ref: bed038e17f647becf7ab418c721cb0d2624017e8
parent: a605a17d05acf4d981219c5e8db3def0b67a5c4a
author: Simon Tatham <[email protected]>
date: Fri Jul 22 07:55:50 EDT 2005
The `Solve' operation now rotates and/or reflects the solution grid to bring it as close as possible to the current game state. This means that if you request `Solve' after solving a puzzle yourself, with the intention of finding out how similar your solution is to the program's, then you will mostly see the differences in _shape_ rather than those being masked by the fact that yours happened to be the other way up. [originally from svn r6126]
--- a/untangle.c
+++ b/untangle.c
@@ -726,12 +726,147 @@
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
+ int n = state->params.n;
+ int matrix[4];
+ point *pts;
+ int i, j, besti;
+ float bestd;
+ char buf[80], *ret;
+ int retlen, retsize;
+
if (!aux) {
*error = "Solution not known for this puzzle";
return NULL;
}
- return dupstr(aux);
+ /*
+ * Decode the aux_info to get the original point positions.
+ */
+ pts = snewn(n, point);
+ aux++; /* eat 'S' */
+ for (i = 0; i < n; i++) {
+ int p, k;
+ long x, y, d;
+ int ret = sscanf(aux, ";P%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k);
+ if (ret != 4 || p != i) {
+ *error = "Internal error: aux_info badly formatted";
+ sfree(pts);
+ return NULL;
+ }
+ pts[i].x = x;
+ pts[i].y = y;
+ pts[i].d = d;
+ aux += k;
+ }
+
+ /*
+ * Now go through eight possible symmetries of the point set.
+ * For each one, work out the sum of the Euclidean distances
+ * between the points' current positions and their new ones.
+ *
+ * We're squaring distances here, which means we're at risk of
+ * integer overflow. Fortunately, there's no real need to be
+ * massively careful about rounding errors, since this is a
+ * non-essential bit of the code; so I'll just work in floats
+ * internally.
+ */
+ besti = -1;
+ bestd = 0.0F;
+
+ for (i = 0; i < 8; i++) {
+ float d;
+
+ matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
+ matrix[i & 1] = (i & 2) ? +1 : -1;
+ matrix[3-(i&1)] = (i & 4) ? +1 : -1;
+
+ d = 0.0F;
+ for (j = 0; j < n; j++) {
+ float px = (float)pts[j].x / pts[j].d;
+ float py = (float)pts[j].y / pts[j].d;
+ float sx = (float)currstate->pts[j].x / currstate->pts[j].d;
+ float sy = (float)currstate->pts[j].y / currstate->pts[j].d;
+ float cx = (float)currstate->w / 2;
+ float cy = (float)currstate->h / 2;
+ float ox, oy, dx, dy;
+
+ px -= cx;
+ py -= cy;
+
+ ox = matrix[0] * px + matrix[1] * py;
+ oy = matrix[2] * px + matrix[3] * py;
+
+ ox += cx;
+ oy += cy;
+
+ dx = ox - sx;
+ dy = oy - sy;
+
+ d += dx*dx + dy*dy;
+ }
+
+ if (besti < 0 || bestd > d) {
+ besti = i;
+ bestd = d;
+ }
+ }
+
+ assert(besti >= 0);
+
+ /*
+ * Now we know which symmetry is closest to the points' current
+ * positions. Use it.
+ */
+ matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
+ matrix[besti & 1] = (besti & 2) ? +1 : -1;
+ matrix[3-(besti&1)] = (besti & 4) ? +1 : -1;
+
+ retsize = 256;
+ ret = snewn(retsize, char);
+ retlen = 0;
+ ret[retlen++] = 'S';
+ ret[retlen] = '\0';
+
+ for (i = 0; i < n; i++) {
+ float px = (float)pts[i].x / pts[i].d;
+ float py = (float)pts[i].y / pts[i].d;
+ float cx = (float)currstate->w / 2;
+ float cy = (float)currstate->h / 2;
+ float ox, oy;
+ int extra;
+
+ px -= cx;
+ py -= cy;
+
+ ox = matrix[0] * px + matrix[1] * py;
+ oy = matrix[2] * px + matrix[3] * py;
+
+ ox += cx;
+ oy += cy;
+
+ /*
+ * Use a fixed denominator of 2, because we know the
+ * original points were on an integer grid offset by 1/2.
+ */
+ pts[i].d = 2;
+ ox *= pts[i].d;
+ oy *= pts[i].d;
+ pts[i].x = ox + 0.5;
+ pts[i].y = oy + 0.5;
+
+ extra = sprintf(buf, ";P%d:%ld,%ld/%ld", i,
+ pts[i].x, pts[i].y, pts[i].d);
+ if (retlen + extra >= retsize) {
+ retsize = retlen + extra + 256;
+ ret = sresize(ret, retsize, char);
+ }
+ strcpy(ret + retlen, buf);
+ retlen += extra;
+ }
+
+ sfree(pts);
+
+ return ret;
}
static char *game_text_format(game_state *state)