 0; j < 4; ++j) {
+        const int x = (dst % w) + dx[j];
+        const int y = (dst / w) + dy[j];
+        const int idx = w*y + x;
+        if (x < 0 || x >= w || y < 0 || y >= h) continue;
+        if (board[idx] != board[dst]) continue;
+        merge(dsf, connected, dst, idx);
+    }
+/*  printf("set board[%d] = board[%d], which is %d; size(%d) = %d\n", dst, src, board[src], src, dsf[dsf_canonify(dsf, src)] >> 2); */
+    --*empty;
+    *learn = TRUE;
+}
+
+static void flood(int *board, int w, int h, int i, int n) {
+    const int sz = w * h;
+    int k;
+
+    if (board[i] == EMPTY) board[i] = -SENTINEL;
+    else if (board[i] == n) board[i] = -board[i];
+    else return;
+
+    for (k = 0; k < 4; ++k) {
+        const int x = (i % w) + dx[k];
+        const int y = (i / w) + dy[k];
+        const int idx = w*y + x;
+        if (x < 0 || x >= w || y < 0 || y >= h) continue;
+        flood(board, w, h, idx, n);
+    }
+}
+
+static int count_and_clear(int *board, int sz) {
+    int count = -1;
+    int i;
+    for (i = 0; i < sz; ++i) {
+        if (board[i] >= 0) continue;
+        ++count;
+        if (board[i] == -SENTINEL) board[i] = EMPTY;
+        else board[i] = -board[i];
+    }
+    return count;
+}
+
+static int count(int *board, int w, int h, int i) {
+    flood(board, w, h, i, board[i]);
+    return count_and_clear(board, w * h);
+}
+
+static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) {
+    int j;
+    int nhits = 0;
+    int hits[4];
+    int size = 1;
+    for (j = 0; j < 4; ++j) {
+        const int x = (i % w) + dx[j];
+        const int y = (i / w) + dy[j];
+        const int idx = w*y + x;
+        int root;
+        int m;
+        if (x < 0 || x >= w || y < 0 || y >= h) continue;
+        if (board[idx] != n) continue;
+        root = dsf_canonify(dsf, idx);
+        for (m = 0; m < nhits && root != hits[m]; ++m);
+        if (m < nhits) continue;
+        /* printf("\t  (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); */
+        size += dsf_size(dsf, root);
+        assert(dsf_size(dsf, root) >= 1);
+        hits[nhits++] = root;
+    }
+    return size;
+}
+
+/*
+ *  +---+---+---+---+---+---+---+
+ *  | 6 |   |   | 2 |   |   | 2 |
+ *  +---+---+---+---+---+---+---+
+ *  |   | 3 |   | 6 |   | 3 |   |
+ *  +---+---+---+---+---+---+---+
+ *  | 3 |   |   |   |   |   | 1 |
+ *  +---+---+---+---+---+---+---+
+ *  |   | 2 | 3 |   | 4 | 2 |   |
+ *  +---+---+---+---+---+---+---+
+ *  | 2 |   |   |   |   |   | 3 |
+ *  +---+---+---+---+---+---+---+
+ *  |   | 5 |   | 1 |   | 4 |   |
+ *  +---+---+---+---+---+---+---+
+ *  | 4 |   |   | 3 |   |   | 3 |
+ *  +---+---+---+---+---+---+---+
+ */
+
+/* Solving techniques:
+ *
+ * CONNECTED COMPONENT FORCED EXPANSION (too big):
+ * When a CC can only be expanded in one direction, because all the
+ * other ones would make the CC too big.
+ *  +---+---+---+---+---+
+ *  | 2 | 2 |   | 2 | _ |
+ *  +---+---+---+---+---+
+ *
+ * CONNECTED COMPONENT FORCED EXPANSION (too small):
+ * When a CC must include a particular square, because otherwise there
+ * would not be enough room to complete it.
+ *  +---+---+
+ *  | 2 | _ |
+ *  +---+---+
+ *
+ * DROPPING IN A ONE:
+ * When an empty square has no neighbouring empty squares and only a 1
+ * will go into the square (or other CCs would be too big).
+ *  +---+---+---+
+ *  | 2 | 2 | _ |
+ *  +---+---+---+
+ *
+ * TODO: generalise DROPPING IN A ONE: find the size of the CC of
+ * empty squares and a list of all adjacent numbers.  See if only one
+ * number in {1, ..., size} u {all adjacent numbers} is possible.
+ * Probably this is only effective for a CC size < n for some n (4?)
+ *
+ * TODO: backtracking.
+ */
+#define EXPAND(a, b)\
+expand(board, connected, dsf, w, h, a, b, &nempty, &learn)
+
+static int solver(const int *orig, int w, int h, char **solution) {
+    const int sz = w * h;
+
+    int *board = memdup(orig, sz, sizeof (int));
+    int *dsf = snew_dsf(sz); /* eqv classes: connected components */
+    int *connected = snewn(sz, int); /* connected[n] := n.next; */
+    /* cyclic disjoint singly linked lists, same partitioning as dsf.
+     * The lists lets you iterate over a partition given any member */
+
+    int nempty = 0;
+
+    int learn;
+
+    int i;
+    for (i = 0; i < sz; i++) connected[i] = i;
+
+    for (i = 0; i < sz; ++i) {
+        int j;
+        if (board[i] == EMPTY) ++nempty;
+        else for (j = 0; j < 4; ++j) {
+            const int x = (i % w) + dx[j];
+            const int y = (i / w) + dy[j];
+            const int idx = w*y + x;
+            if (x < 0 || x >= w || y < 0 || y >= h) continue;
+            if (board[i] == board[idx]) merge(dsf, connected, i, idx);
+        }
+    }
+
+/*  puts("trying to solve this:");
+    print_board(board, w, h); */
+
+    /* TODO: refactor this code, it's too long */
+    do {
+        int i;
+        learn = FALSE;
+
+        /* for every connected component */
+        for (i = 0; i < sz; ++i) {
+            int exp = SENTINEL;
+            int j;
+
+            /* If the component consists of empty squares */
+            if (board[i] == EMPTY) {
+                int k;
+                int one = TRUE;
+                for (k = 0; k < 4; ++k) {
+                    const int x = (i % w) + dx[k];
+                    const int y = (i / w) + dy[k];
+                    const int idx = w*y + x;
+                    int n;
+                    if (x < 0 || x >= w || y < 0 || y >= h) continue;
+                    if (board[idx] == EMPTY) {
+                        one = FALSE;
+                        continue;
+                    }
+                    if (one &&
+                        (board[idx] == 1 ||
+                         (board[idx] >= expandsize(board, dsf, w, h,
+                                                   i, board[idx]))))
+                        one = FALSE;
+                    assert(board[i] == EMPTY);
+                    board[i] = -SENTINEL;
+                    n = count(board, w, h, idx);
+                    assert(board[i] == EMPTY);
+                    if (n >= board[idx]) continue;
+                    EXPAND(i, idx);
+                    break;
+                }
+                if (k == 4 && one) {
+                    assert(board[i] == EMPTY);
+                    board[i] = 1;
+                    assert(nempty);
+                    --nempty;
+                    learn = TRUE;
+                }
+                continue;
+            }
+            /* printf("expanding blob of (%d, %d)\n", i % w, i / w); */
+
+            j = dsf_canonify(dsf, i);
+
+            /* (but only for each connected component) */
+            if (i != j) continue;
+
+            /* (and not if it's already complete) */
+            if (dsf_size(dsf, j) == board[j]) continue;
+
+            /* for each square j _in_ the connected component */
+            do {
+                int k;
+                /* printf("  looking at (%d, %d)\n", j % w, j / w); */
+
+                /* for each neighbouring square (idx) */
+                for (k = 0; k < 4; ++k) {
+                    const int x = (j % w) + dx[k];
+                    const int y = (j / w) + dy[k];
+                    const int idx = w*y + x;
+                    int size;
+                    /* int l;
+                       int nhits = 0;
+                       int hits[4]; */
+                    if (x < 0 || x >= w || y < 0 || y >= h) continue;
+                    if (board[idx] != EMPTY) continue;
+                    if (exp == idx) continue;
+                    /* printf("\ttrying to expand onto (%d, %d)\n", x, y); */
+
+                    /* find out the would-be size of the new connected
+                     * component if we actually expanded into idx */
+                    /*
+                    size = 1;
+                    for (l = 0; l < 4; ++l) {
+                        const int lx = x + dx[l];
+                        const int ly = y + dy[l];
+                        const int idxl = w*ly + lx;
+                        int root;
+                        int m;
+                        if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue;
+                        if (board[idxl] != board[j]) continue;
+                        root = dsf_canonify(dsf, idxl);
+                        for (m = 0; m < nhits && root != hits[m]; ++m);
+                        if (m != nhits) continue;
+                        // printf("\t  (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2);
+                        size += dsf_size(dsf, root);
+                        assert(dsf_size(dsf, root) >= 1);
+                        hits[nhits++] = root;
+                    }
+                    */
+
+                    size = expandsize(board, dsf, w, h, idx, board[j]);
+
+                    /* ... and see if that size is too big, or if we
+                     * have other expansion candidates.  Otherwise
+                     * remember the (so far) only candidate. */
+
+                    /* printf("\tthat would give a size of %d\n", size); */
+                    if (size > board[j]) continue;
+                    /* printf("\tnow knowing %d expansions\n", nexpand + 1); */
+                    if (exp != SENTINEL) goto next_i;
+                    assert(exp != idx);
+                    exp = idx;
+                }
+
+                j = connected[j]; /* next square in the same CC */
+                assert(board[i] == board[j]);
+            } while (j != i);
+            /* end: for each square j _in_ the connected component */
+
+            if (exp == SENTINEL) continue;
+            /* printf("expand b: %d -> %d\n", i, exp); */
+            EXPAND(exp, i);
+
+            next_i:
+            ;
+        }
+        /* end: for each connected component */
+    } while (learn && nempty);
+
+    /* puts("best guess:");
+       print_board(board, w, h); */
+
+    if (solution) {
+        int i;
+        assert(*solution == NULL);
+        *solution = snewn(sz + 2, char);
+        **solution = 's';
+        for (i = 0; i < sz; ++i) (*solution)[i + 1] = board[i] + '0';
+        (*solution)[sz + 1] = '\0';
+        /* We don't need the \0 for execute_move (the only user)
+         * I'm just being printf-friendly in case I wanna print */
+    }
+
+    sfree(dsf);
+    sfree(board);
+    sfree(connected);
+
+    return !nempty;
+}
+
+static int *make_dsf(int *dsf, int *board, const int w, const int h) {
+    const int sz = w * h;
+    int i;
+
+    if (!dsf)
+        dsf = snew_dsf(w * h);
+    else
+        dsf_init(dsf, w * h);
+
+    for (i = 0; i < sz; ++i) {
+        int j;
+        for (j = 0; j < 4; ++j) {
+            const int x = (i % w) + dx[j];
+            const int y = (i / w) + dy[j];
+            const int k = w*y + x;
+            if (x < 0 || x >= w || y < 0 || y >= h) continue;
+            if (board[i] == board[k]) dsf_merge(dsf, i, k);
+        }
+    }
+    return dsf;
+}
+
+/*
+static int filled(int *board, int *randomize, int k, int n) {
+    int i;
+    if (board == NULL) return FALSE;
+    if (randomize == NULL) return FALSE;
+    if (k > n) return FALSE;
+    for (i = 0; i < k; ++i) if (board[randomize[i]] == 0) return FALSE;
+    for (; i < n; ++i) if (board[randomize[i]] != 0) return FALSE;
+    return TRUE;
+}
+*/
+
+static int *g_board;
+static int compare(const void *pa, const void *pb) {
+    if (!g_board) return 0;
+    return g_board[*(const int *)pb] - g_board[*(const int *)pa];
+}
+
+static char *new_game_desc(game_params *params, random_state *rs,
+                           char **aux, int interactive)
+{
+    const int w = params->w;
+    const int h = params->h;
+    const int sz = w * h;
+    int *board = snewn(sz, int);
+    int *randomize = snewn(sz, int);
+    int *solver_board = snewn(sz, int);
+    char *game_description = snewn(sz + 1, char);
+    int i;
+
+    for (i = 0; i < sz; ++i) {
+        board[i] = EMPTY;
+        randomize[i] = i;
+    }
+
+    make_board(board, w, h, rs);
+    memcpy(solver_board, board, sz * sizeof (int));
+
+    g_board = board;
+    qsort(randomize, sz, sizeof (int), compare);
+
+    /* since more clues only helps and never hurts, one pass will do
+     * just fine: if we can remove clue n with k clues of index > n,
+     * we could have removed clue n with >= k clues of index > n.
+     * So an additional pass wouldn't do anything [use induction]. */
+    for (i = 0; i < sz; ++i) {
+        solver_board[randomize[i]] = EMPTY;
+        if (!solver(solver_board, w, h, NULL))
+            solver_board[randomize[i]] = board[randomize[i]];
+    }
+
+    for (i = 0; i < sz; ++i) {
+        assert(solver_board[i] >= 0);
+        assert(solver_board[i] < 10);
+        game_description[i] = solver_board[i] + '0';
+    }
+    game_description[sz] = '\0';
+
+/*
+  solver(solver_board, w, h, aux);
+  print_board(solver_board, w, h);
+*/
+
+    sfree(randomize);
+    sfree(solver_board);
+    sfree(board);
+
+    return game_description;
+}
+
+static char *validate_desc(game_params *params, char *desc)
+{
+    int i;
+    const int sz = params->w * params->h;
+    const char m = '0' + max(max(params->w, params->h), 3);
+
+    /* printf("desc = '%s'; sz = %d\n", desc, sz); */
+
+    for (i = 0; desc[i] && i < sz; ++i)
+        if (!isdigit((unsigned char) *desc))
+	    return "non-digit in string";
+	else if (desc[i] > m)
+	    return "too large digit in string";
+    if (desc[i]) return "string too long";
+    else if (i < sz) return "string too short";
+    return NULL;
+}
+
+static game_state *new_game(midend *me, game_params *params, char *desc)
+{
+    game_state *state = snew(game_state);
+    int sz = params->w * params->h;
+    int i;
+
+    state->cheated = state->completed = FALSE;
+    state->shared = snew(struct shared_state);
+    state->shared->refcnt = 1;
+    state->shared->params = *params; /* struct copy */
+    state->shared->clues = snewn(sz, int);
+    for (i = 0; i < sz; ++i) state->shared->clues[i] = desc[i] - '0';
+    state->board = memdup(state->shared->clues, sz, sizeof (int));
+
+    return state;
+}
+
+static game_state *dup_game(game_state *state)
+{
+    const int sz = state->shared->params.w * state->shared->params.h;
+    game_state *ret = snew(game_state);
+
+    ret->board = memdup(state->board, sz, sizeof (int));
+    ret->shared = state->shared;
+    ret->cheated = state->cheated;
+    ret->completed = state->completed;
+    ++ret->shared->refcnt;
+
+    return ret;
+}
+
+static void free_game(game_state *state)
+{
+    assert(state);
+    sfree(state->board);
+    if (--state->shared->refcnt == 0) {
+        sfree(state->shared->clues);
+        sfree(state->shared);
+    }
+    sfree(state);
+}
+
+static char *solve_game(game_state *state, game_state *currstate,
+                        char *aux, char **error)
+{
+    if (aux == NULL) {
+        const int w = state->shared->params.w;
+        const int h = state->shared->params.h;
+        if (!solver(state->board, w, h, &aux))
+            *error = "Sorry, I couldn't find a solution";
+    }
+    return aux;
+}
+
+/*****************************************************************************
+ * USER INTERFACE STATE AND ACTION                                           *
+ *****************************************************************************/
+
+struct game_ui {
+    int x, y; /* highlighted square, or (-1, -1) if none */
+};
+
+static game_ui *new_ui(game_state *state)
+{
+    game_ui *ui = snew(game_ui);
+
+    ui->x = ui->y = -1;
+
+    return ui;
+}
+
+static void free_ui(game_ui *ui)
+{
+    sfree(ui);
+}
+
+static char *encode_ui(game_ui *ui)
+{
+    return NULL;
+}
+
+static void decode_ui(game_ui *ui, char *encoding)
+{
+}
+
+static void game_changed_state(game_ui *ui, game_state *oldstate,
+                               game_state *newstate)
+{
+}
+
+#define PREFERRED_TILE_SIZE 32
+#define TILE_SIZE (ds->tilesize)
+#define BORDER (TILE_SIZE / 2)
+#define BORDER_WIDTH (TILE_SIZE / 32)
+
+struct game_drawstate {
+    struct game_params params;
+    int tilesize;
+    int started;
+    int *v, *flags;
+    int *dsf_scratch, *border_scratch;
+};
+
+static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
+                            int x, int y, int button)
+{
+    const int w = state->shared->params.w;
+    const int h = state->shared->params.h;
+
+    const int tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
+    const int ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
+
+    assert(ui);
+    assert(ds);
+
+    button &= ~MOD_MASK;
+
+    if (tx >= 0 && tx < w && ty >= 0 && ty < h) {
+        if (button == LEFT_BUTTON) {
+            if ((tx == ui->x && ty == ui->y) || state->shared->clues[w*ty+tx])
+                ui->x = ui->y = -1;
+            else ui->x = tx, ui->y = ty;
+            return ""; /* redraw */
+        }
+    }
+
+    assert((ui->x == -1) == (ui->y == -1));
+    if (ui->x == -1) return NULL;
+    assert(state->shared->clues[w*ui->y + ui->x] == 0);
+
+    switch (button) {
+      case ' ':
+      case '\r':
+      case '\n':
+      case '\b':
+      case '\177':
+        button = 0;
+        break;
+      default:
+        if (!isdigit(button)) return NULL;
+        button -= '0';
+        if (button > (w == 2 && h == 2? 3: max(w, h))) return NULL;
+    }
+
+    {
+        const int i = w*ui->y + ui->x;
+        char buf[64];
+        sprintf(buf, "%d_%d", i, button);
+        ui->x = ui->y = -1;
+        return dupstr(buf);
+    }
+}
+
+static game_state *execute_move(game_state *state, char *move)
+{
+    game_state *new_state;
+
+    if (*move == 's') {
+        const int sz = state->shared->params.w * state->shared->params.h;
+        int i = 0;
+        new_state = dup_game(state);
+        for (++move; i < sz; ++i) new_state->board[i] = move[i] - '0';
+        new_state->cheated = TRUE;
+    } else {
+        char *endptr;
+        const int i = strtol(move, &endptr, errno = 0);
+        int value;
+        if (errno == ERANGE) return NULL;
+        if (endptr == move) return NULL;
+        if (*endptr != '_') return NULL;
+        move = endptr + 1;
+        value = strtol(move, &endptr, 0);
+        if (endptr == move) return NULL;
+        if (*endptr != '\0') return NULL;
+        new_state = dup_game(state);
+        new_state->board[i] = value;
+    }
+
+    /*
+     * Check for completion.
+     */
+    if (!new_state->completed) {
+        const int w = new_state->shared->params.w;
+        const int h = new_state->shared->params.h;
+        const int sz = w * h;
+        int *dsf = make_dsf(NULL, new_state->board, w, h);
+        int i;
+        for (i = 0; i < sz && new_state->board[i] == dsf_size(dsf, i); ++i);
+        sfree(dsf);
+        if (i == sz)
+            new_state->completed = TRUE;
+    }
+
+    return new_state;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing routines.
+ */
+
+#define FLASH_TIME 0.4F
+
+#define COL_CLUE COL_GRID
+enum {
+    COL_BACKGROUND,
+    COL_GRID,
+    COL_HIGHLIGHT,
+    COL_CORRECT,
+    COL_ERROR,
+    COL_USER,
+    NCOLOURS
+};
+
+static void game_compute_size(game_params *params, int tilesize,
+                              int *x, int *y)
+{
+    *x = (params->w + 1) * tilesize;
+    *y = (params->h + 1) * tilesize;
+}
+
+static void game_set_size(drawing *dr, game_drawstate *ds,
+                          game_params *params, int tilesize)
+{
+    ds->tilesize = tilesize;
+}
+
+static float *game_colours(frontend *fe, int *ncolours)
+{
+    float *ret = snewn(3 * NCOLOURS, float);
+
+    frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+    ret[COL_GRID * 3 + 0] = 0.0F;
+    ret[COL_GRID * 3 + 1] = 0.0F;
+    ret[COL_GRID * 3 + 2] = 0.0F;
+
+    ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
+
+    ret[COL_CORRECT * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_CORRECT * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_CORRECT * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2];
+
+    ret[COL_ERROR * 3 + 0] = 1.0F;
+    ret[COL_ERROR * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_ERROR * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
+
+    ret[COL_USER * 3 + 0] = 0.0F;
+    ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_USER * 3 + 2] = 0.0F;
+
+    *ncolours = NCOLOURS;
+    return ret;
+}
+
+static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
+{
+    struct game_drawstate *ds = snew(struct game_drawstate);
+    int i;
+
+    ds->tilesize = PREFERRED_TILE_SIZE;
+    ds->started = 0;
+    ds->params = state->shared->params;
+    ds->v = snewn(ds->params.w * ds->params.h, int);
+    ds->flags = snewn(ds->params.w * ds->params.h, int);
+    for (i = 0; i < ds->params.w * ds->params.h; i++)
+	ds->v[i] = ds->flags[i] = -1;
+    ds->border_scratch = snewn(ds->params.w * ds->params.h, int);
+    ds->dsf_scratch = NULL;
+
+    return ds;
+}
+
+static void game_free_drawstate(drawing *dr, game_drawstate *ds)
+{
+    sfree(ds->v);
+    sfree(ds->flags);
+    sfree(ds->border_scratch);
+    sfree(ds->dsf_scratch);
+    sfree(ds);
+}
+
+#define BORDER_U   0x001
+#define BORDER_D   0x002
+#define BORDER_L   0x004
+#define BORDER_R   0x008
+#define BORDER_UR  0x010
+#define BORDER_DR  0x020
+#define BORDER_UL  0x040
+#define BORDER_DL  0x080
+#define CURSOR_BG  0x100
+#define CORRECT_BG 0x200
+#define ERROR_BG   0x400
+#define USER_COL   0x800
+
+static void draw_square(drawing *dr, game_drawstate *ds, int x, int y,
+                        int n, int flags)
+{
+    assert(dr);
+    assert(ds);
+
+    /*
+     * Clear the square.
+     */
+    draw_rect(dr,
+              BORDER + x*TILE_SIZE + 1,
+              BORDER + y*TILE_SIZE + 1,
+              TILE_SIZE - 1,
+              TILE_SIZE - 1,
+              (flags & CURSOR_BG ? COL_HIGHLIGHT :
+               flags & ERROR_BG ? COL_ERROR :
+               flags & CORRECT_BG ? COL_CORRECT : COL_BACKGROUND));
+
+    /*
+     * Draw the number.
+     */
+    if (n) {
+        char buf[2];
+        buf[0] = n + '0';
+        buf[1] = '\0';
+        draw_text(dr,
+                  (x + 1) * TILE_SIZE,
+                  (y + 1) * TILE_SIZE,
+                  FONT_VARIABLE,
+                  TILE_SIZE / 2,
+                  ALIGN_VCENTRE | ALIGN_HCENTRE,
+                  flags & USER_COL ? COL_USER : COL_CLUE,
+                  buf);
+    }
+
+    /*
+     * Draw bold lines around the borders.
+     */
+    if (flags & BORDER_L)
+        draw_rect(dr,
+                  BORDER + x*TILE_SIZE + 1,
+                  BORDER + y*TILE_SIZE + 1,
+                  BORDER_WIDTH,
+                  TILE_SIZE - 1,
+                  COL_GRID);
+    if (flags & BORDER_U)
+        draw_rect(dr,
+                  BORDER + x*TILE_SIZE + 1,
+                  BORDER + y*TILE_SIZE + 1,
+                  TILE_SIZE - 1,
+                  BORDER_WIDTH,
+                  COL_GRID);
+    if (flags & BORDER_R)
+        draw_rect(dr,
+                  BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
+                  BORDER + y*TILE_SIZE + 1,
+                  BORDER_WIDTH,
+                  TILE_SIZE - 1,
+                  COL_GRID);
+    if (flags & BORDER_D)
+        draw_rect(dr,
+                  BORDER + x*TILE_SIZE + 1,
+                  BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
+                  TILE_SIZE - 1,
+                  BORDER_WIDTH,
+                  COL_GRID);
+    if (flags & BORDER_UL)
+        draw_rect(dr,
+                  BORDER + x*TILE_SIZE + 1,
+                  BORDER + y*TILE_SIZE + 1,
+                  BORDER_WIDTH,
+                  BORDER_WIDTH,
+                  COL_GRID);
+    if (flags & BORDER_UR)
+        draw_rect(dr,
+                  BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
+                  BORDER + y*TILE_SIZE + 1,
+                  BORDER_WIDTH,
+                  BORDER_WIDTH,
+                  COL_GRID);
+    if (flags & BORDER_DL)
+        draw_rect(dr,
+                  BORDER + x*TILE_SIZE + 1,
+                  BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
+                  BORDER_WIDTH,
+                  BORDER_WIDTH,
+                  COL_GRID);
+    if (flags & BORDER_DR)
+        draw_rect(dr,
+                  BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH,
+                  BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH,
+                  BORDER_WIDTH,
+                  BORDER_WIDTH,
+                  COL_GRID);
+    
+    draw_update(dr,
+		BORDER + x*TILE_SIZE - 1,
+		BORDER + y*TILE_SIZE - 1,
+		TILE_SIZE + 3,
+		TILE_SIZE + 3);
+}
+
+static void draw_grid(drawing *dr, game_drawstate *ds, game_state *state,
+                      game_ui *ui, int flashy, int borders, int shading)
+{
+    const int w = state->shared->params.w;
+    const int h = state->shared->params.h;
+    int x;
+    int y;
+
+    /*
+     * Build a dsf for the board in its current state, to use for
+     * highlights and hints.
+     */
+    ds->dsf_scratch = make_dsf(ds->dsf_scratch, state->board, w, h);
+
+    /*
+     * Work out where we're putting borders between the cells.
+     */
+    for (y = 0; y < w*h; y++)
+	ds->border_scratch[y] = 0;
+
+    for (y = 0; y < h; y++)
+        for (x = 0; x < w; x++) {
+            int dx, dy;
+            int v1, s1, v2, s2;
+
+            for (dx = 0; dx <= 1; dx++) {
+                int border = FALSE;
+
+                dy = 1 - dx;
+
+                if (x+dx >= w || y+dy >= h)
+                    continue;
+
+                v1 = state->board[y*w+x];
+                v2 = state->board[(y+dy)*w+(x+dx)];
+                s1 = dsf_size(ds->dsf_scratch, y*w+x);
+                s2 = dsf_size(ds->dsf_scratch, (y+dy)*w+(x+dx));
+
+                /*
+                 * We only ever draw a border between two cells if
+                 * they don't have the same contents.
+                 */
+                if (v1 != v2) {
+                    /*
+                     * But in that situation, we don't always draw
+                     * a border. We do if the two cells both
+                     * contain actual numbers...
+                     */
+                    if (v1 && v2)
+                        border = TRUE;
+
+                    /*
+                     * ... or if at least one of them is a
+                     * completed or overfull omino.
+                     */
+                    if (v1 && s1 >= v1)
+                        border = TRUE;
+                    if (v2 && s2 >= v2)
+                        border = TRUE;
+                }
+
+                if (border)
+                    ds->border_scratch[y*w+x] |= (dx ? 1 : 2);
+            }
+        }
+
+    /*
+     * Actually do the drawing.
+     */
+    for (y = 0; y < h; ++y)
+        for (x = 0; x < w; ++x) {
+            /*
+             * Determine what we need to draw in this square.
+             */
+            int v = state->board[y*w+x];
+            int flags = 0;
+
+            if (flashy || !shading) {
+                /* clear all background flags */
+            } else if (x == ui->x && y == ui->y) {
+                flags |= CURSOR_BG;
+            } else if (v) {
+                int size = dsf_size(ds->dsf_scratch, y*w+x);
+                if (size == v)
+                    flags |= CORRECT_BG;
+                else if (size > v)
+                    flags |= ERROR_BG;
+            }
+
+            /*
+             * Borders at the very edges of the grid are
+             * independent of the `borders' flag.
+             */
+            if (x == 0)
+                flags |= BORDER_L;
+            if (y == 0)
+                flags |= BORDER_U;
+            if (x == w-1)
+                flags |= BORDER_R;
+            if (y == h-1)
+                flags |= BORDER_D;
+
+            if (borders) {
+                if (x == 0 || (ds->border_scratch[y*w+(x-1)] & 1))
+                    flags |= BORDER_L;
+                if (y == 0 || (ds->border_scratch[(y-1)*w+x] & 2))
+                    flags |= BORDER_U;
+                if (x == w-1 || (ds->border_scratch[y*w+x] & 1))
+                    flags |= BORDER_R;
+                if (y == h-1 || (ds->border_scratch[y*w+x] & 2))
+                    flags |= BORDER_D;
+
+                if (y > 0 && x > 0 && (ds->border_scratch[(y-1)*w+(x-1)]))
+                    flags |= BORDER_UL;
+                if (y > 0 && x < w-1 &&
+                    ((ds->border_scratch[(y-1)*w+x] & 1) ||
+                     (ds->border_scratch[(y-1)*w+(x+1)] & 2)))
+                    flags |= BORDER_UR;
+                if (y < h-1 && x > 0 &&
+                    ((ds->border_scratch[y*w+(x-1)] & 2) ||
+                     (ds->border_scratch[(y+1)*w+(x-1)] & 1)))
+                    flags |= BORDER_DL;
+                if (y < h-1 && x < w-1 &&
+                    ((ds->border_scratch[y*w+(x+1)] & 2) ||
+                     (ds->border_scratch[(y+1)*w+x] & 1)))
+                    flags |= BORDER_DR;
+            }
+
+            if (!state->shared->clues[y*w+x])
+                flags |= USER_COL;
+
+            if (ds->v[y*w+x] != v || ds->flags[y*w+x] != flags) {
+                draw_square(dr, ds, x, y, v, flags);
+                ds->v[y*w+x] = v;
+                ds->flags[y*w+x] = flags;
+            }
+        }
+}
+
+static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
+                        game_state *state, int dir, game_ui *ui,
+                        float animtime, float flashtime)
+{
+    const int w = state->shared->params.w;
+    const int h = state->shared->params.h;
+
+    const int flashy =
+        flashtime > 0 &&
+        (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3);
+
+    if (!ds->started) {
+        /*
+         * The initial contents of the window are not guaranteed and
+         * can vary with front ends. To be on the safe side, all games
+         * should start by drawing a big background-colour rectangle
+         * covering the whole window.
+         */
+        draw_rect(dr, 0, 0, 10*ds->tilesize, 10*ds->tilesize, COL_BACKGROUND);
+
+	/*
+	 * Smaller black rectangle which is the main grid.
+	 */
+	draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
+		  w*TILE_SIZE + 2*BORDER_WIDTH + 1,
+		  h*TILE_SIZE + 2*BORDER_WIDTH + 1,
+		  COL_GRID);
+
+        ds->started = TRUE;
+    }
+
+    draw_grid(dr, ds, state, ui, flashy, TRUE, TRUE);
+}
+
+static float game_anim_length(game_state *oldstate, game_state *newstate,
+                              int dir, game_ui *ui)
+{
+    return 0.0F;
+}
+
+static float game_flash_length(game_state *oldstate, game_state *newstate,
+                               int dir, game_ui *ui)
+{
+    assert(oldstate);
+    assert(newstate);
+    assert(newstate->shared);
+    assert(oldstate->shared == newstate->shared);
+    if (!oldstate->completed && newstate->completed &&
+	!oldstate->cheated && !newstate->cheated)
+        return FLASH_TIME;
+    return 0.0F;
+}
+
+static int game_timing_state(game_state *state, game_ui *ui)
+{
+    return TRUE;
+}
+
+static void game_print_size(game_params *params, float *x, float *y)
+{
+    int pw, ph;
+
+    /*
+     * I'll use 6mm squares by default.
+     */
+    game_compute_size(params, 600, &pw, &ph);
+    *x = pw / 100.0;
+    *y = ph / 100.0;
+}
+
+static void game_print(drawing *dr, game_state *state, int tilesize)
+{
+    const int w = state->shared->params.w;
+    const int h = state->shared->params.h;
+    int c, i, borders;
+
+    /* Ick: fake up `ds->tilesize' for macro expansion purposes */
+    game_drawstate *ds = game_new_drawstate(dr, state);
+    game_set_size(dr, ds, NULL, tilesize);
+
+    c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
+    c = print_mono_colour(dr, 0); assert(c == COL_GRID);
+    c = print_mono_colour(dr, 1); assert(c == COL_HIGHLIGHT);
+    c = print_mono_colour(dr, 1); assert(c == COL_CORRECT);
+    c = print_mono_colour(dr, 1); assert(c == COL_ERROR);
+    c = print_mono_colour(dr, 0); assert(c == COL_USER);
+
+    /*
+     * Border.
+     */
+    draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
+              w*TILE_SIZE + 2*BORDER_WIDTH + 1,
+              h*TILE_SIZE + 2*BORDER_WIDTH + 1,
+              COL_GRID);
+
+    /*
+     * We'll draw borders between the ominoes iff the grid is not
+     * pristine. So scan it to see if it is.
+     */
+    borders = FALSE;
+    for (i = 0; i < w*h; i++)
+        if (state->board[i] && !state->shared->clues[i])
+            borders = TRUE;
+
+    /*
+     * Draw grid.
+     */
+    draw_grid(dr, ds, state, NULL, FALSE, borders, FALSE);
+
+    /*
+     * Clean up.
+     */
+    game_free_drawstate(dr, ds);
+}
+
+#ifdef COMBINED
+#define thegame filling
+#endif
+
+const struct game thegame = {
+    "Filling", "games.filling", "filling",
+    default_params,
+    game_fetch_preset,
+    decode_params,
+    encode_params,
+    free_params,
+    dup_params,
+    TRUE, game_configure, custom_params,
+    validate_params,
+    new_game_desc,
+    validate_desc,
+    new_game,
+    dup_game,
+    free_game,
+    TRUE, solve_game,
+    TRUE, game_text_format,
+    new_ui,
+    free_ui,
+    encode_ui,
+    decode_ui,
+    game_changed_state,
+    interpret_move,
+    execute_move,
+    PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
+    game_colours,
+    game_new_drawstate,
+    game_free_drawstate,
+    game_redraw,
+    game_anim_length,
+    game_flash_length,
+    TRUE, FALSE, game_print_size, game_print,
+    FALSE,				   /* wants_statusbar */
+    FALSE, game_timing_state,
+    0,					   /* flags */
+};
+
+#ifdef STANDALONE_SOLVER /* solver? hah! */
+
+int main(int argc, char **argv) {
+    while (*++argv) {
+        game_params *params;
+        game_state *state;
+        char *par;
+        char *desc;
+
+        for (par = desc = *argv; *desc != '\0' && *desc != ':'; ++desc);
+        if (*desc == '\0') {
+            fprintf(stderr, "bad puzzle id: %s", par);
+            continue;
+        }
+
+        *desc++ = '\0';
+
+        params = snew(game_params);
+        decode_params(params, par);
+        state = new_game(NULL, params, desc);
+        if (solver(state->board, params->w, params->h, NULL))
+            printf("%s:%s: solvable\n", par, desc);
+        else
+            printf("%s:%s: not solvable\n", par, desc);
+    }
+    return 0;
+}
+
+#endif
--- a/icons/Makefile
+++ b/icons/Makefile
@@ -1,8 +1,8 @@
 # Makefile for Puzzles icons.
 
-PUZZLES = blackbox bridges cube dominosa fifteen flip galaxies guess inertia \
-	  lightup loopy map mines net netslide pattern pegs rect samegame \
-	  sixteen slant solo tents twiddle unequal untangle
+PUZZLES = blackbox bridges cube dominosa fifteen filling flip galaxies guess \
+	  inertia lightup loopy map mines net netslide pattern pegs rect \
+	  samegame sixteen slant solo tents twiddle unequal untangle
 
 BASE = $(patsubst %,%-base.png,$(PUZZLES))
 WEB = $(patsubst %,%-web.png,$(PUZZLES))
@@ -55,6 +55,7 @@
 bridges-ibase.png : override CROP=264x264 107x107+157+157
 dominosa-ibase.png : override CROP=304x272 152x152+152+0
 fifteen-ibase.png : override CROP=240x240 120x120+0+120
+filling-ibase.png : override CROP=256x256 131x131+15+79
 flip-ibase.png : override CROP=288x288 145x145+120+72
 galaxies-ibase.png : override CROP=288x288 165x165+0+0
 guess-ibase.png : override CROP=263x420 178x178+75+17
--- /dev/null
+++ b/icons/filling.sav
@@ -1,0 +1,38 @@
+SAVEFILE:41:Simon Tatham's Portable Puzzle Collection
+VERSION :1:1
+GAME    :7:Filling
+PARAMS  :3:7x7
+CPARAMS :3:7x7
+SEED    :15:279172739852696
+DESC    :49:0000000031051240010004000001106171000400001013105
+NSTATES :2:30
+STATEPOS:2:13
+MOVE    :4:38_3
+MOVE    :4:39_3
+MOVE    :4:36_4
+MOVE    :4:43_4
+MOVE    :4:35_4
+MOVE    :4:47_5
+MOVE    :4:40_5
+MOVE    :4:34_5
+MOVE    :4:41_5
+MOVE    :4:25_7
+MOVE    :4:23_6
+MOVE    :4:16_6
+MOVE    :4:18_7
+MOVE    :4:19_7
+MOVE    :4:20_7
+MOVE    :4:26_7
+MOVE    :4:24_7
+MOVE    :4:29_6
+MOVE    :4:22_6
+MOVE    :4:15_6
+MOVE    :3:7_4
+MOVE    :3:0_4
+MOVE    :3:1_3
+MOVE    :3:2_3
+MOVE    :3:6_2
+MOVE    :3:5_5
+MOVE    :3:4_5
+MOVE    :3:3_5
+MOVE    :4:10_5
--- a/puzzles.but
+++ b/puzzles.but
@@ -2204,12 +2204,52 @@
 
 
 
+\C{filling} \i{Filling}
 
+\cfg{winhelp-topic}{games.filling}
+
+You have a grid of squares, some of which contain digits, and the
+rest of which are empty. Your job is to fill in digits in the empty
+squares, in such a way that each connected region of squares all
+containing the same digit has an area equal to that digit.
+
+(\q{Connected region}, for the purposes of this game, does not count
+diagonally separated squares as adjacent.)
+
+For example, it follows that no square can contain a zero, and that
+two adjacent squares can not both contain a one.  No region has an
+area greater than 9 (because then its area would not be a single
+digit).
+
+Credit for this puzzle goes to \i{Nikoli} \k{nikoli-fillomino}.
+
+Filling was contributed to this collection by Jonas K\u00F6{oe}lker.
+
+\B{nikoli-fillomino}
+\W{http://www.nikoli.co.jp/en/puzzles/fillomino/}\cw{http://www.nikoli.co.jp/en/puzzles/fillomino/}
+
+\H{filling-controls} \I{controls, for Filling}Filling controls
+
+To play Filling, simply click the mouse in any empty square and then
+type a digit on the keyboard to fill that square.  If you make a
+mistake, click the mouse in the incorrect square and press 0, Space,
+Backspace or Enter to clear it again (or use the Undo feature).
+
+(All the actions described in \k{common-actions} are also available.)
+
+\H{filling-parameters} \I{parameters, for Filling}Filling parameters
+
+Filling allows you to configure the number of rows and columns of the
+grid, through the \q{Type} menu.
+
+
+
 \A{licence} \I{MIT licence}\ii{Licence}
 
 This software is \i{copyright} 2004-2007 Simon Tatham.
 
-Portions copyright Richard Boulton, James Harvey and Mike Pinna.
+Portions copyright Richard Boulton, James Harvey, Mike Pinna and
+Jonas K\u00F6{oe}lker.
 
 Permission is hereby granted, free of charge, to any person
 obtaining a copy of this software and associated documentation files
--- a/puzzles.h
+++ b/puzzles.h
@@ -288,6 +288,7 @@
  * indicating whether the canonical element is inverse to val. */
 int edsf_canonify(int *dsf, int val, int *inverse);
 int dsf_canonify(int *dsf, int val);
+int dsf_size(int *dsf, int val);
 
 /* Allow the caller to specify that two elements should be in the same
  * equivalence class.  If 'inverse' is TRUE, the elements are actually opposite