ref: b9547673c6462bf73e642328300479df6df71d7b
parent: 04e3e09b8743acd1fffc7b756d876f47cbb35a88
author: Simon Tatham <[email protected]>
date: Sat Oct 28 11:38:53 EDT 2006
Mike Pinna has done some major reworking of the Loopy solver, giving rise to a new Hard difficulty level. [originally from svn r6880]
--- a/dsf.c
+++ b/dsf.c
@@ -1,38 +1,156 @@
/*
- * dsf.c: two small functions to handle a disjoint set forest,
+ * dsf.c: some functions to handle a disjoint set forest,
* which is a data structure useful in any solver which has to
* worry about avoiding closed loops.
*/
+#include <assert.h>
+#include <string.h>
+
#include "puzzles.h"
-int dsf_canonify(int *dsf, int val)
+void print_dsf(int *dsf, int size)
{
- int v2 = val;
+ int *printed_elements = snewn(size, int);
+ int *equal_elements = snewn(size, int);
+ int *inverse_elements = snewn(size, int);
+ int printed_count = 0, equal_count, inverse_count;
+ int i, n, inverse;
- while (dsf[val] != val)
- val = dsf[val];
+ memset(printed_elements, -1, sizeof(int) * size);
- while (v2 != val) {
- int tmp = dsf[v2];
- dsf[v2] = val;
- v2 = tmp;
+ while (1) {
+ equal_count = 0;
+ inverse_count = 0;
+ for (i = 0; i < size; ++i) {
+ if (!memchr(printed_elements, i, sizeof(int) * size))
+ break;
+ }
+ if (i == size)
+ goto done;
+
+ i = dsf_canonify(dsf, i);
+
+ for (n = 0; n < size; ++n) {
+ if (edsf_canonify(dsf, n, &inverse) == i) {
+ if (inverse)
+ inverse_elements[inverse_count++] = n;
+ else
+ equal_elements[equal_count++] = n;
+ }
+ }
+
+ for (n = 0; n < equal_count; ++n) {
+ fprintf(stderr, "%d ", equal_elements[n]);
+ printed_elements[printed_count++] = equal_elements[n];
+ }
+ if (inverse_count) {
+ fprintf(stderr, "!= ");
+ for (n = 0; n < inverse_count; ++n) {
+ fprintf(stderr, "%d ", inverse_elements[n]);
+ printed_elements[printed_count++] = inverse_elements[n];
+ }
+ }
+ fprintf(stderr, "\n");
}
+done:
- return val;
+ sfree(printed_elements);
+ sfree(equal_elements);
+ sfree(inverse_elements);
}
+int *snew_dsf(int size)
+{
+ int i;
+ int *ret;
+
+ ret = snewn(size, int);
+ for (i = 0; i < size; i++) {
+ /* Bottom bit of each element of this array stores whether that element
+ * is opposite to its parent, which starts off as false */
+ ret[i] = i << 1;
+ }
+
+ /*print_dsf(ret, size); */
+
+ return ret;
+}
+
+int dsf_canonify(int *dsf, int index)
+{
+ return edsf_canonify(dsf, index, NULL);
+}
+
void dsf_merge(int *dsf, int v1, int v2)
{
- v1 = dsf_canonify(dsf, v1);
- v2 = dsf_canonify(dsf, v2);
- dsf[v2] = v1;
+ edsf_merge(dsf, v1, v2, FALSE);
}
-void dsf_init(int *dsf, int len)
+int edsf_canonify(int *dsf, int index, int *inverse_return)
{
- int i;
+ int start_index = index, canonical_index;
+ int inverse = 0;
- for (i = 0; i < len; i++)
- dsf[i] = i;
+/* fprintf(stderr, "dsf = %p\n", dsf); */
+/* fprintf(stderr, "Canonify %2d\n", index); */
+
+ assert(index >= 0);
+
+ /* Find the index of the canonical element of the 'equivalence class' of
+ * which start_index is a member, and figure out whether start_index is the
+ * same as or inverse to that. */
+ while ((dsf[index] >> 1) != index) {
+ inverse ^= (dsf[index] & 1);
+ index = dsf[index] >> 1;
+/* fprintf(stderr, "index = %2d, ", index); */
+/* fprintf(stderr, "inverse = %d\n", inverse); */
+ }
+ canonical_index = index;
+
+ if (inverse_return)
+ *inverse_return = inverse;
+
+ /* Update every member of this 'equivalence class' to point directly at the
+ * canonical member. */
+ index = start_index;
+ while (index != canonical_index) {
+ int nextindex = dsf[index] >> 1;
+ int nextinverse = inverse ^ (dsf[index] & 1);
+ dsf[index] = (canonical_index << 1) | inverse;
+ inverse = nextinverse;
+ index = nextindex;
+ }
+
+ assert(inverse == 0);
+
+/* fprintf(stderr, "Return %2d\n", index); */
+
+ return index;
+}
+
+void edsf_merge(int *dsf, int v1, int v2, int inverse)
+{
+ int i1, i2;
+
+/* fprintf(stderr, "dsf = %p\n", dsf); */
+/* fprintf(stderr, "Merge [%2d,%2d], %d\n", v1, v2, inverse); */
+
+ v1 = edsf_canonify(dsf, v1, &i1);
+ inverse ^= i1;
+ v2 = edsf_canonify(dsf, v2, &i2);
+ inverse ^= i2;
+
+/* fprintf(stderr, "Doing [%2d,%2d], %d\n", v1, v2, inverse); */
+
+ if (v1 == v2)
+ assert(!inverse);
+ else
+ dsf[v2] = (v1 << 1) | !!inverse;
+
+ v2 = edsf_canonify(dsf, v2, &i2);
+ assert(v2 == v1);
+ assert(i2 == inverse);
+
+/* fprintf(stderr, "dsf[%2d] = %2d\n", v2, dsf[v2]); */
}
--- a/loopy.c
+++ b/loopy.c
@@ -1,6 +1,6 @@
/*
* loopy.c: An implementation of the Nikoli game 'Loop the loop'.
- * (c) Mike Pinna, 2005
+ * (c) Mike Pinna, 2005, 2006
*
* vim: set shiftwidth=4 :set textwidth=80:
*/
@@ -8,50 +8,24 @@
/*
* TODO:
*
- * - setting very high recursion depth seems to cause memory
- * munching: are we recursing before checking completion, by any
- * chance?
+ * - Setting very high recursion depth seems to cause memory munching: are we
+ * recursing before checking completion, by any chance?
*
- * - there's an interesting deductive technique which makes use of
- * topology rather than just graph theory. Each _square_ in the
- * grid is either inside or outside the loop; you can tell that
- * two squares are on the same side of the loop if they're
- * separated by an x (or, more generally, by a path crossing no
- * LINE_UNKNOWNs and an even number of LINE_YESes), and on the
- * opposite side of the loop if they're separated by a line (or
- * an odd number of LINE_YESes and no LINE_UNKNOWNs). Oh, and
- * any square separated from the outside of the grid by a
- * LINE_YES or a LINE_NO is on the inside or outside
- * respectively. So if you can track this for all squares, you
- * can occasionally spot that two squares are separated by a
- * LINE_UNKNOWN but their relative insideness is known, and
- * therefore deduce the state of the edge between them.
- * + An efficient way to track this would be by augmenting the
- * disjoint set forest data structure. Each element, along
- * with a pointer to a parent member of its equivalence
- * class, would also carry a one-bit field indicating whether
- * it was equal or opposite to its parent. Then you could
- * keep flipping a bit as you ascended the tree during
- * dsf_canonify(), and hence you'd be able to return the
- * relationship of the input value to its ultimate parent
- * (and also you could then get all those bits right when you
- * went back up the tree rewriting). So you'd be able to
- * query whether any two elements were known-equal,
- * known-opposite, or not-known, and you could add new
- * equalities or oppositenesses to increase your knowledge.
- * (Of course the algorithm would have to fail an assertion
- * if you tried to tell it two things it already knew to be
- * opposite were equal, or vice versa!)
- * This data structure would also be useful in the
- * graph-theoretic part of the solver, where it could be used
- * for storing information about which lines are known-identical
- * or known-opposite. (For example if two lines bordering a 3
- * are known-identical they must both be LINE_YES, and if they
- * are known-opposite, the *other* two lines bordering that clue
- * must be LINE_YES, etc). This may duplicate some
- * functionality already present in the solver but it is more
- * general and we could remove the old code, so that's no bad
- * thing.
+ * - There's an interesting deductive technique which makes use of topology
+ * rather than just graph theory. Each _square_ in the grid is either inside
+ * or outside the loop; you can tell that two squares are on the same side
+ * of the loop if they're separated by an x (or, more generally, by a path
+ * crossing no LINE_UNKNOWNs and an even number of LINE_YESes), and on the
+ * opposite side of the loop if they're separated by a line (or an odd
+ * number of LINE_YESes and no LINE_UNKNOWNs). Oh, and any square separated
+ * from the outside of the grid by a LINE_YES or a LINE_NO is on the inside
+ * or outside respectively. So if you can track this for all squares, you
+ * figure out the state of the line between a pair once their relative
+ * insideness is known.
+ *
+ * - (Just a speed optimisation.) Consider some todo list queue where every
+ * time we modify something we mark it for consideration by other bits of
+ * the solver, to save iteration over things that have already been done.
*/
#include <stdio.h>
@@ -64,32 +38,201 @@
#include "puzzles.h"
#include "tree234.h"
+/* Debugging options */
+/*#define DEBUG_CACHES*/
+/*#define SHOW_WORKING*/
+
+/* ----------------------------------------------------------------------
+ * Struct, enum and function declarations
+ */
+
+enum {
+ COL_BACKGROUND,
+ COL_FOREGROUND,
+ COL_HIGHLIGHT,
+ COL_MISTAKE,
+ NCOLOURS
+};
+
+struct game_state {
+ int w, h;
+
+ /* Put -1 in a square that doesn't get a clue */
+ char *clues;
+
+ /* Arrays of line states, stored left-to-right, top-to-bottom */
+ char *hl, *vl;
+
+ int solved;
+ int cheated;
+
+ int recursion_depth;
+};
+
+enum solver_status {
+ SOLVER_SOLVED, /* This is the only solution the solver could find */
+ SOLVER_MISTAKE, /* This is definitely not a solution */
+ SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
+ SOLVER_INCOMPLETE /* This may be a partial solution */
+};
+
+typedef struct normal {
+ char *dot_atleastone;
+ char *dot_atmostone;
+} normal_mode_state;
+
+typedef struct hard {
+ int *linedsf;
+} hard_mode_state;
+
+typedef struct solver_state {
+ game_state *state;
+ int recursion_remaining;
+ enum solver_status solver_status;
+ /* NB looplen is the number of dots that are joined together at a point, ie a
+ * looplen of 1 means there are no lines to a particular dot */
+ int *looplen;
+
+ /* caches */
+ char *dot_yescount;
+ char *dot_nocount;
+ char *square_yescount;
+ char *square_nocount;
+ char *dot_solved, *square_solved;
+ int *dotdsf;
+
+ normal_mode_state *normal;
+ hard_mode_state *hard;
+} solver_state;
+
+/*
+ * Difficulty levels. I do some macro ickery here to ensure that my
+ * enum and the various forms of my name list always match up.
+ */
+
+#define DIFFLIST(A) \
+ A(EASY,Easy,e,easy_mode_deductions) \
+ A(NORMAL,Normal,n,normal_mode_deductions) \
+ A(HARD,Hard,h,hard_mode_deductions)
+#define ENUM(upper,title,lower,fn) DIFF_ ## upper,
+#define TITLE(upper,title,lower,fn) #title,
+#define ENCODE(upper,title,lower,fn) #lower
+#define CONFIG(upper,title,lower,fn) ":" #title
+#define SOLVER_FN_DECL(upper,title,lower,fn) static int fn(solver_state *);
+#define SOLVER_FN(upper,title,lower,fn) &fn,
+enum diff { DIFFLIST(ENUM) DIFF_MAX };
+static char const *const diffnames[] = { DIFFLIST(TITLE) };
+static char const diffchars[] = DIFFLIST(ENCODE);
+#define DIFFCONFIG DIFFLIST(CONFIG)
+DIFFLIST(SOLVER_FN_DECL);
+static int (*(solver_fns[]))(solver_state *) = { DIFFLIST(SOLVER_FN) };
+
+struct game_params {
+ int w, h;
+ enum diff diff;
+ int rec;
+};
+
+enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
+
+#define OPP(state) \
+ (2 - state)
+
+enum direction { UP, LEFT, RIGHT, DOWN };
+
+#define OPP_DIR(dir) \
+ (3 - dir)
+
+struct game_drawstate {
+ int started;
+ int tilesize, linewidth;
+ int flashing;
+ char *hl, *vl;
+ char *clue_error;
+};
+
+static char *game_text_format(game_state *state);
+static char *state_to_text(const game_state *state);
+static char *validate_desc(game_params *params, char *desc);
+static int get_line_status_from_point(const game_state *state,
+ int x, int y, enum direction d);
+static int dot_order(const game_state* state, int i, int j, char line_type);
+static int square_order(const game_state* state, int i, int j, char line_type);
+static solver_state *solve_game_rec(const solver_state *sstate,
+ enum diff diff);
+
+#ifdef DEBUG_CACHES
+static void check_caches(const solver_state* sstate);
+#else
+#define check_caches(s)
+#endif
+
+/* ----------------------------------------------------------------------
+ * Preprocessor magic
+ */
+
+/* General constants */
#define PREFERRED_TILE_SIZE 32
#define TILE_SIZE (ds->tilesize)
#define LINEWIDTH (ds->linewidth)
#define BORDER (TILE_SIZE / 2)
-
#define FLASH_TIME 0.5F
+/* Counts of various things that we're interested in */
#define HL_COUNT(state) ((state)->w * ((state)->h + 1))
#define VL_COUNT(state) (((state)->w + 1) * (state)->h)
+#define LINE_COUNT(state) (HL_COUNT(state) + VL_COUNT(state))
#define DOT_COUNT(state) (((state)->w + 1) * ((state)->h + 1))
#define SQUARE_COUNT(state) ((state)->w * (state)->h)
+/* For indexing into arrays */
+#define DOT_INDEX(state, x, y) ((x) + ((state)->w + 1) * (y))
+#define SQUARE_INDEX(state, x, y) ((x) + ((state)->w) * (y))
+#define HL_INDEX(state, x, y) SQUARE_INDEX(state, x, y)
+#define VL_INDEX(state, x, y) DOT_INDEX(state, x, y)
+
+/* Useful utility functions */
+#define LEGAL_DOT(state, i, j) ((i) >= 0 && (j) >= 0 && \
+ (i) <= (state)->w && (j) <= (state)->h)
+#define LEGAL_SQUARE(state, i, j) ((i) >= 0 && (j) >= 0 && \
+ (i) < (state)->w && (j) < (state)->h)
+
+#define CLUE_AT(state, i, j) (LEGAL_SQUARE(state, i, j) ? \
+ LV_CLUE_AT(state, i, j) : -1)
+
+#define LV_CLUE_AT(state, i, j) ((state)->clues[SQUARE_INDEX(state, i, j)])
+
+#define BIT_SET(field, bit) ((field) & (1<<(bit)))
+
+#define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
+ ((field) |= (1<<(bit)), TRUE))
+
+#define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
+ ((field) &= ~(1<<(bit)), TRUE) : FALSE)
+
+#define DIR2STR(d) \
+ ((d == UP) ? "up" : \
+ (d == DOWN) ? "down" : \
+ (d == LEFT) ? "left" : \
+ (d == RIGHT) ? "right" : "oops")
+
+#define CLUE2CHAR(c) \
+ ((c < 0) ? ' ' : c + '0')
+
+/* Lines that have particular relationships with given dots or squares */
#define ABOVE_SQUARE(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
#define BELOW_SQUARE(state, i, j) ABOVE_SQUARE(state, i, (j)+1)
-
#define LEFTOF_SQUARE(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
#define RIGHTOF_SQUARE(state, i, j) LEFTOF_SQUARE(state, (i)+1, j)
-#define LEGAL_DOT(state, i, j) ((i) >= 0 && (j) >= 0 && \
- (i) <= (state)->w && (j) <= (state)->h)
-
/*
* These macros return rvalues only, but can cope with being passed
* out-of-range coordinates.
*/
-#define ABOVE_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j <= 0) ? \
+/* XXX replace these with functions so we can create an array of function
+ * pointers for nicer iteration over them. This could probably be done with
+ * loads of other things for eliminating many nasty hacks. */
+#define ABOVE_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j <= 0) ? \
LINE_NO : LV_ABOVE_DOT(state, i, j))
#define BELOW_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j >= (state)->h) ? \
LINE_NO : LV_BELOW_DOT(state, i, j))
@@ -96,7 +239,7 @@
#define LEFTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i <= 0) ? \
LINE_NO : LV_LEFTOF_DOT(state, i, j))
-#define RIGHTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i >= (state)->w)?\
+#define RIGHTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i >= (state)->w)? \
LINE_NO : LV_RIGHTOF_DOT(state, i, j))
/*
@@ -103,79 +246,50 @@
* These macros expect to be passed valid coordinates, and return
* lvalues.
*/
-#define LV_BELOW_DOT(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
+#define LV_BELOW_DOT(state, i, j) ((state)->vl[VL_INDEX(state, i, j)])
#define LV_ABOVE_DOT(state, i, j) LV_BELOW_DOT(state, i, (j)-1)
-#define LV_RIGHTOF_DOT(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
+#define LV_RIGHTOF_DOT(state, i, j) ((state)->hl[HL_INDEX(state, i, j)])
#define LV_LEFTOF_DOT(state, i, j) LV_RIGHTOF_DOT(state, (i)-1, j)
-#define CLUE_AT(state, i, j) ((i < 0 || i >= (state)->w || \
- j < 0 || j >= (state)->h) ? \
- ' ' : LV_CLUE_AT(state, i, j))
-
-#define LV_CLUE_AT(state, i, j) ((state)->clues[(i) + (state)->w * (j)])
+/* Counts of interesting things */
+#define DOT_YES_COUNT(sstate, i, j) \
+ ((sstate)->dot_yescount[DOT_INDEX((sstate)->state, i, j)])
-#define OPP(dir) (dir == LINE_UNKNOWN ? LINE_UNKNOWN : \
- dir == LINE_YES ? LINE_NO : LINE_YES)
+#define DOT_NO_COUNT(sstate, i, j) \
+ ((sstate)->dot_nocount[DOT_INDEX((sstate)->state, i, j)])
-#define BIT_SET(field, bit) ((field) & (1<<(bit)))
+#define SQUARE_YES_COUNT(sstate, i, j) \
+ ((sstate)->square_yescount[SQUARE_INDEX((sstate)->state, i, j)])
-#define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
- ((field) |= (1<<(bit)), TRUE))
+#define SQUARE_NO_COUNT(sstate, i, j) \
+ ((sstate)->square_nocount[SQUARE_INDEX((sstate)->state, i, j)])
-#define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
- ((field) &= ~(1<<(bit)), TRUE) : FALSE)
+/* Iterators. NB these iterate over height more slowly than over width so that
+ * the elements come out in 'reading' order */
+/* XXX considering adding a 'current' element to each of these which gets the
+ * address of the current dot, say. But expecting we'd need more than that
+ * most of the time. */
+#define FORALL(i, j, w, h) \
+ for ((j) = 0; (j) < (h); ++(j)) \
+ for ((i) = 0; (i) < (w); ++(i))
-static char *game_text_format(game_state *state);
+#define FORALL_DOTS(state, i, j) \
+ FORALL(i, j, (state)->w + 1, (state)->h + 1)
-enum {
- COL_BACKGROUND,
- COL_FOREGROUND,
- COL_HIGHLIGHT,
- COL_MISTAKE,
- NCOLOURS
-};
+#define FORALL_SQUARES(state, i, j) \
+ FORALL(i, j, (state)->w, (state)->h)
-/*
- * Difficulty levels. I do some macro ickery here to ensure that my
- * enum and the various forms of my name list always match up.
- */
-#define DIFFLIST(A) \
- A(EASY,Easy,e) \
- A(NORMAL,Normal,n)
-#define ENUM(upper,title,lower) DIFF_ ## upper,
-#define TITLE(upper,title,lower) #title,
-#define ENCODE(upper,title,lower) #lower
-#define CONFIG(upper,title,lower) ":" #title
-enum { DIFFLIST(ENUM) DIFFCOUNT };
-/* static char const *const loopy_diffnames[] = { DIFFLIST(TITLE) }; */
-static char const loopy_diffchars[] = DIFFLIST(ENCODE);
-#define DIFFCONFIG DIFFLIST(CONFIG)
+#define FORALL_HL(state, i, j) \
+ FORALL(i, j, (state)->w, (state)->h+1)
-/* LINE_YES_ERROR is only used in the drawing routine */
-enum line_state { LINE_UNKNOWN, LINE_YES, LINE_NO /*, LINE_YES_ERROR*/ };
+#define FORALL_VL(state, i, j) \
+ FORALL(i, j, (state)->w+1, (state)->h)
-enum direction { UP, DOWN, LEFT, RIGHT };
+/* ----------------------------------------------------------------------
+ * General struct manipulation and other straightforward code
+ */
-struct game_params {
- int w, h, diff, rec;
-};
-
-struct game_state {
- int w, h;
-
- /* Put ' ' in a square that doesn't get a clue */
- char *clues;
-
- /* Arrays of line states, stored left-to-right, top-to-bottom */
- char *hl, *vl;
-
- int solved;
- int cheated;
-
- int recursion_depth;
-};
-
static game_state *dup_game(game_state *state)
{
game_state *ret = snew(game_state);
@@ -185,13 +299,13 @@
ret->solved = state->solved;
ret->cheated = state->cheated;
- ret->clues = snewn(SQUARE_COUNT(state), char);
+ ret->clues = snewn(SQUARE_COUNT(state), char);
memcpy(ret->clues, state->clues, SQUARE_COUNT(state));
- ret->hl = snewn(HL_COUNT(state), char);
+ ret->hl = snewn(HL_COUNT(state), char);
memcpy(ret->hl, state->hl, HL_COUNT(state));
- ret->vl = snewn(VL_COUNT(state), char);
+ ret->vl = snewn(VL_COUNT(state), char);
memcpy(ret->vl, state->vl, VL_COUNT(state));
ret->recursion_depth = state->recursion_depth;
@@ -209,51 +323,64 @@
}
}
-enum solver_status {
- SOLVER_SOLVED, /* This is the only solution the solver could find */
- SOLVER_MISTAKE, /* This is definitely not a solution */
- SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
- SOLVER_INCOMPLETE /* This may be a partial solution */
-};
-
-typedef struct solver_state {
- game_state *state;
- char *dot_atleastone;
- char *dot_atmostone;
-/* char *dline_identical; */
- int recursion_remaining;
- enum solver_status solver_status;
- /* NB looplen is the number of dots that are joined together at a point, ie a
- * looplen of 1 means there are no lines to a particular dot */
- int *dotdsf, *looplen;
-} solver_state;
-
-static solver_state *new_solver_state(game_state *state) {
+static solver_state *new_solver_state(const game_state *state, enum diff diff) {
+ int i, j;
solver_state *ret = snew(solver_state);
- int i;
- ret->state = dup_game(state);
+ ret->state = dup_game((game_state *)state);
- ret->dot_atmostone = snewn(DOT_COUNT(state), char);
- memset(ret->dot_atmostone, 0, DOT_COUNT(state));
- ret->dot_atleastone = snewn(DOT_COUNT(state), char);
- memset(ret->dot_atleastone, 0, DOT_COUNT(state));
-
-#if 0
- dline_identical = snewn(DOT_COUNT(state), char);
- memset(dline_identical, 0, DOT_COUNT(state));
-#endif
-
ret->recursion_remaining = state->recursion_depth;
ret->solver_status = SOLVER_INCOMPLETE;
- ret->dotdsf = snewn(DOT_COUNT(state), int);
+ ret->dotdsf = snew_dsf(DOT_COUNT(state));
ret->looplen = snewn(DOT_COUNT(state), int);
+
for (i = 0; i < DOT_COUNT(state); i++) {
- ret->dotdsf[i] = i;
- ret->looplen[i] = 1;
+ ret->looplen[i] = 1;
}
+ ret->dot_solved = snewn(DOT_COUNT(state), char);
+ ret->square_solved = snewn(SQUARE_COUNT(state), char);
+ memset(ret->dot_solved, FALSE, DOT_COUNT(state));
+ memset(ret->square_solved, FALSE, SQUARE_COUNT(state));
+
+ ret->dot_yescount = snewn(DOT_COUNT(state), char);
+ memset(ret->dot_yescount, 0, DOT_COUNT(state));
+ ret->dot_nocount = snewn(DOT_COUNT(state), char);
+ memset(ret->dot_nocount, 0, DOT_COUNT(state));
+ ret->square_yescount = snewn(SQUARE_COUNT(state), char);
+ memset(ret->square_yescount, 0, SQUARE_COUNT(state));
+ ret->square_nocount = snewn(SQUARE_COUNT(state), char);
+ memset(ret->square_nocount, 0, SQUARE_COUNT(state));
+
+ /* dot_nocount needs special initialisation as we define lines coming off
+ * dots on edges as fixed at NO */
+
+ FORALL_DOTS(state, i, j) {
+ if (i == 0 || i == state->w)
+ ++ret->dot_nocount[DOT_INDEX(state, i, j)];
+ if (j == 0 || j == state->h)
+ ++ret->dot_nocount[DOT_INDEX(state, i, j)];
+ }
+
+ if (diff < DIFF_NORMAL) {
+ ret->normal = NULL;
+ } else {
+ ret->normal = snew(normal_mode_state);
+
+ ret->normal->dot_atmostone = snewn(DOT_COUNT(state), char);
+ memset(ret->normal->dot_atmostone, 0, DOT_COUNT(state));
+ ret->normal->dot_atleastone = snewn(DOT_COUNT(state), char);
+ memset(ret->normal->dot_atleastone, 0, DOT_COUNT(state));
+ }
+
+ if (diff < DIFF_HARD) {
+ ret->hard = NULL;
+ } else {
+ ret->hard = snew(hard_mode_state);
+ ret->hard->linedsf = snew_dsf(LINE_COUNT(state));
+ }
+
return ret;
}
@@ -260,16 +387,31 @@
static void free_solver_state(solver_state *sstate) {
if (sstate) {
free_game(sstate->state);
- sfree(sstate->dot_atleastone);
- sfree(sstate->dot_atmostone);
- /* sfree(sstate->dline_identical); */
sfree(sstate->dotdsf);
sfree(sstate->looplen);
+ sfree(sstate->dot_solved);
+ sfree(sstate->square_solved);
+ sfree(sstate->dot_yescount);
+ sfree(sstate->dot_nocount);
+ sfree(sstate->square_yescount);
+ sfree(sstate->square_nocount);
+
+ if (sstate->normal) {
+ sfree(sstate->normal->dot_atleastone);
+ sfree(sstate->normal->dot_atmostone);
+ sfree(sstate->normal);
+ }
+
+ if (sstate->hard) {
+ sfree(sstate->hard->linedsf);
+ sfree(sstate->hard);
+ }
+
sfree(sstate);
}
}
-static solver_state *dup_solver_state(solver_state *sstate) {
+static solver_state *dup_solver_state(const solver_state *sstate) {
game_state *state;
solver_state *ret = snew(solver_state);
@@ -276,157 +418,62 @@
ret->state = state = dup_game(sstate->state);
- ret->dot_atmostone = snewn(DOT_COUNT(state), char);
- memcpy(ret->dot_atmostone, sstate->dot_atmostone, DOT_COUNT(state));
-
- ret->dot_atleastone = snewn(DOT_COUNT(state), char);
- memcpy(ret->dot_atleastone, sstate->dot_atleastone, DOT_COUNT(state));
-
-#if 0
- ret->dline_identical = snewn((state->w + 1) * (state->h + 1), char);
- memcpy(ret->dline_identical, state->dot_atmostone,
- (state->w + 1) * (state->h + 1));
-#endif
-
ret->recursion_remaining = sstate->recursion_remaining;
ret->solver_status = sstate->solver_status;
ret->dotdsf = snewn(DOT_COUNT(state), int);
ret->looplen = snewn(DOT_COUNT(state), int);
- memcpy(ret->dotdsf, sstate->dotdsf, DOT_COUNT(state) * sizeof(int));
- memcpy(ret->looplen, sstate->looplen, DOT_COUNT(state) * sizeof(int));
+ memcpy(ret->dotdsf, sstate->dotdsf,
+ DOT_COUNT(state) * sizeof(int));
+ memcpy(ret->looplen, sstate->looplen,
+ DOT_COUNT(state) * sizeof(int));
- return ret;
-}
+ ret->dot_solved = snewn(DOT_COUNT(state), char);
+ ret->square_solved = snewn(SQUARE_COUNT(state), char);
+ memcpy(ret->dot_solved, sstate->dot_solved,
+ DOT_COUNT(state));
+ memcpy(ret->square_solved, sstate->square_solved,
+ SQUARE_COUNT(state));
-/*
- * Merge two dots due to the existence of an edge between them.
- * Updates the dsf tracking equivalence classes, and keeps track of
- * the length of path each dot is currently a part of.
- * Returns TRUE if the dots were already linked, ie if they are part of a
- * closed loop, and false otherwise.
- */
-static int merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2)
-{
- int i, j, len;
+ ret->dot_yescount = snewn(DOT_COUNT(state), char);
+ memcpy(ret->dot_yescount, sstate->dot_yescount,
+ DOT_COUNT(state));
+ ret->dot_nocount = snewn(DOT_COUNT(state), char);
+ memcpy(ret->dot_nocount, sstate->dot_nocount,
+ DOT_COUNT(state));
- i = y1 * (sstate->state->w + 1) + x1;
- j = y2 * (sstate->state->w + 1) + x2;
+ ret->square_yescount = snewn(SQUARE_COUNT(state), char);
+ memcpy(ret->square_yescount, sstate->square_yescount,
+ SQUARE_COUNT(state));
+ ret->square_nocount = snewn(SQUARE_COUNT(state), char);
+ memcpy(ret->square_nocount, sstate->square_nocount,
+ SQUARE_COUNT(state));
- i = dsf_canonify(sstate->dotdsf, i);
- j = dsf_canonify(sstate->dotdsf, j);
+ if (sstate->normal) {
+ ret->normal = snew(normal_mode_state);
+ ret->normal->dot_atmostone = snewn(DOT_COUNT(state), char);
+ memcpy(ret->normal->dot_atmostone, sstate->normal->dot_atmostone,
+ DOT_COUNT(state));
- if (i == j) {
- return TRUE;
+ ret->normal->dot_atleastone = snewn(DOT_COUNT(state), char);
+ memcpy(ret->normal->dot_atleastone, sstate->normal->dot_atleastone,
+ DOT_COUNT(state));
} else {
- len = sstate->looplen[i] + sstate->looplen[j];
- dsf_merge(sstate->dotdsf, i, j);
- i = dsf_canonify(sstate->dotdsf, i);
- sstate->looplen[i] = len;
- return FALSE;
+ ret->normal = NULL;
}
-}
-/* Count the number of lines of a particular type currently going into the
- * given dot. Lines going off the edge of the board are assumed fixed no. */
-static int dot_order(const game_state* state, int i, int j, char line_type)
-{
- int n = 0;
-
- if (i > 0) {
- if (LEFTOF_DOT(state, i, j) == line_type)
- ++n;
+ if (sstate->hard) {
+ ret->hard = snew(hard_mode_state);
+ ret->hard->linedsf = snewn(LINE_COUNT(state), int);
+ memcpy(ret->hard->linedsf, sstate->hard->linedsf,
+ LINE_COUNT(state) * sizeof(int));
} else {
- if (line_type == LINE_NO)
- ++n;
+ ret->hard = NULL;
}
- if (i < state->w) {
- if (RIGHTOF_DOT(state, i, j) == line_type)
- ++n;
- } else {
- if (line_type == LINE_NO)
- ++n;
- }
- if (j > 0) {
- if (ABOVE_DOT(state, i, j) == line_type)
- ++n;
- } else {
- if (line_type == LINE_NO)
- ++n;
- }
- if (j < state->h) {
- if (BELOW_DOT(state, i, j) == line_type)
- ++n;
- } else {
- if (line_type == LINE_NO)
- ++n;
- }
- return n;
+ return ret;
}
-/* Count the number of lines of a particular type currently surrounding the
- * given square */
-static int square_order(const game_state* state, int i, int j, char line_type)
-{
- int n = 0;
- if (ABOVE_SQUARE(state, i, j) == line_type)
- ++n;
- if (BELOW_SQUARE(state, i, j) == line_type)
- ++n;
- if (LEFTOF_SQUARE(state, i, j) == line_type)
- ++n;
- if (RIGHTOF_SQUARE(state, i, j) == line_type)
- ++n;
-
- return n;
-}
-
-/* Set all lines bordering a dot of type old_type to type new_type
- * Return value tells caller whether this function actually did anything */
-static int dot_setall(game_state *state, int i, int j,
- char old_type, char new_type)
-{
- int retval = FALSE;
- if (old_type == new_type)
- return FALSE;
-
- if (i > 0 && LEFTOF_DOT(state, i, j) == old_type) {
- LV_LEFTOF_DOT(state, i, j) = new_type;
- retval = TRUE;
- }
-
- if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type) {
- LV_RIGHTOF_DOT(state, i, j) = new_type;
- retval = TRUE;
- }
-
- if (j > 0 && ABOVE_DOT(state, i, j) == old_type) {
- LV_ABOVE_DOT(state, i, j) = new_type;
- retval = TRUE;
- }
-
- if (j < state->h && BELOW_DOT(state, i, j) == old_type) {
- LV_BELOW_DOT(state, i, j) = new_type;
- retval = TRUE;
- }
-
- return retval;
-}
-/* Set all lines bordering a square of type old_type to type new_type */
-static void square_setall(game_state *state, int i, int j,
- char old_type, char new_type)
-{
- if (ABOVE_SQUARE(state, i, j) == old_type)
- ABOVE_SQUARE(state, i, j) = new_type;
- if (BELOW_SQUARE(state, i, j) == old_type)
- BELOW_SQUARE(state, i, j) = new_type;
- if (LEFTOF_SQUARE(state, i, j) == old_type)
- LEFTOF_SQUARE(state, i, j) = new_type;
- if (RIGHTOF_SQUARE(state, i, j) == old_type)
- RIGHTOF_SQUARE(state, i, j) = new_type;
-}
-
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
@@ -451,34 +498,38 @@
return ret;
}
-static const struct {
- char *desc;
- game_params params;
-} loopy_presets[] = {
- { "4x4 Easy", { 4, 4, DIFF_EASY, 0 } },
- { "4x4 Normal", { 4, 4, DIFF_NORMAL, 0 } },
- { "7x7 Easy", { 7, 7, DIFF_EASY, 0 } },
- { "7x7 Normal", { 7, 7, DIFF_NORMAL, 0 } },
- { "10x10 Easy", { 10, 10, DIFF_EASY, 0 } },
- { "10x10 Normal", { 10, 10, DIFF_NORMAL, 0 } },
+static const game_params presets[] = {
+ { 4, 4, DIFF_EASY, 0 },
+ { 4, 4, DIFF_NORMAL, 0 },
+ { 4, 4, DIFF_HARD, 0 },
+ { 7, 7, DIFF_EASY, 0 },
+ { 7, 7, DIFF_NORMAL, 0 },
+ { 7, 7, DIFF_HARD, 0 },
+ { 10, 10, DIFF_EASY, 0 },
+ { 10, 10, DIFF_NORMAL, 0 },
+ { 10, 10, DIFF_HARD, 0 },
#ifndef SLOW_SYSTEM
- { "15x15 Easy", { 15, 15, DIFF_EASY, 0 } },
- { "15x15 Normal", { 15, 15, DIFF_NORMAL, 0 } },
- { "30x20 Easy", { 30, 20, DIFF_EASY, 0 } },
- { "30x20 Normal", { 30, 20, DIFF_NORMAL, 0 } }
+ { 15, 15, DIFF_EASY, 0 },
+ { 15, 15, DIFF_NORMAL, 0 },
+ { 15, 15, DIFF_HARD, 0 },
+ { 30, 20, DIFF_EASY, 0 },
+ { 30, 20, DIFF_NORMAL, 0 },
+ { 30, 20, DIFF_HARD, 0 }
#endif
};
static int game_fetch_preset(int i, char **name, game_params **params)
{
- game_params tmppar;
+ const game_params *tmppar;
+ char buf[80];
- if (i < 0 || i >= lenof(loopy_presets))
+ if (i < 0 || i >= lenof(presets))
return FALSE;
- tmppar = loopy_presets[i].params;
- *params = dup_params(&tmppar);
- *name = dupstr(loopy_presets[i].desc);
+ tmppar = &presets[i];
+ *params = dup_params((game_params *)tmppar);
+ sprintf(buf, "%dx%d %s", tmppar->h, tmppar->w, diffnames[tmppar->diff]);
+ *name = dupstr(buf);
return TRUE;
}
@@ -497,21 +548,20 @@
if (*string == 'x') {
string++;
params->h = atoi(string);
- while (*string && isdigit((unsigned char)*string)) string++;
+ while (*string && isdigit((unsigned char)*string)) string++;
}
if (*string == 'r') {
string++;
params->rec = atoi(string);
- while (*string && isdigit((unsigned char)*string)) string++;
+ while (*string && isdigit((unsigned char)*string)) string++;
}
if (*string == 'd') {
int i;
-
string++;
- for (i = 0; i < DIFFCOUNT; i++)
- if (*string == loopy_diffchars[i])
- params->diff = i;
- if (*string) string++;
+ for (i = 0; i < DIFF_MAX; i++)
+ if (*string == diffchars[i])
+ params->diff = i;
+ if (*string) string++;
}
}
@@ -520,8 +570,7 @@
char str[80];
sprintf(str, "%dx%d", params->w, params->h);
if (full)
- sprintf(str + strlen(str), "r%dd%c", params->rec,
- loopy_diffchars[params->diff]);
+ sprintf(str + strlen(str), "r%dd%c", params->rec, diffchars[params->diff]);
return dupstr(str);
}
@@ -581,11 +630,732 @@
* and custom_params will never generate anything that isn't
* within range.
*/
- assert(params->diff >= 0 && params->diff < DIFFCOUNT);
+ assert(params->diff >= 0 && params->diff < DIFF_MAX);
return NULL;
}
+/* Returns a newly allocated string describing the current puzzle */
+static char *state_to_text(const game_state *state)
+{
+ char *retval;
+ char *description = snewn(SQUARE_COUNT(state) + 1, char);
+ char *dp = description;
+ int empty_count = 0;
+ int i, j;
+
+ FORALL_SQUARES(state, i, j) {
+ if (CLUE_AT(state, i, j) < 0) {
+ if (empty_count > 25) {
+ dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
+ empty_count = 0;
+ }
+ empty_count++;
+ } else {
+ if (empty_count) {
+ dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
+ empty_count = 0;
+ }
+ dp += sprintf(dp, "%c", CLUE2CHAR(CLUE_AT(state, i, j)));
+ }
+ }
+
+ if (empty_count)
+ dp += sprintf(dp, "%c", (empty_count + 'a' - 1));
+
+ retval = dupstr(description);
+ sfree(description);
+
+ return retval;
+}
+
+/* We require that the params pass the test in validate_params and that the
+ * description fills the entire game area */
+static char *validate_desc(game_params *params, char *desc)
+{
+ int count = 0;
+
+ for (; *desc; ++desc) {
+ if (*desc >= '0' && *desc <= '9') {
+ count++;
+ continue;
+ }
+ if (*desc >= 'a') {
+ count += *desc - 'a' + 1;
+ continue;
+ }
+ return "Unknown character in description";
+ }
+
+ if (count < SQUARE_COUNT(params))
+ return "Description too short for board size";
+ if (count > SQUARE_COUNT(params))
+ return "Description too long for board size";
+
+ return NULL;
+}
+
+/* Sums the lengths of the numbers in range [0,n) */
+/* See equivalent function in solo.c for justification of this. */
+static int len_0_to_n(int n)
+{
+ int len = 1; /* Counting 0 as a bit of a special case */
+ int i;
+
+ for (i = 1; i < n; i *= 10) {
+ len += max(n - i, 0);
+ }
+
+ return len;
+}
+
+static char *encode_solve_move(const game_state *state)
+{
+ int len, i, j;
+ char *ret, *p;
+ /* This is going to return a string representing the moves needed to set
+ * every line in a grid to be the same as the ones in 'state'. The exact
+ * length of this string is predictable. */
+
+ len = 1; /* Count the 'S' prefix */
+ /* Numbers in horizontal lines */
+ /* Horizontal lines, x position */
+ len += len_0_to_n(state->w) * (state->h + 1);
+ /* Horizontal lines, y position */
+ len += len_0_to_n(state->h + 1) * (state->w);
+ /* Vertical lines, y position */
+ len += len_0_to_n(state->h) * (state->w + 1);
+ /* Vertical lines, x position */
+ len += len_0_to_n(state->w + 1) * (state->h);
+ /* For each line we also have two letters and a comma */
+ len += 3 * (LINE_COUNT(state));
+
+ ret = snewn(len + 1, char);
+ p = ret;
+
+ p += sprintf(p, "S");
+
+ FORALL_HL(state, i, j) {
+ switch (RIGHTOF_DOT(state, i, j)) {
+ case LINE_YES:
+ p += sprintf(p, "%d,%dhy", i, j);
+ break;
+ case LINE_NO:
+ p += sprintf(p, "%d,%dhn", i, j);
+ break;
+ }
+ }
+
+ FORALL_VL(state, i, j) {
+ switch (BELOW_DOT(state, i, j)) {
+ case LINE_YES:
+ p += sprintf(p, "%d,%dvy", i, j);
+ break;
+ case LINE_NO:
+ p += sprintf(p, "%d,%dvn", i, j);
+ break;
+ }
+ }
+
+ /* No point in doing sums like that if they're going to be wrong */
+ assert(strlen(ret) <= (size_t)len);
+ return ret;
+}
+
+static game_ui *new_ui(game_state *state)
+{
+ return NULL;
+}
+
+static void free_ui(game_ui *ui)
+{
+}
+
+static char *encode_ui(game_ui *ui)
+{
+ return NULL;
+}
+
+static void decode_ui(game_ui *ui, char *encoding)
+{
+}
+
+static void game_changed_state(game_ui *ui, game_state *oldstate,
+ game_state *newstate)
+{
+}
+
+#define SIZE(d) ((d) * TILE_SIZE + 2 * BORDER + 1)
+
+static void game_compute_size(game_params *params, int tilesize,
+ int *x, int *y)
+{
+ struct { int tilesize; } ads, *ds = &ads;
+ ads.tilesize = tilesize;
+
+ *x = SIZE(params->w);
+ *y = SIZE(params->h);
+}
+
+static void game_set_size(drawing *dr, game_drawstate *ds,
+ game_params *params, int tilesize)
+{
+ ds->tilesize = tilesize;
+ ds->linewidth = max(1,tilesize/16);
+}
+
+static float *game_colours(frontend *fe, int *ncolours)
+{
+ float *ret = snewn(4 * NCOLOURS, float);
+
+ frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+ ret[COL_FOREGROUND * 3 + 0] = 0.0F;
+ ret[COL_FOREGROUND * 3 + 1] = 0.0F;
+ ret[COL_FOREGROUND * 3 + 2] = 0.0F;
+
+ ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
+ ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
+ ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
+
+ ret[COL_MISTAKE * 3 + 0] = 1.0F;
+ ret[COL_MISTAKE * 3 + 1] = 0.0F;
+ ret[COL_MISTAKE * 3 + 2] = 0.0F;
+
+ *ncolours = NCOLOURS;
+ return ret;
+}
+
+static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
+{
+ struct game_drawstate *ds = snew(struct game_drawstate);
+
+ ds->tilesize = ds->linewidth = 0;
+ ds->started = 0;
+ ds->hl = snewn(HL_COUNT(state), char);
+ ds->vl = snewn(VL_COUNT(state), char);
+ ds->clue_error = snewn(SQUARE_COUNT(state), char);
+ ds->flashing = 0;
+
+ memset(ds->hl, LINE_UNKNOWN, HL_COUNT(state));
+ memset(ds->vl, LINE_UNKNOWN, VL_COUNT(state));
+ memset(ds->clue_error, 0, SQUARE_COUNT(state));
+
+ return ds;
+}
+
+static void game_free_drawstate(drawing *dr, game_drawstate *ds)
+{
+ sfree(ds->clue_error);
+ sfree(ds->hl);
+ sfree(ds->vl);
+ sfree(ds);
+}
+
+static int game_timing_state(game_state *state, game_ui *ui)
+{
+ return TRUE;
+}
+
+static float game_anim_length(game_state *oldstate, game_state *newstate,
+ int dir, game_ui *ui)
+{
+ return 0.0F;
+}
+
+static char *game_text_format(game_state *state)
+{
+ int i, j;
+ int len;
+ char *ret, *rp;
+
+ len = (2 * state->w + 2) * (2 * state->h + 1);
+ rp = ret = snewn(len + 1, char);
+
+#define DRAW_HL \
+ switch (ABOVE_SQUARE(state, i, j)) { \
+ case LINE_YES: \
+ rp += sprintf(rp, " -"); \
+ break; \
+ case LINE_NO: \
+ rp += sprintf(rp, " x"); \
+ break; \
+ case LINE_UNKNOWN: \
+ rp += sprintf(rp, " "); \
+ break; \
+ default: \
+ assert(!"Illegal line state for HL"); \
+ }
+
+#define DRAW_VL \
+ switch (LEFTOF_SQUARE(state, i, j)) { \
+ case LINE_YES: \
+ rp += sprintf(rp, "|"); \
+ break; \
+ case LINE_NO: \
+ rp += sprintf(rp, "x"); \
+ break; \
+ case LINE_UNKNOWN: \
+ rp += sprintf(rp, " "); \
+ break; \
+ default: \
+ assert(!"Illegal line state for VL"); \
+ }
+
+ for (j = 0; j < state->h; ++j) {
+ for (i = 0; i < state->w; ++i) {
+ DRAW_HL;
+ }
+ rp += sprintf(rp, " \n");
+ for (i = 0; i < state->w; ++i) {
+ DRAW_VL;
+ rp += sprintf(rp, "%c", CLUE2CHAR(CLUE_AT(state, i, j)));
+ }
+ DRAW_VL;
+ rp += sprintf(rp, "\n");
+ }
+ for (i = 0; i < state->w; ++i) {
+ DRAW_HL;
+ }
+ rp += sprintf(rp, " \n");
+
+ assert(strlen(ret) == len);
+ return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * Debug code
+ */
+
+#ifdef DEBUG_CACHES
+static void check_caches(const solver_state* sstate)
+{
+ int i, j;
+ const game_state *state = sstate->state;
+
+ FORALL_DOTS(state, i, j) {
+#if 0
+ fprintf(stderr, "dot [%d,%d] y: %d %d n: %d %d\n", i, j,
+ dot_order(state, i, j, LINE_YES),
+ sstate->dot_yescount[i + (state->w + 1) * j],
+ dot_order(state, i, j, LINE_NO),
+ sstate->dot_nocount[i + (state->w + 1) * j]);
+#endif
+
+ assert(dot_order(state, i, j, LINE_YES) ==
+ DOT_YES_COUNT(sstate, i, j));
+ assert(dot_order(state, i, j, LINE_NO) ==
+ DOT_NO_COUNT(sstate, i, j));
+ }
+
+ FORALL_SQUARES(state, i, j) {
+#if 0
+ fprintf(stderr, "square [%d,%d] y: %d %d n: %d %d\n", i, j,
+ square_order(state, i, j, LINE_YES),
+ sstate->square_yescount[i + state->w * j],
+ square_order(state, i, j, LINE_NO),
+ sstate->square_nocount[i + state->w * j]);
+#endif
+
+ assert(square_order(state, i, j, LINE_YES) ==
+ SQUARE_YES_COUNT(sstate, i, j));
+ assert(square_order(state, i, j, LINE_NO) ==
+ SQUARE_NO_COUNT(sstate, i, j));
+ }
+}
+
+#if 0
+#define check_caches(s) \
+ do { \
+ fprintf(stderr, "check_caches at line %d\n", __LINE__); \
+ check_caches(s); \
+ } while (0)
+#endif
+#endif /* DEBUG_CACHES */
+
+/* ----------------------------------------------------------------------
+ * Solver utility functions
+ */
+
+static int set_line_bydot(solver_state *sstate, int x, int y, enum direction d,
+ enum line_state line_new
+#ifdef SHOW_WORKING
+ , const char *reason
+#endif
+ )
+{
+ game_state *state = sstate->state;
+
+ /* This line borders at most two squares in our board. We figure out the
+ * x and y positions of those squares so we can record that their yes or no
+ * counts have been changed */
+ int sq1_x=-1, sq1_y=-1, sq2_x=-1, sq2_y=-1;
+ int otherdot_x=-1, otherdot_y=-1;
+
+ int progress = FALSE;
+
+#if 0
+ fprintf(stderr, "set_line_bydot [%d,%d], %s, %d\n",
+ x, y, DIR2STR(d), line_new);
+#endif
+
+ assert(line_new != LINE_UNKNOWN);
+
+ check_caches(sstate);
+
+ switch (d) {
+ case LEFT:
+ assert(x > 0);
+
+ if (LEFTOF_DOT(state, x, y) != line_new) {
+ LV_LEFTOF_DOT(state, x, y) = line_new;
+
+ otherdot_x = x-1;
+ otherdot_y = y;
+
+ sq1_x = x-1;
+ sq1_y = y-1;
+ sq2_x = x-1;
+ sq2_y = y;
+
+ progress = TRUE;
+ }
+ break;
+ case RIGHT:
+ assert(x < state->w);
+ if (RIGHTOF_DOT(state, x, y) != line_new) {
+ LV_RIGHTOF_DOT(state, x, y) = line_new;
+
+ otherdot_x = x+1;
+ otherdot_y = y;
+
+ sq1_x = x;
+ sq1_y = y-1;
+ sq2_x = x;
+ sq2_y = y;
+
+ progress = TRUE;
+ }
+ break;
+ case UP:
+ assert(y > 0);
+ if (ABOVE_DOT(state, x, y) != line_new) {
+ LV_ABOVE_DOT(state, x, y) = line_new;
+
+ otherdot_x = x;
+ otherdot_y = y-1;
+
+ sq1_x = x-1;
+ sq1_y = y-1;
+ sq2_x = x;
+ sq2_y = y-1;
+
+ progress = TRUE;
+ }
+ break;
+ case DOWN:
+ assert(y < state->h);
+ if (BELOW_DOT(state, x, y) != line_new) {
+ LV_BELOW_DOT(state, x, y) = line_new;
+
+ otherdot_x = x;
+ otherdot_y = y+1;
+
+ sq1_x = x-1;
+ sq1_y = y;
+ sq2_x = x;
+ sq2_y = y;
+
+ progress = TRUE;
+ }
+ break;
+ }
+
+ if (!progress)
+ return progress;
+
+#ifdef SHOW_WORKING
+ fprintf(stderr, "set line [%d,%d] -> [%d,%d] to %s (%s)\n",
+ x, y, otherdot_x, otherdot_y, line_new == LINE_YES ? "YES" : "NO",
+ reason);
+#endif
+
+ /* Above we updated the cache for the dot that the line in question reaches
+ * from the dot we've been told about. Here we update that for the dot
+ * named in our arguments. */
+ if (line_new == LINE_YES) {
+ if (sq1_x >= 0 && sq1_y >= 0)
+ ++SQUARE_YES_COUNT(sstate, sq1_x, sq1_y);
+ if (sq2_x < state->w && sq2_y < state->h)
+ ++SQUARE_YES_COUNT(sstate, sq2_x, sq2_y);
+ ++DOT_YES_COUNT(sstate, x, y);
+ ++DOT_YES_COUNT(sstate, otherdot_x, otherdot_y);
+ } else {
+ if (sq1_x >= 0 && sq1_y >= 0)
+ ++SQUARE_NO_COUNT(sstate, sq1_x, sq1_y);
+ if (sq2_x < state->w && sq2_y < state->h)
+ ++SQUARE_NO_COUNT(sstate, sq2_x, sq2_y);
+ ++DOT_NO_COUNT(sstate, x, y);
+ ++DOT_NO_COUNT(sstate, otherdot_x, otherdot_y);
+ }
+
+ check_caches(sstate);
+ return progress;
+}
+
+#ifdef SHOW_WORKING
+#define set_line_bydot(a, b, c, d, e) \
+ set_line_bydot(a, b, c, d, e, __FUNCTION__)
+#endif
+
+/*
+ * Merge two dots due to the existence of an edge between them.
+ * Updates the dsf tracking equivalence classes, and keeps track of
+ * the length of path each dot is currently a part of.
+ * Returns TRUE if the dots were already linked, ie if they are part of a
+ * closed loop, and false otherwise.
+ */
+static int merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2)
+{
+ int i, j, len;
+
+ i = y1 * (sstate->state->w + 1) + x1;
+ j = y2 * (sstate->state->w + 1) + x2;
+
+ i = dsf_canonify(sstate->dotdsf, i);
+ j = dsf_canonify(sstate->dotdsf, j);
+
+ if (i == j) {
+ return TRUE;
+ } else {
+ len = sstate->looplen[i] + sstate->looplen[j];
+ dsf_merge(sstate->dotdsf, i, j);
+ i = dsf_canonify(sstate->dotdsf, i);
+ sstate->looplen[i] = len;
+ return FALSE;
+ }
+}
+
+/* Seriously, these should be functions */
+
+#define LINEDSF_INDEX(state, x, y, d) \
+ ((d == UP) ? ((y-1) * (state->w + 1) + x) : \
+ (d == DOWN) ? ((y) * (state->w + 1) + x) : \
+ (d == LEFT) ? ((y) * (state->w) + x-1 + VL_COUNT(state)) : \
+ (d == RIGHT) ? ((y) * (state->w) + x + VL_COUNT(state)) : \
+ (assert(!"bad direction value"), 0))
+
+static void linedsf_deindex(const game_state *state, int i,
+ int *px, int *py, enum direction *pd)
+{
+ int i_mod;
+ if (i < VL_COUNT(state)) {
+ *(pd) = DOWN;
+ *(px) = (i) % (state->w+1);
+ *(py) = (i) / (state->w+1);
+ } else {
+ i_mod = i - VL_COUNT(state);
+ *(pd) = RIGHT;
+ *(px) = (i_mod) % (state->w);
+ *(py) = (i_mod) / (state->w);
+ }
+}
+
+/* Merge two lines because the solver has deduced that they must be either
+ * identical or opposite. Returns TRUE if this is new information, otherwise
+ * FALSE. */
+static int merge_lines(solver_state *sstate,
+ int x1, int y1, enum direction d1,
+ int x2, int y2, enum direction d2,
+ int inverse
+#ifdef SHOW_WORKING
+ , const char *reason
+#endif
+ )
+{
+ int i, j, inv_tmp;
+
+ i = LINEDSF_INDEX(sstate->state, x1, y1, d1);
+ j = LINEDSF_INDEX(sstate->state, x2, y2, d2);
+
+ assert(i < LINE_COUNT(sstate->state));
+ assert(j < LINE_COUNT(sstate->state));
+
+ i = edsf_canonify(sstate->hard->linedsf, i, &inv_tmp);
+ inverse ^= inv_tmp;
+ j = edsf_canonify(sstate->hard->linedsf, j, &inv_tmp);
+ inverse ^= inv_tmp;
+
+ edsf_merge(sstate->hard->linedsf, i, j, inverse);
+
+#ifdef SHOW_WORKING
+ if (i != j) {
+ fprintf(stderr, "%s [%d,%d,%s] [%d,%d,%s] %s(%s)\n",
+ __FUNCTION__,
+ x1, y1, DIR2STR(d1),
+ x2, y2, DIR2STR(d2),
+ inverse ? "inverse " : "", reason);
+ }
+#endif
+ return (i != j);
+}
+
+#ifdef SHOW_WORKING
+#define merge_lines(a, b, c, d, e, f, g, h) \
+ merge_lines(a, b, c, d, e, f, g, h, __FUNCTION__)
+#endif
+
+/* Return 0 if the given lines are not in the same equivalence class, 1 if they
+ * are known identical, or 2 if they are known opposite */
+#if 0
+static int lines_related(solver_state *sstate,
+ int x1, int y1, enum direction d1,
+ int x2, int y2, enum direction d2)
+{
+ int i, j, inv1, inv2;
+
+ i = LINEDSF_INDEX(sstate->state, x1, y1, d1);
+ j = LINEDSF_INDEX(sstate->state, x2, y2, d2);
+
+ i = edsf_canonify(sstate->hard->linedsf, i, &inv1);
+ j = edsf_canonify(sstate->hard->linedsf, j, &inv2);
+
+ if (i == j)
+ return (inv1 == inv2) ? 1 : 2;
+ else
+ return 0;
+}
+#endif
+
+/* Count the number of lines of a particular type currently going into the
+ * given dot. Lines going off the edge of the board are assumed fixed no. */
+static int dot_order(const game_state* state, int i, int j, char line_type)
+{
+ int n = 0;
+
+ if (i > 0) {
+ if (line_type == LV_LEFTOF_DOT(state, i, j))
+ ++n;
+ } else {
+ if (line_type == LINE_NO)
+ ++n;
+ }
+ if (i < state->w) {
+ if (line_type == LV_RIGHTOF_DOT(state, i, j))
+ ++n;
+ } else {
+ if (line_type == LINE_NO)
+ ++n;
+ }
+ if (j > 0) {
+ if (line_type == LV_ABOVE_DOT(state, i, j))
+ ++n;
+ } else {
+ if (line_type == LINE_NO)
+ ++n;
+ }
+ if (j < state->h) {
+ if (line_type == LV_BELOW_DOT(state, i, j))
+ ++n;
+ } else {
+ if (line_type == LINE_NO)
+ ++n;
+ }
+
+ return n;
+}
+
+/* Count the number of lines of a particular type currently surrounding the
+ * given square */
+static int square_order(const game_state* state, int i, int j, char line_type)
+{
+ int n = 0;
+
+ if (ABOVE_SQUARE(state, i, j) == line_type)
+ ++n;
+ if (BELOW_SQUARE(state, i, j) == line_type)
+ ++n;
+ if (LEFTOF_SQUARE(state, i, j) == line_type)
+ ++n;
+ if (RIGHTOF_SQUARE(state, i, j) == line_type)
+ ++n;
+
+ return n;
+}
+
+/* Set all lines bordering a dot of type old_type to type new_type
+ * Return value tells caller whether this function actually did anything */
+static int dot_setall(solver_state *sstate, int i, int j,
+ char old_type, char new_type)
+{
+ int retval = FALSE, r;
+ game_state *state = sstate->state;
+
+ if (old_type == new_type)
+ return FALSE;
+
+ if (i > 0 && LEFTOF_DOT(state, i, j) == old_type) {
+ r = set_line_bydot(sstate, i, j, LEFT, new_type);
+ assert(r == TRUE);
+ retval = TRUE;
+ }
+
+ if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type) {
+ r = set_line_bydot(sstate, i, j, RIGHT, new_type);
+ assert(r == TRUE);
+ retval = TRUE;
+ }
+
+ if (j > 0 && ABOVE_DOT(state, i, j) == old_type) {
+ r = set_line_bydot(sstate, i, j, UP, new_type);
+ assert(r == TRUE);
+ retval = TRUE;
+ }
+
+ if (j < state->h && BELOW_DOT(state, i, j) == old_type) {
+ r = set_line_bydot(sstate, i, j, DOWN, new_type);
+ assert(r == TRUE);
+ retval = TRUE;
+ }
+
+ return retval;
+}
+
+/* Set all lines bordering a square of type old_type to type new_type */
+static int square_setall(solver_state *sstate, int i, int j,
+ char old_type, char new_type)
+{
+ int r = FALSE;
+ game_state *state = sstate->state;
+
+#if 0
+ fprintf(stderr, "square_setall [%d,%d] from %d to %d\n", i, j,
+ old_type, new_type);
+#endif
+ if (ABOVE_SQUARE(state, i, j) == old_type) {
+ r = set_line_bydot(sstate, i, j, RIGHT, new_type);
+ assert(r == TRUE);
+ }
+ if (BELOW_SQUARE(state, i, j) == old_type) {
+ r = set_line_bydot(sstate, i, j+1, RIGHT, new_type);
+ assert(r == TRUE);
+ }
+ if (LEFTOF_SQUARE(state, i, j) == old_type) {
+ r = set_line_bydot(sstate, i, j, DOWN, new_type);
+ assert(r == TRUE);
+ }
+ if (RIGHTOF_SQUARE(state, i, j) == old_type) {
+ r = set_line_bydot(sstate, i+1, j, DOWN, new_type);
+ assert(r == TRUE);
+ }
+
+ return r;
+}
+
+/* ----------------------------------------------------------------------
+ * Loop generation and clue removal
+ */
+
/* We're going to store a list of current candidate squares for lighting.
* Each square gets a 'score', which tells us how adding that square right
* now would affect the length of the solution loop. We're trying to
@@ -599,8 +1369,8 @@
static int get_square_cmpfn(void *v1, void *v2)
{
- struct square *s1 = (struct square *)v1;
- struct square *s2 = (struct square *)v2;
+ struct square *s1 = v1;
+ struct square *s2 = v2;
int r;
r = s1->x - s2->x;
@@ -616,8 +1386,8 @@
static int square_sort_cmpfn(void *v1, void *v2)
{
- struct square *s1 = (struct square *)v1;
- struct square *s2 = (struct square *)v2;
+ struct square *s1 = v1;
+ struct square *s2 = v2;
int r;
r = s2->score - s1->score;
@@ -639,57 +1409,23 @@
return get_square_cmpfn(v1, v2);
}
-static void print_tree(tree234 *tree)
-{
-#if 0
- int i = 0;
- struct square *s;
- printf("Print tree:\n");
- while (i < count234(tree)) {
- s = (struct square *)index234(tree, i);
- assert(s);
- printf(" [%d,%d], %d, %d\n", s->x, s->y, s->score, s->random);
- ++i;
- }
-#endif
-}
-
enum { SQUARE_LIT, SQUARE_UNLIT };
-#define SQUARE_STATE(i, j) \
- (((i) < 0 || (i) >= params->w || \
- (j) < 0 || (j) >= params->h) ? \
- SQUARE_UNLIT : LV_SQUARE_STATE(i,j))
+#define SQUARE_STATE(i, j) \
+ ( LEGAL_SQUARE(state, i, j) ? \
+ LV_SQUARE_STATE(i,j) : \
+ SQUARE_UNLIT )
-#define LV_SQUARE_STATE(i, j) board[(i) + params->w * (j)]
+#define LV_SQUARE_STATE(i, j) board[SQUARE_INDEX(state, i, j)]
-static void print_board(const game_params *params, const char *board)
+/* Generate a new complete set of clues for the given game_state (respecting
+ * the dimensions provided by said game_state) */
+static void add_full_clues(game_state *state, random_state *rs)
{
-#if 0
- int i,j;
-
- printf(" ");
- for (i = 0; i < params->w; i++) {
- printf("%d", i%10);
- }
- printf("\n");
- for (j = 0; j < params->h; j++) {
- printf("%d", j%10);
- for (i = 0; i < params->w; i++) {
- printf("%c", SQUARE_STATE(i, j) ? ' ' : 'O');
- }
- printf("\n");
- }
-#endif
-}
-
-static void add_full_clues(game_state *state, game_params *params,
- random_state *rs)
-{
char *clues;
char *board;
int i, j, a, b, c;
- int board_area = SQUARE_COUNT(params);
+ int board_area = SQUARE_COUNT(state);
int t;
struct square *square, *tmpsquare, *sq;
@@ -699,24 +1435,20 @@
* orders */
tree234 *lightable_squares_sorted, *lightable_squares_gettable;
-#define SQUARE_REACHABLE(i,j) \
- (t = (SQUARE_STATE(i-1, j) == SQUARE_LIT || \
- SQUARE_STATE(i+1, j) == SQUARE_LIT || \
- SQUARE_STATE(i, j-1) == SQUARE_LIT || \
- SQUARE_STATE(i, j+1) == SQUARE_LIT), \
-/* printf("SQUARE_REACHABLE(%d,%d) = %d\n", i, j, t), */ \
+#define SQUARE_REACHABLE(i,j) \
+ (t = (SQUARE_STATE(i-1, j) == SQUARE_LIT || \
+ SQUARE_STATE(i+1, j) == SQUARE_LIT || \
+ SQUARE_STATE(i, j-1) == SQUARE_LIT || \
+ SQUARE_STATE(i, j+1) == SQUARE_LIT), \
t)
-
/* One situation in which we may not light a square is if that'll leave one
* square above/below and one left/right of us unlit, separated by a lit
* square diagnonal from us */
-#define SQUARE_DIAGONAL_VIOLATION(i, j, h, v) \
+#define SQUARE_DIAGONAL_VIOLATION(i, j, h, v) \
(t = (SQUARE_STATE((i)+(h), (j)) == SQUARE_UNLIT && \
SQUARE_STATE((i), (j)+(v)) == SQUARE_UNLIT && \
- SQUARE_STATE((i)+(h), (j)+(v)) == SQUARE_LIT), \
-/* t ? printf("SQUARE_DIAGONAL_VIOLATION(%d, %d, %d, %d)\n",
- i, j, h, v) : 0,*/ \
+ SQUARE_STATE((i)+(h), (j)+(v)) == SQUARE_LIT), \
t)
/* We also may not light a square if it will form a loop of lit squares
@@ -723,12 +1455,12 @@
* around some unlit squares, as then the game soln won't have a single
* loop */
#define SQUARE_LOOP_VIOLATION(i, j, lit1, lit2) \
- (SQUARE_STATE((i)+1, (j)) == lit1 && \
- SQUARE_STATE((i)-1, (j)) == lit1 && \
- SQUARE_STATE((i), (j)+1) == lit2 && \
+ (SQUARE_STATE((i)+1, (j)) == lit1 && \
+ SQUARE_STATE((i)-1, (j)) == lit1 && \
+ SQUARE_STATE((i), (j)+1) == lit2 && \
SQUARE_STATE((i), (j)-1) == lit2)
-#define CAN_LIGHT_SQUARE(i, j) \
+#define CAN_LIGHT_SQUARE(i, j) \
(SQUARE_REACHABLE(i, j) && \
!SQUARE_DIAGONAL_VIOLATION(i, j, -1, -1) && \
!SQUARE_DIAGONAL_VIOLATION(i, j, +1, -1) && \
@@ -737,7 +1469,7 @@
!SQUARE_LOOP_VIOLATION(i, j, SQUARE_LIT, SQUARE_UNLIT) && \
!SQUARE_LOOP_VIOLATION(i, j, SQUARE_UNLIT, SQUARE_LIT))
-#define IS_LIGHTING_CANDIDATE(i, j) \
+#define IS_LIGHTING_CANDIDATE(i, j) \
(SQUARE_STATE(i, j) == SQUARE_UNLIT && \
CAN_LIGHT_SQUARE(i,j))
@@ -751,10 +1483,10 @@
* 2 0
* 1 -2
*/
-#define SQUARE_SCORE(i,j) \
- (2*((SQUARE_STATE(i-1, j) == SQUARE_UNLIT) + \
- (SQUARE_STATE(i+1, j) == SQUARE_UNLIT) + \
- (SQUARE_STATE(i, j-1) == SQUARE_UNLIT) + \
+#define SQUARE_SCORE(i,j) \
+ (2*((SQUARE_STATE(i-1, j) == SQUARE_UNLIT) + \
+ (SQUARE_STATE(i+1, j) == SQUARE_UNLIT) + \
+ (SQUARE_STATE(i, j-1) == SQUARE_UNLIT) + \
(SQUARE_STATE(i, j+1) == SQUARE_UNLIT)) - 4)
/* When a square gets lit, this defines how far away from that square we
@@ -768,11 +1500,11 @@
memset(board, SQUARE_UNLIT, board_area);
/* Seed the board with a single lit square near the middle */
- i = params->w / 2;
- j = params->h / 2;
- if (params->w & 1 && random_bits(rs, 1))
+ i = state->w / 2;
+ j = state->h / 2;
+ if (state->w & 1 && random_bits(rs, 1))
++i;
- if (params->h & 1 && random_bits(rs, 1))
+ if (state->h & 1 && random_bits(rs, 1))
++j;
LV_SQUARE_STATE(i, j) = SQUARE_LIT;
@@ -791,32 +1523,28 @@
lightable_squares_sorted = newtree234(square_sort_cmpfn);
lightable_squares_gettable = newtree234(get_square_cmpfn);
-#define ADD_SQUARE(s) \
- do { \
-/* printf("ADD SQUARE: [%d,%d], %d, %d\n",
- s->x, s->y, s->score, s->random);*/ \
- sq = add234(lightable_squares_sorted, s); \
- assert(sq == s); \
- sq = add234(lightable_squares_gettable, s); \
- assert(sq == s); \
+#define ADD_SQUARE(s) \
+ do { \
+ sq = add234(lightable_squares_sorted, s); \
+ assert(sq == s); \
+ sq = add234(lightable_squares_gettable, s); \
+ assert(sq == s); \
} while (0)
-#define REMOVE_SQUARE(s) \
- do { \
-/* printf("DELETE SQUARE: [%d,%d], %d, %d\n",
- s->x, s->y, s->score, s->random);*/ \
- sq = del234(lightable_squares_sorted, s); \
- assert(sq); \
- sq = del234(lightable_squares_gettable, s); \
- assert(sq); \
+#define REMOVE_SQUARE(s) \
+ do { \
+ sq = del234(lightable_squares_sorted, s); \
+ assert(sq); \
+ sq = del234(lightable_squares_gettable, s); \
+ assert(sq); \
} while (0)
-#define HANDLE_DIR(a, b) \
- square = snew(struct square); \
- square->x = (i)+(a); \
- square->y = (j)+(b); \
- square->score = 2; \
- square->random = random_bits(rs, 31); \
+#define HANDLE_DIR(a, b) \
+ square = snew(struct square); \
+ square->x = (i)+(a); \
+ square->y = (j)+(b); \
+ square->score = 2; \
+ square->random = random_bits(rs, 31); \
ADD_SQUARE(square);
HANDLE_DIR(-1, 0);
HANDLE_DIR( 1, 0);
@@ -839,31 +1567,28 @@
square = (struct square *)index234(lightable_squares_sorted, 0);
assert(square);
- /*
- * We never want to _decrease_ the loop's perimeter. Making
- * moves that leave the perimeter the same is occasionally
- * useful: if it were _never_ done then the user would be
- * able to deduce illicitly that any degree-zero vertex was
- * on the outside of the loop. So we do it sometimes but
- * not always.
- */
+ /*
+ * We never want to _decrease_ the loop's perimeter. Making
+ * moves that leave the perimeter the same is occasionally
+ * useful: if it were _never_ done then the user would be
+ * able to deduce illicitly that any degree-zero vertex was
+ * on the outside of the loop. So we do it sometimes but
+ * not always.
+ */
if (square->score < 0 || (square->score == 0 &&
- random_upto(rs, 2) == 0))
+ random_upto(rs, 2) == 0)) {
break;
+ }
- print_tree(lightable_squares_sorted);
assert(square->score == SQUARE_SCORE(square->x, square->y));
assert(SQUARE_STATE(square->x, square->y) == SQUARE_UNLIT);
- assert(square->x >= 0 && square->x < params->w);
- assert(square->y >= 0 && square->y < params->h);
-/* printf("LIGHT SQUARE: [%d,%d], score = %d\n", square->x, square->y, square->score); */
+ assert(square->x >= 0 && square->x < state->w);
+ assert(square->y >= 0 && square->y < state->h);
/* Update data structures */
LV_SQUARE_STATE(square->x, square->y) = SQUARE_LIT;
REMOVE_SQUARE(square);
- print_board(params, board);
-
/* We might have changed the score of any squares up to 2 units away in
* any direction */
for (b = -SCORE_DISTANCE; b <= SCORE_DISTANCE; b++) {
@@ -872,16 +1597,13 @@
continue;
square_pos.x = square->x + a;
square_pos.y = square->y + b;
-/* printf("Refreshing score for [%d,%d]:\n", square_pos.x, square_pos.y); */
- if (square_pos.x < 0 || square_pos.x >= params->w ||
- square_pos.y < 0 || square_pos.y >= params->h) {
-/* printf(" Out of bounds\n"); */
+ if (square_pos.x < 0 || square_pos.x >= state->w ||
+ square_pos.y < 0 || square_pos.y >= state->h) {
continue;
}
tmpsquare = find234(lightable_squares_gettable, &square_pos,
NULL);
if (tmpsquare) {
-/* printf(" Removing\n"); */
assert(tmpsquare->x == square_pos.x);
assert(tmpsquare->y == square_pos.y);
assert(SQUARE_STATE(tmpsquare->x, tmpsquare->y) ==
@@ -888,7 +1610,6 @@
SQUARE_UNLIT);
REMOVE_SQUARE(tmpsquare);
} else {
-/* printf(" Creating\n"); */
tmpsquare = snew(struct square);
tmpsquare->x = square_pos.x;
tmpsquare->y = square_pos.y;
@@ -897,18 +1618,16 @@
tmpsquare->score = SQUARE_SCORE(tmpsquare->x, tmpsquare->y);
if (IS_LIGHTING_CANDIDATE(tmpsquare->x, tmpsquare->y)) {
-/* printf(" Adding\n"); */
ADD_SQUARE(tmpsquare);
} else {
-/* printf(" Destroying\n"); */
sfree(tmpsquare);
}
}
}
sfree(square);
-/* printf("\n\n"); */
}
+ /* Clean up */
while ((square = delpos234(lightable_squares_gettable, 0)) != NULL)
sfree(square);
freetree234(lightable_squares_gettable);
@@ -915,30 +1634,27 @@
freetree234(lightable_squares_sorted);
/* Copy out all the clues */
- for (j = 0; j < params->h; ++j) {
- for (i = 0; i < params->w; ++i) {
- c = SQUARE_STATE(i, j);
- LV_CLUE_AT(state, i, j) = '0';
- if (SQUARE_STATE(i-1, j) != c) ++LV_CLUE_AT(state, i, j);
- if (SQUARE_STATE(i+1, j) != c) ++LV_CLUE_AT(state, i, j);
- if (SQUARE_STATE(i, j-1) != c) ++LV_CLUE_AT(state, i, j);
- if (SQUARE_STATE(i, j+1) != c) ++LV_CLUE_AT(state, i, j);
- }
+ FORALL_SQUARES(state, i, j) {
+ c = SQUARE_STATE(i, j);
+ LV_CLUE_AT(state, i, j) = 0;
+ if (SQUARE_STATE(i-1, j) != c) ++LV_CLUE_AT(state, i, j);
+ if (SQUARE_STATE(i+1, j) != c) ++LV_CLUE_AT(state, i, j);
+ if (SQUARE_STATE(i, j-1) != c) ++LV_CLUE_AT(state, i, j);
+ if (SQUARE_STATE(i, j+1) != c) ++LV_CLUE_AT(state, i, j);
}
sfree(board);
}
-static solver_state *solve_game_rec(const solver_state *sstate, int diff);
-
-static int game_has_unique_soln(const game_state *state, int diff)
+static int game_has_unique_soln(const game_state *state, enum diff diff)
{
int ret;
solver_state *sstate_new;
- solver_state *sstate = new_solver_state((game_state *)state);
+ solver_state *sstate = new_solver_state((game_state *)state, diff);
sstate_new = solve_game_rec(sstate, diff);
+ assert(sstate_new->solver_status != SOLVER_MISTAKE);
ret = (sstate_new->solver_status == SOLVER_SOLVED);
free_solver_state(sstate_new);
@@ -948,16 +1664,20 @@
}
/* Remove clues one at a time at random. */
-static game_state *remove_clues(game_state *state, random_state *rs, int diff)
+static game_state *remove_clues(game_state *state, random_state *rs,
+ enum diff diff)
{
int *square_list, squares;
game_state *ret = dup_game(state), *saved_ret;
int n;
+#ifdef SHOW_WORKING
+ char *desc;
+#endif
/* We need to remove some clues. We'll do this by forming a list of all
- * available equivalence classes, shuffling it, then going along one at a
- * time clearing every member of each equivalence class, where removing a
- * class doesn't render the board unsolvable. */
+ * available clues, shuffling it, then going along one at a
+ * time clearing each clue in turn for which doing so doesn't render the
+ * board unsolvable. */
squares = state->w * state->h;
square_list = snewn(squares, int);
for (n = 0; n < squares; ++n) {
@@ -968,10 +1688,17 @@
for (n = 0; n < squares; ++n) {
saved_ret = dup_game(ret);
- LV_CLUE_AT(ret, square_list[n] % state->w,
- square_list[n] / state->w) = ' ';
+ LV_CLUE_AT(ret, square_list[n] % state->w,
+ square_list[n] / state->w) = -1;
+
+#ifdef SHOW_WORKING
+ desc = state_to_text(ret);
+ fprintf(stderr, "%dx%d:%s\n", state->w, state->h, desc);
+ sfree(desc);
+#endif
+
if (game_has_unique_soln(ret, diff)) {
- free_game(saved_ret);
+ free_game(saved_ret);
} else {
free_game(ret);
ret = saved_ret;
@@ -982,17 +1709,11 @@
return ret;
}
-static char *validate_desc(game_params *params, char *desc);
-
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
/* solution and description both use run-length encoding in obvious ways */
char *retval;
- char *description = snewn(SQUARE_COUNT(params) + 1, char);
- char *dp = description;
- int i, j;
- int empty_count;
game_state *state = snew(game_state), *state_new;
state->h = params->h;
@@ -1014,7 +1735,7 @@
* preventing games smaller than 4x4 seems to stop this happening */
do {
- add_full_clues(state, params, rs);
+ add_full_clues(state, rs);
} while (!game_has_unique_soln(state, params->diff));
state_new = remove_clues(state, rs, params->diff);
@@ -1022,34 +1743,13 @@
state = state_new;
if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
- /* Board is too easy */
+ fprintf(stderr, "Rejecting board, it is too easy\n");
goto newboard_please;
}
- empty_count = 0;
- for (j = 0; j < params->h; ++j) {
- for (i = 0; i < params->w; ++i) {
- if (CLUE_AT(state, i, j) == ' ') {
- if (empty_count > 25) {
- dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
- empty_count = 0;
- }
- empty_count++;
- } else {
- if (empty_count) {
- dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
- empty_count = 0;
- }
- dp += sprintf(dp, "%c", (int)(CLUE_AT(state, i, j)));
- }
- }
- }
- if (empty_count)
- dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
+ retval = state_to_text(state);
free_game(state);
- retval = dupstr(description);
- sfree(description);
assert(!validate_desc(params, retval));
@@ -1056,32 +1756,6 @@
return retval;
}
-/* We require that the params pass the test in validate_params and that the
- * description fills the entire game area */
-static char *validate_desc(game_params *params, char *desc)
-{
- int count = 0;
-
- for (; *desc; ++desc) {
- if (*desc >= '0' && *desc <= '9') {
- count++;
- continue;
- }
- if (*desc >= 'a') {
- count += *desc - 'a' + 1;
- continue;
- }
- return "Unknown character in description";
- }
-
- if (count < SQUARE_COUNT(params))
- return "Description too short for board size";
- if (count > SQUARE_COUNT(params))
- return "Description too long for board size";
-
- return NULL;
-}
-
static game_state *new_game(midend *me, game_params *params, char *desc)
{
int i,j;
@@ -1096,31 +1770,29 @@
state->w = params->w;
state->clues = snewn(SQUARE_COUNT(params), char);
- state->hl = snewn(HL_COUNT(params), char);
- state->vl = snewn(VL_COUNT(params), char);
+ state->hl = snewn(HL_COUNT(params), char);
+ state->vl = snewn(VL_COUNT(params), char);
state->solved = state->cheated = FALSE;
- for (j = 0 ; j < params->h; ++j) {
- for (i = 0 ; i < params->w; ++i) {
- if (empties_to_make) {
- empties_to_make--;
- LV_CLUE_AT(state, i, j) = ' ';
- continue;
- }
+ FORALL_SQUARES(params, i, j) {
+ if (empties_to_make) {
+ empties_to_make--;
+ LV_CLUE_AT(state, i, j) = -1;
+ continue;
+ }
- assert(*dp);
- n = *dp - '0';
- if (n >=0 && n < 10) {
- LV_CLUE_AT(state, i, j) = *dp;
- } else {
- n = *dp - 'a' + 1;
- assert(n > 0);
- LV_CLUE_AT(state, i, j) = ' ';
- empties_to_make = n - 1;
- }
- ++dp;
+ assert(*dp);
+ n = *dp - '0';
+ if (n >= 0 && n < 10) {
+ LV_CLUE_AT(state, i, j) = n;
+ } else {
+ n = *dp - 'a' + 1;
+ assert(n > 0);
+ LV_CLUE_AT(state, i, j) = -1;
+ empties_to_make = n - 1;
}
+ ++dp;
}
memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
@@ -1131,123 +1803,200 @@
enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
-/* Sums the lengths of the numbers in range [0,n) */
-/* See equivalent function in solo.c for justification of this. */
-static int len_0_to_n(int n)
+/* ----------------------------------------------------------------------
+ * Solver logic
+ *
+ * Our solver modes operate as follows. Each mode also uses the modes above it.
+ *
+ * Easy Mode
+ * Just implement the rules of the game.
+ *
+ * Normal Mode
+ * For each pair of lines through each dot we store a bit for whether
+ * at least one of them is on and whether at most one is on. (If we know
+ * both or neither is on that's already stored more directly.) That's six
+ * bits per dot. Bit number n represents the lines shown in dline_desc.
+ *
+ * Advanced Mode
+ * Use edsf data structure to make equivalence classes of lines that are
+ * known identical to or opposite to one another.
+ */
+
+/* The order the following are defined in is very important, see below.
+ * The last two fields may seem non-obvious: they specify that when talking
+ * about a square the dx and dy offsets should be added to the square coords to
+ * get to the right dot. Where dx and dy are -1 this means that the dline
+ * doesn't make sense for a square. */
+/* XXX can this be done with a struct instead? */
+#define DLINES \
+ DLINE(DLINE_UD, UP, DOWN, -1, -1) \
+ DLINE(DLINE_LR, LEFT, RIGHT, -1, -1) \
+ DLINE(DLINE_UR, UP, RIGHT, 0, 1) \
+ DLINE(DLINE_DL, DOWN, LEFT, 1, 0) \
+ DLINE(DLINE_UL, UP, LEFT, 1, 1) \
+ DLINE(DLINE_DR, DOWN, RIGHT, 0, 0)
+
+#define OPP_DLINE(dline_desc) ((dline_desc) ^ 1)
+
+enum dline_desc {
+#define DLINE(desc, dir1, dir2, dx, dy) \
+ desc,
+ DLINES
+#undef DLINE
+};
+
+struct dline {
+ enum dline_desc desc;
+ enum direction dir1, dir2;
+ int dx, dy;
+};
+
+const static struct dline dlines[] = {
+#define DLINE(desc, dir1, dir2, dx, dy) \
+ { desc, dir1, dir2, dx, dy },
+ DLINES
+#undef DLINE
+};
+
+#define FORALL_DOT_DLINES(dl_iter) \
+ for (dl_iter = 0; dl_iter < lenof(dlines); ++dl_iter)
+
+#define FORALL_SQUARE_DLINES(dl_iter) \
+ for (dl_iter = 2; dl_iter < lenof(dlines); ++dl_iter)
+
+#define DL2STR(d) \
+ ((d==DLINE_UD) ? "DLINE_UD": \
+ (d==DLINE_LR) ? "DLINE_LR": \
+ (d==DLINE_UR) ? "DLINE_UR": \
+ (d==DLINE_DL) ? "DLINE_DL": \
+ (d==DLINE_UL) ? "DLINE_UL": \
+ (d==DLINE_DR) ? "DLINE_DR": \
+ "oops")
+
+static const struct dline *get_dline(enum dline_desc desc)
{
- int len = 1; /* Counting 0 as a bit of a special case */
+ return &dlines[desc];
+}
+
+/* This will fail an assertion if the directions handed to it are the same, as
+ * no dline corresponds to that */
+static enum dline_desc dline_desc_from_dirs(enum direction dir1,
+ enum direction dir2)
+{
+ const struct dline *dl;
int i;
- for (i = 1; i < n; i *= 10) {
- len += max(n - i, 0);
+ assert (dir1 != dir2);
+
+ for (i = 0; i < lenof(dlines); ++i) {
+ dl = &dlines[i];
+ if ((dir1 == dl->dir1 && dir2 == dl->dir2) ||
+ (dir1 == dl->dir2 && dir2 == dl->dir1)) {
+ return dl->desc;
+ }
}
- return len;
+ assert(!"dline not found");
+ return DLINE_UD; /* placate compiler */
}
-static char *encode_solve_move(const game_state *state)
+/* The following functions allow you to get or set info about the selected
+ * dline corresponding to the dot or square at [i,j]. You'll get an assertion
+ * failure if you talk about a dline that doesn't exist, ie if you ask about
+ * non-touching lines around a square. */
+static inline int get_dot_dline(const game_state *state, const char *dline_array,
+ int i, int j, enum dline_desc desc)
{
- int len, i, j;
- char *ret, *p;
- /* This is going to return a string representing the moves needed to set
- * every line in a grid to be the same as the ones in 'state'. The exact
- * length of this string is predictable. */
+/* fprintf(stderr, "get_dot_dline %p [%d,%d] %s\n", dline_array, i, j, DL2STR(desc)); */
+ return BIT_SET(dline_array[i + (state->w + 1) * j], desc);
+}
- len = 1; /* Count the 'S' prefix */
- /* Numbers in horizontal lines */
- /* Horizontal lines, x position */
- len += len_0_to_n(state->w) * (state->h + 1);
- /* Horizontal lines, y position */
- len += len_0_to_n(state->h + 1) * (state->w);
- /* Vertical lines, y position */
- len += len_0_to_n(state->h) * (state->w + 1);
- /* Vertical lines, x position */
- len += len_0_to_n(state->w + 1) * (state->h);
- /* For each line we also have two letters and a comma */
- len += 3 * (HL_COUNT(state) + VL_COUNT(state));
+static int set_dot_dline(game_state *state, char *dline_array,
+ int i, int j, enum dline_desc desc
+#ifdef SHOW_WORKING
+ , const char *reason
+#endif
+ )
+{
+ int ret;
+ ret = SET_BIT(dline_array[i + (state->w + 1) * j], desc);
- ret = snewn(len + 1, char);
- p = ret;
+#ifdef SHOW_WORKING
+ if (ret)
+ fprintf(stderr, "set_dot_dline %p [%d,%d] %s (%s)\n", dline_array, i, j, DL2STR(desc), reason);
+#endif
+ return ret;
+}
- p += sprintf(p, "S");
+static int get_square_dline(game_state *state, char *dline_array,
+ int i, int j, enum dline_desc desc)
+{
+ const struct dline *dl = get_dline(desc);
+ assert(dl->dx != -1 && dl->dy != -1);
+/* fprintf(stderr, "get_square_dline %p [%d,%d] %s\n", dline_array, i, j, DL2STR(desc)); */
+ return BIT_SET(dline_array[(i+dl->dx) + (state->w + 1) * (j+dl->dy)],
+ desc);
+}
- for (j = 0; j < state->h + 1; ++j) {
- for (i = 0; i < state->w; ++i) {
- switch (RIGHTOF_DOT(state, i, j)) {
- case LINE_YES:
- p += sprintf(p, "%d,%dhy", i, j);
- break;
- case LINE_NO:
- p += sprintf(p, "%d,%dhn", i, j);
- break;
-/* default: */
- /* I'm going to forgive this because I think the results
- * are cute. */
-/* assert(!"Solver produced incomplete solution!"); */
- }
- }
- }
-
- for (j = 0; j < state->h; ++j) {
- for (i = 0; i < state->w + 1; ++i) {
- switch (BELOW_DOT(state, i, j)) {
- case LINE_YES:
- p += sprintf(p, "%d,%dvy", i, j);
- break;
- case LINE_NO:
- p += sprintf(p, "%d,%dvn", i, j);
- break;
-/* default: */
- /* I'm going to forgive this because I think the results
- * are cute. */
-/* assert(!"Solver produced incomplete solution!"); */
- }
- }
- }
-
- /*
- * Ensure we haven't overrun the buffer we allocated (which we
- * really shouldn't have, since we computed its maximum size).
- * Note that this assert is <= rather than ==, because the
- * solver is permitted to produce an incomplete solution in
- * which case the buffer will be only partially used.
- */
- assert(strlen(ret) <= (size_t)len);
+static int set_square_dline(game_state *state, char *dline_array,
+ int i, int j, enum dline_desc desc
+#ifdef SHOW_WORKING
+ , const char *reason
+#endif
+ )
+{
+ const struct dline *dl = get_dline(desc);
+ int ret;
+ assert(dl->dx != -1 && dl->dy != -1);
+ ret = SET_BIT(dline_array[(i+dl->dx) + (state->w + 1) * (j+dl->dy)], desc);
+#ifdef SHOW_WORKING
+ if (ret)
+ fprintf(stderr, "set_square_dline %p [%d,%d] %s (%s)\n", dline_array, i, j, DL2STR(desc), reason);
+#endif
return ret;
}
-/* BEGIN SOLVER IMPLEMENTATION */
+#ifdef SHOW_WORKING
+#define set_dot_dline(a, b, c, d, e) \
+ set_dot_dline(a, b, c, d, e, __FUNCTION__)
+#define set_square_dline(a, b, c, d, e) \
+ set_square_dline(a, b, c, d, e, __FUNCTION__)
+#endif
- /* For each pair of lines through each dot we store a bit for whether
- * exactly one of those lines is ON, and in separate arrays we store whether
- * at least one is on and whether at most 1 is on. (If we know both or
- * neither is on that's already stored more directly.) That's six bits per
- * dot. Bit number n represents the lines shown in dot_type_dirs[n]. */
+static int set_dot_opp_dline(game_state *state, char *dline_array,
+ int i, int j, enum dline_desc desc)
+{
+ return set_dot_dline(state, dline_array, i, j, OPP_DLINE(desc));
+}
-enum dline {
- DLINE_VERT = 0,
- DLINE_HORIZ = 1,
- DLINE_UL = 2,
- DLINE_DR = 3,
- DLINE_UR = 4,
- DLINE_DL = 5
-};
+static int set_square_opp_dline(game_state *state, char *dline_array,
+ int i, int j, enum dline_desc desc)
+{
+ return set_square_dline(state, dline_array, i, j, OPP_DLINE(desc));
+}
-#define OPP_DLINE(dline) (dline ^ 1)
-
+/* Find out if both the lines in the given dline are UNKNOWN */
+static int dline_both_unknown(const game_state *state, int i, int j,
+ enum dline_desc desc)
+{
+ const struct dline *dl = get_dline(desc);
+ return
+ (get_line_status_from_point(state, i, j, dl->dir1) == LINE_UNKNOWN) &&
+ (get_line_status_from_point(state, i, j, dl->dir2) == LINE_UNKNOWN);
+}
-#define SQUARE_DLINES \
+#define SQUARE_DLINES \
HANDLE_DLINE(DLINE_UL, RIGHTOF_SQUARE, BELOW_SQUARE, 1, 1); \
HANDLE_DLINE(DLINE_UR, LEFTOF_SQUARE, BELOW_SQUARE, 0, 1); \
HANDLE_DLINE(DLINE_DL, RIGHTOF_SQUARE, ABOVE_SQUARE, 1, 0); \
HANDLE_DLINE(DLINE_DR, LEFTOF_SQUARE, ABOVE_SQUARE, 0, 0);
-#define DOT_DLINES \
- HANDLE_DLINE(DLINE_VERT, ABOVE_DOT, BELOW_DOT); \
- HANDLE_DLINE(DLINE_HORIZ, LEFTOF_DOT, RIGHTOF_DOT); \
- HANDLE_DLINE(DLINE_UL, ABOVE_DOT, LEFTOF_DOT); \
- HANDLE_DLINE(DLINE_UR, ABOVE_DOT, RIGHTOF_DOT); \
- HANDLE_DLINE(DLINE_DL, BELOW_DOT, LEFTOF_DOT); \
+#define DOT_DLINES \
+ HANDLE_DLINE(DLINE_UD, ABOVE_DOT, BELOW_DOT); \
+ HANDLE_DLINE(DLINE_LR, LEFTOF_DOT, RIGHTOF_DOT); \
+ HANDLE_DLINE(DLINE_UL, ABOVE_DOT, LEFTOF_DOT); \
+ HANDLE_DLINE(DLINE_UR, ABOVE_DOT, RIGHTOF_DOT); \
+ HANDLE_DLINE(DLINE_DL, BELOW_DOT, LEFTOF_DOT); \
HANDLE_DLINE(DLINE_DR, BELOW_DOT, RIGHTOF_DOT);
static void array_setall(char *array, char from, char to, int len)
@@ -1262,629 +2011,1204 @@
}
}
-static int dot_setall_dlines(solver_state *sstate, enum dline dl, int i, int j,
- enum line_state line_old, enum line_state line_new)
+
+
+static int get_line_status_from_point(const game_state *state,
+ int x, int y, enum direction d)
{
- game_state *state = sstate->state;
+ switch (d) {
+ case LEFT:
+ return LEFTOF_DOT(state, x, y);
+ case RIGHT:
+ return RIGHTOF_DOT(state, x, y);
+ case UP:
+ return ABOVE_DOT(state, x, y);
+ case DOWN:
+ return BELOW_DOT(state, x, y);
+ }
+
+ return 0;
+}
+
+/* First and second args are coord offset from top left of square to one end
+ * of line in question, third and fourth args are the direction from the first
+ * end of the line to the second. Fifth arg is the direction of the line from
+ * the coord offset position.
+ * How confusing.
+ */
+#define SQUARE_LINES \
+ SQUARE_LINE( 0, 0, RIGHT, RIGHTOF_DOT, UP); \
+ SQUARE_LINE( 0, +1, RIGHT, RIGHTOF_DOT, DOWN); \
+ SQUARE_LINE( 0, 0, DOWN, BELOW_DOT, LEFT); \
+ SQUARE_LINE(+1, 0, DOWN, BELOW_DOT, RIGHT);
+
+/* Set pairs of lines around this square which are known to be identical to
+ * the given line_state */
+static int square_setall_identical(solver_state *sstate, int x, int y,
+ enum line_state line_new)
+{
+ /* can[dir] contains the canonical line associated with the line in
+ * direction dir from the square in question. Similarly inv[dir] is
+ * whether or not the line in question is inverse to its canonical
+ * element. */
+ int can[4], inv[4], i, j;
int retval = FALSE;
- if (line_old == line_new)
- return FALSE;
+ i = 0;
- /* First line in dline */
- switch (dl) {
- case DLINE_UL:
- case DLINE_UR:
- case DLINE_VERT:
- if (j > 0 && ABOVE_DOT(state, i, j) == line_old) {
- LV_ABOVE_DOT(state, i, j) = line_new;
- retval = TRUE;
+#if 0
+ fprintf(stderr, "Setting all identical unknown lines around square "
+ "[%d,%d] to %d:\n", x, y, line_new);
+#endif
+
+#define SQUARE_LINE(dx, dy, linedir, dir_dot, sqdir) \
+ can[sqdir] = \
+ edsf_canonify(sstate->hard->linedsf, \
+ LINEDSF_INDEX(sstate->state, x+dx, y+dy, linedir), \
+ &inv[sqdir]);
+
+ SQUARE_LINES;
+
+#undef SQUARE_LINE
+
+ for (j = 0; j < 4; ++j) {
+ for (i = 0; i < 4; ++i) {
+ if (i == j)
+ continue;
+
+ if (can[i] == can[j] && inv[i] == inv[j]) {
+
+ /* Lines in directions i and j are identical.
+ * Only do j now, we'll do i when the loop causes us to
+ * consider {i,j} in the opposite order. */
+#define SQUARE_LINE(dx, dy, dir, c, sqdir) \
+ if (j == sqdir) { \
+ retval = set_line_bydot(sstate, x+dx, y+dy, dir, line_new); \
+ if (retval) { \
+ break; \
+ } \
+ }
+
+ SQUARE_LINES;
+
+#undef SQUARE_LINE
}
- break;
- case DLINE_DL:
- case DLINE_DR:
- if (j < (state)->h && BELOW_DOT(state, i, j) == line_old) {
- LV_BELOW_DOT(state, i, j) = line_new;
- retval = TRUE;
- }
- break;
- case DLINE_HORIZ:
- if (i > 0 && LEFTOF_DOT(state, i, j) == line_old) {
- LV_LEFTOF_DOT(state, i, j) = line_new;
- retval = TRUE;
- }
- break;
+ }
}
- /* Second line in dline */
- switch (dl) {
- case DLINE_UL:
- case DLINE_DL:
- if (i > 0 && LEFTOF_DOT(state, i, j) == line_old) {
- LV_LEFTOF_DOT(state, i, j) = line_new;
- retval = TRUE;
+ return retval;
+}
+
+#if 0
+/* Set all identical lines passing through the current dot to the chosen line
+ * state. (implicitly this only looks at UNKNOWN lines) */
+static int dot_setall_identical(solver_state *sstate, int x, int y,
+ enum line_state line_new)
+{
+ /* The implementation of this is a little naughty but I can't see how to do
+ * it elegantly any other way */
+ int can[4], inv[4], i, j;
+ enum direction d;
+ int retval = FALSE;
+
+ for (d = 0; d < 4; ++d) {
+ can[d] = edsf_canonify(sstate->hard->linedsf,
+ LINEDSF_INDEX(sstate->state, x, y, d),
+ inv+d);
+ }
+
+ for (j = 0; j < 4; ++j) {
+next_j:
+ for (i = 0; i < j; ++i) {
+ if (can[i] == can[j] && inv[i] == inv[j]) {
+ /* Lines in directions i and j are identical */
+ if (get_line_status_from_point(sstate->state, x, y, j) ==
+ LINE_UNKNOWN) {
+ set_line_bydot(sstate->state, x, y, j,
+ line_new);
+ retval = TRUE;
+ goto next_j;
+ }
}
- break;
- case DLINE_UR:
- case DLINE_DR:
- case DLINE_HORIZ:
- if (i < (state)->w && RIGHTOF_DOT(state, i, j) == line_old) {
- LV_RIGHTOF_DOT(state, i, j) = line_new;
- retval = TRUE;
- }
- break;
- case DLINE_VERT:
- if (j < (state)->h && BELOW_DOT(state, i, j) == line_old) {
- LV_BELOW_DOT(state, i, j) = line_new;
- retval = TRUE;
- }
- break;
+
+ }
}
return retval;
}
+#endif
+static int square_setboth_in_dline(solver_state *sstate, enum dline_desc dd,
+ int i, int j, enum line_state line_new)
+{
+ int retval = FALSE;
+ const struct dline *dl = get_dline(dd);
+
#if 0
-/* This will fail an assertion if {dx,dy} are anything other than {-1,0}, {1,0}
- * {0,-1} or {0,1} */
-static int line_status_from_point(const game_state *state,
- int x, int y, int dx, int dy)
+ fprintf(stderr, "square_setboth_in_dline %s [%d,%d] to %d\n",
+ DL2STR(dd), i, j, line_new);
+#endif
+
+ assert(dl->dx != -1 && dl->dy != -1);
+
+ retval |=
+ set_line_bydot(sstate, i+dl->dx, j+dl->dy, dl->dir1, line_new);
+ retval |=
+ set_line_bydot(sstate, i+dl->dx, j+dl->dy, dl->dir2, line_new);
+
+ return retval;
+}
+
+/* Call this function to register that the two unknown lines going into the dot
+ * [x,y] are identical or opposite (depending on the value of 'inverse'). This
+ * function will cause an assertion failure if anything other than exactly two
+ * lines into the dot are unknown.
+ * As usual returns TRUE if any progress was made, otherwise FALSE. */
+static int dot_relate_2_unknowns(solver_state *sstate, int x, int y, int inverse)
{
- if (dx == -1 && dy == 0)
- return LEFTOF_DOT(state, x, y);
- if (dx == 1 && dy == 0)
- return RIGHTOF_DOT(state, x, y);
- if (dx == 0 && dy == -1)
- return ABOVE_DOT(state, x, y);
- if (dx == 0 && dy == 1)
- return BELOW_DOT(state, x, y);
+ enum direction d1=DOWN, d2=DOWN; /* Just to keep compiler quiet */
+ int dirs_set = 0;
- assert(!"Illegal dx or dy in line_status_from_point");
- return 0;
+#define TRY_DIR(d) \
+ if (get_line_status_from_point(sstate->state, x, y, d) == \
+ LINE_UNKNOWN) { \
+ if (dirs_set == 0) \
+ d1 = d; \
+ else { \
+ assert(dirs_set == 1); \
+ d2 = d; \
+ } \
+ dirs_set++; \
+ } while (0)
+
+ TRY_DIR(UP);
+ TRY_DIR(DOWN);
+ TRY_DIR(LEFT);
+ TRY_DIR(RIGHT);
+#undef TRY_DIR
+
+ assert(dirs_set == 2);
+ assert(d1 != d2);
+
+#if 0
+ fprintf(stderr, "Lines in direction %s and %s from dot [%d,%d] are %s\n",
+ DIR2STR(d1), DIR2STR(d2), x, y, inverse?"opposite":"the same");
+#endif
+
+ return merge_lines(sstate, x, y, d1, x, y, d2, inverse);
}
+
+/* Very similar to dot_relate_2_unknowns. */
+static int square_relate_2_unknowns(solver_state *sstate, int x, int y, int inverse)
+{
+ enum direction d1=DOWN, d2=DOWN;
+ int x1=-1, y1=-1, x2=-1, y2=-1;
+ int dirs_set = 0;
+
+#if 0
+ fprintf(stderr, "2 unknowns around square [%d,%d] are %s\n",
+ x, y, inverse?"opposite":"the same");
#endif
-/* This will return a dynamically allocated solver_state containing the (more)
- * solved grid */
-static solver_state *solve_game_rec(const solver_state *sstate_start, int diff)
+#define TRY_DIR(i, j, d, dir_sq) \
+ do { \
+ if (dir_sq(sstate->state, x, y) == LINE_UNKNOWN) { \
+ if (dirs_set == 0) { \
+ d1 = d; x1 = i; y1 = j; \
+ } else { \
+ assert(dirs_set == 1); \
+ d2 = d; x2 = i; y2 = j; \
+ } \
+ dirs_set++; \
+ } \
+ } while (0)
+
+ TRY_DIR(x, y, RIGHT, ABOVE_SQUARE);
+ TRY_DIR(x, y, DOWN, LEFTOF_SQUARE);
+ TRY_DIR(x+1, y, DOWN, RIGHTOF_SQUARE);
+ TRY_DIR(x, y+1, RIGHT, BELOW_SQUARE);
+#undef TRY_DIR
+
+ assert(dirs_set == 2);
+
+#if 0
+ fprintf(stderr, "Line in direction %s from dot [%d,%d] and line in direction %s from dot [%2d,%2d] are %s\n",
+ DIR2STR(d1), x1, y1, DIR2STR(d2), x2, y2, inverse?"opposite":"the same");
+#endif
+
+ return merge_lines(sstate, x1, y1, d1, x2, y2, d2, inverse);
+}
+
+/* Figure out if any dlines can be 'collapsed' (and do so if they can). This
+ * can happen if one of the lines is known and due to the dline status this
+ * tells us state of the other, or if there's an interaction with the linedsf
+ * (ie if atmostone is set for a dline and the lines are known identical they
+ * must both be LINE_NO, etc). XXX at the moment only the former is
+ * implemented, and indeed the latter should be implemented in the hard mode
+ * solver only.
+ */
+static int dot_collapse_dlines(solver_state *sstate, int i, int j)
{
- int i, j, w, h;
- int current_yes, current_no, desired;
- solver_state *sstate, *sstate_saved, *sstate_tmp;
- int t;
- solver_state *sstate_rec_solved;
- int recursive_soln_count;
- char *square_solved;
- char *dot_solved;
- int solver_progress;
+ int progress = FALSE;
+ enum direction dir1, dir2;
+ int dir1st;
+ int dlset;
+ game_state *state = sstate->state;
+ enum dline_desc dd;
- h = sstate_start->state->h;
- w = sstate_start->state->w;
+ for (dir1 = 0; dir1 < 4; dir1++) {
+ dir1st = get_line_status_from_point(state, i, j, dir1);
+ if (dir1st == LINE_UNKNOWN)
+ continue;
+ /* dir2 iterates over the whole range rather than starting at dir1+1
+ * because test below is asymmetric */
+ for (dir2 = 0; dir2 < 4; dir2++) {
+ if (dir1 == dir2)
+ continue;
- dot_solved = snewn(DOT_COUNT(sstate_start->state), char);
- square_solved = snewn(SQUARE_COUNT(sstate_start->state), char);
- memset(dot_solved, FALSE, DOT_COUNT(sstate_start->state));
- memset(square_solved, FALSE, SQUARE_COUNT(sstate_start->state));
+ if ((i == 0 && (dir1 == LEFT || dir2 == LEFT)) ||
+ (j == 0 && (dir1 == UP || dir2 == UP)) ||
+ (i == state->w && (dir1 == RIGHT || dir2 == RIGHT)) ||
+ (j == state->h && (dir1 == DOWN || dir2 == DOWN))) {
+ continue;
+ }
#if 0
- printf("solve_game_rec: recursion_remaining = %d\n",
- sstate_start->recursion_remaining);
+ fprintf(stderr, "dot_collapse_dlines [%d,%d], %s %s\n", i, j,
+ DIR2STR(dir1), DIR2STR(dir2));
#endif
- sstate = dup_solver_state((solver_state *)sstate_start);
+ if (get_line_status_from_point(state, i, j, dir2) ==
+ LINE_UNKNOWN) {
+ dd = dline_desc_from_dirs(dir1, dir2);
-#define FOUND_MISTAKE \
- do { \
- sstate->solver_status = SOLVER_MISTAKE; \
- sfree(dot_solved); sfree(square_solved); \
- free_solver_state(sstate_saved); \
- return sstate; \
- } while (0)
+ dlset = get_dot_dline(state, sstate->normal->dot_atmostone, i, j, dd);
+ if (dlset && dir1st == LINE_YES) {
+/* fprintf(stderr, "setting %s to NO\n", DIR2STR(dir2)); */
+ progress |=
+ set_line_bydot(sstate, i, j, dir2, LINE_NO);
+ }
- sstate_saved = NULL;
+ dlset = get_dot_dline(state, sstate->normal->dot_atleastone, i, j, dd);
+ if (dlset && dir1st == LINE_NO) {
+/* fprintf(stderr, "setting %s to YES\n", DIR2STR(dir2)); */
+ progress |=
+ set_line_bydot(sstate, i, j, dir2, LINE_YES);
+ }
+ }
+ }
+ }
-nonrecursive_solver:
-
- while (1) {
- solver_progress = FALSE;
+ return progress;
+}
- /* First we do the 'easy' work, that might cause concrete results */
+/*
+ * These are the main solver functions.
+ *
+ * Their return values are diff values corresponding to the lowest mode solver
+ * that would notice the work that they have done. For example if the normal
+ * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
+ * easy mode solver might be able to make progress using that. It doesn't make
+ * sense for one of them to return a diff value higher than that of the
+ * function itself.
+ *
+ * Each function returns the lowest value it can, as early as possible, in
+ * order to try and pass as much work as possible back to the lower level
+ * solvers which progress more quickly.
+ */
- /* Per-square deductions */
- for (j = 0; j < h; ++j) {
- for (i = 0; i < w; ++i) {
- /* Begin rules that look at the clue (if there is one) */
- if (square_solved[i + j*w])
- continue;
+/* PROPOSED NEW DESIGN:
+ * We have a work queue consisting of 'events' notifying us that something has
+ * happened that a particular solver mode might be interested in. For example
+ * the hard mode solver might do something that helps the normal mode solver at
+ * dot [x,y] in which case it will enqueue an event recording this fact. Then
+ * we pull events off the work queue, and hand each in turn to the solver that
+ * is interested in them. If a solver reports that it failed we pass the same
+ * event on to progressively more advanced solvers and the loop detector. Once
+ * we've exhausted an event, or it has helped us progress, we drop it and
+ * continue to the next one. The events are sorted first in order of solver
+ * complexity (easy first) then order of insertion (oldest first).
+ * Once we run out of events we loop over each permitted solver in turn
+ * (easiest first) until either a deduction is made (and an event therefore
+ * emerges) or no further deductions can be made (in which case we've failed).
+ *
+ * QUESTIONS:
+ * * How do we 'loop over' a solver when both dots and squares are concerned.
+ * Answer: first all squares then all dots.
+ */
- desired = CLUE_AT(sstate->state, i, j);
- if (desired == ' ')
- continue;
+static int easy_mode_deductions(solver_state *sstate)
+{
+ int i, j, h, w, current_yes, current_no;
+ game_state *state;
+ enum diff diff = DIFF_MAX;
- desired = desired - '0';
- current_yes = square_order(sstate->state, i, j, LINE_YES);
- current_no = square_order(sstate->state, i, j, LINE_NO);
+ state = sstate->state;
+ h = state->h;
+ w = state->w;
+
+ /* Per-square deductions */
+ FORALL_SQUARES(state, i, j) {
+ if (sstate->square_solved[SQUARE_INDEX(state, i, j)])
+ continue;
- if (current_yes + current_no == 4) {
- square_solved[i + j*w] = TRUE;
- continue;
- }
+ current_yes = SQUARE_YES_COUNT(sstate, i, j);
+ current_no = SQUARE_NO_COUNT(sstate, i, j);
- if (desired < current_yes)
- FOUND_MISTAKE;
- if (desired == current_yes) {
- square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
- square_solved[i + j*w] = TRUE;
- solver_progress = TRUE;
- continue;
- }
+ if (current_yes + current_no == 4) {
+ sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE;
+/* diff = min(diff, DIFF_EASY); */
+ continue;
+ }
- if (4 - desired < current_no)
- FOUND_MISTAKE;
- if (4 - desired == current_no) {
- square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES);
- square_solved[i + j*w] = TRUE;
- solver_progress = TRUE;
- }
- }
- }
+ if (CLUE_AT(state, i, j) < 0)
+ continue;
- /* Per-dot deductions */
- for (j = 0; j < h + 1; ++j) {
- for (i = 0; i < w + 1; ++i) {
- if (dot_solved[i + j*(w+1)])
- continue;
+ if (CLUE_AT(state, i, j) < current_yes) {
+#if 0
+ fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
+#endif
+ sstate->solver_status = SOLVER_MISTAKE;
+ return DIFF_EASY;
+ }
+ if (CLUE_AT(state, i, j) == current_yes) {
+ if (square_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO))
+ diff = min(diff, DIFF_EASY);
+ sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE;
+ continue;
+ }
- switch (dot_order(sstate->state, i, j, LINE_YES)) {
- case 0:
- switch (dot_order(sstate->state, i, j, LINE_NO)) {
- case 3:
- dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
- solver_progress = TRUE;
- /* fall through */
- case 4:
- dot_solved[i + j*(w+1)] = TRUE;
- break;
- }
- break;
- case 1:
- switch (dot_order(sstate->state, i, j, LINE_NO)) {
-#define H1(dline, dir1_dot, dir2_dot, dot_howmany) \
- if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
- if (dir2_dot(sstate->state, i, j) == LINE_UNKNOWN){ \
- solver_progress |= \
- SET_BIT(sstate->dot_howmany[i + (w + 1) * j], \
- dline); \
- } \
- }
- case 1:
- if (diff > DIFF_EASY) {
-#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
- H1(dline, dir1_dot, dir2_dot, dot_atleastone)
- /* 1 yes, 1 no, so exactly one of unknowns is
- * yes */
- DOT_DLINES;
-#undef HANDLE_DLINE
- }
- /* fall through */
- case 0:
- if (diff > DIFF_EASY) {
-#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
- H1(dline, dir1_dot, dir2_dot, dot_atmostone)
- /* 1 yes, fewer than 2 no, so at most one of
- * unknowns is yes */
- DOT_DLINES;
-#undef HANDLE_DLINE
- }
-#undef H1
- break;
- case 2: /* 1 yes, 2 no */
- dot_setall(sstate->state, i, j,
- LINE_UNKNOWN, LINE_YES);
- dot_solved[i + j*(w+1)] = TRUE;
- solver_progress = TRUE;
- break;
- case 3: /* 1 yes, 3 no */
- FOUND_MISTAKE;
- break;
- }
- break;
- case 2:
- if (dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO)) {
- solver_progress = TRUE;
- }
- dot_solved[i + j*(w+1)] = TRUE;
- break;
- case 3:
- case 4:
- FOUND_MISTAKE;
- break;
- }
- if (diff > DIFF_EASY) {
-#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
- if (BIT_SET(sstate->dot_atleastone[i + (w + 1) * j], dline)) { \
- solver_progress |= \
- SET_BIT(sstate->dot_atmostone[i + (w + 1) * j], \
- OPP_DLINE(dline)); \
- }
- /* If at least one of a dline in a dot is YES, at most one
- * of the opposite dline to that dot must be YES. */
- DOT_DLINES;
- }
-#undef HANDLE_DLINE
+ if (4 - CLUE_AT(state, i, j) < current_no) {
+#if 0
+ fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
+#endif
+ sstate->solver_status = SOLVER_MISTAKE;
+ return DIFF_EASY;
+ }
+ if (4 - CLUE_AT(state, i, j) == current_no) {
+ if (square_setall(sstate, i, j, LINE_UNKNOWN, LINE_YES))
+ diff = min(diff, DIFF_EASY);
+ sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE;
+ continue;
+ }
+ }
-#define H1(dline, dir1_sq, dir2_sq, dot_howmany, line_query, line_set) \
- if (BIT_SET(sstate->dot_howmany[i + (w+1) * j], dline)) { \
- t = dir1_sq(sstate->state, i, j); \
- if (t == line_query) { \
- if (dir2_sq(sstate->state, i, j) != line_set) { \
- LV_##dir2_sq(sstate->state, i, j) = line_set; \
- solver_progress = TRUE; \
- } \
- } else { \
- t = dir2_sq(sstate->state, i, j); \
- if (t == line_query) { \
- if (dir1_sq(sstate->state, i, j) != line_set) { \
- LV_##dir1_sq(sstate->state, i, j) = line_set; \
- solver_progress = TRUE; \
- } \
- } \
- } \
- }
- if (diff > DIFF_EASY) {
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq) \
- H1(dline, dir1_sq, dir2_sq, dot_atmostone, LINE_YES, LINE_NO)
- /* If at most one of the DLINE is on, and one is definitely
- * on, set the other to definitely off */
- DOT_DLINES;
-#undef HANDLE_DLINE
- }
+ check_caches(sstate);
- if (diff > DIFF_EASY) {
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq) \
- H1(dline, dir1_sq, dir2_sq, dot_atleastone, LINE_NO, LINE_YES)
- /* If at least one of the DLINE is on, and one is definitely
- * off, set the other to definitely on */
- DOT_DLINES;
-#undef HANDLE_DLINE
- }
-#undef H1
+ /* Per-dot deductions */
+ FORALL_DOTS(state, i, j) {
+ if (sstate->dot_solved[DOT_INDEX(state, i, j)])
+ continue;
- }
- }
+ switch (DOT_YES_COUNT(sstate, i, j)) {
+ case 0:
+ switch (DOT_NO_COUNT(sstate, i, j)) {
+ case 3:
+#if 0
+ fprintf(stderr, "dot [%d,%d]: 0 yes, 3 no\n", i, j);
+#endif
+ dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO);
+ diff = min(diff, DIFF_EASY);
+ /* fall through */
+ case 4:
+ sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE;
+ break;
+ }
+ break;
+ case 1:
+ switch (DOT_NO_COUNT(sstate, i, j)) {
+ case 2: /* 1 yes, 2 no */
+#if 0
+ fprintf(stderr, "dot [%d,%d]: 1 yes, 2 no\n", i, j);
+#endif
+ dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_YES);
+ diff = min(diff, DIFF_EASY);
+ sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE;
+ break;
+ case 3: /* 1 yes, 3 no */
+#if 0
+ fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
+#endif
+ sstate->solver_status = SOLVER_MISTAKE;
+ return DIFF_EASY;
+ }
+ break;
+ case 2:
+#if 0
+ fprintf(stderr, "dot [%d,%d]: 2 yes\n", i, j);
+#endif
+ dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO);
+ diff = min(diff, DIFF_EASY);
+ sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE;
+ break;
+ case 3:
+ case 4:
+#if 0
+ fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__);
+#endif
+ sstate->solver_status = SOLVER_MISTAKE;
+ return DIFF_EASY;
+ }
+ }
- /* More obscure per-square operations */
- for (j = 0; j < h; ++j) {
- for (i = 0; i < w; ++i) {
- if (square_solved[i + j*w])
- continue;
+ check_caches(sstate);
- switch (CLUE_AT(sstate->state, i, j)) {
- case '1':
- if (diff > DIFF_EASY) {
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
- /* At most one of any DLINE can be set */ \
- SET_BIT(sstate->dot_atmostone[i+a + (w + 1) * (j+b)], \
- dline); \
- /* This DLINE provides enough YESes to solve the clue */\
- if (BIT_SET(sstate->dot_atleastone \
- [i+a + (w + 1) * (j+b)], \
- dline)) { \
- solver_progress |= \
- dot_setall_dlines(sstate, OPP_DLINE(dline), \
- i+(1-a), j+(1-b), \
- LINE_UNKNOWN, LINE_NO); \
- }
- SQUARE_DLINES;
-#undef HANDLE_DLINE
- }
- break;
- case '2':
- if (diff > DIFF_EASY) {
-#define H1(dline, dot_at1one, dot_at2one, a, b) \
- if (BIT_SET(sstate->dot_at1one \
- [i+a + (w+1) * (j+b)], dline)) { \
- solver_progress |= \
- SET_BIT(sstate->dot_at2one \
- [i+(1-a) + (w+1) * (j+(1-b))], \
- OPP_DLINE(dline)); \
- }
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
- H1(dline, dot_atleastone, dot_atmostone, a, b); \
- H1(dline, dot_atmostone, dot_atleastone, a, b);
- /* If at least one of one DLINE is set, at most one
- * of the opposing one is and vice versa */
- SQUARE_DLINES;
- }
-#undef HANDLE_DLINE
-#undef H1
- break;
- case '3':
- if (diff > DIFF_EASY) {
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
- /* At least one of any DLINE can be set */ \
- solver_progress |= \
- SET_BIT(sstate->dot_atleastone \
- [i+a + (w + 1) * (j+b)], \
- dline); \
- /* This DLINE provides enough NOs to solve the clue */ \
- if (BIT_SET(sstate->dot_atmostone \
- [i+a + (w + 1) * (j+b)], \
- dline)) { \
- solver_progress |= \
- dot_setall_dlines(sstate, OPP_DLINE(dline), \
- i+(1-a), j+(1-b), \
- LINE_UNKNOWN, LINE_YES); \
- }
- SQUARE_DLINES;
-#undef HANDLE_DLINE
- }
- break;
- }
- }
- }
-
- if (!solver_progress) {
- int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
- int shortest_chainlen = DOT_COUNT(sstate->state);
- int loop_found = FALSE;
- int d;
- int dots_connected;
+ return diff;
+}
- /*
- * Go through the grid and update for all the new edges.
- * Since merge_dots() is idempotent, the simplest way to
- * do this is just to update for _all_ the edges.
- *
- * Also, while we're here, we count the edges, count the
- * clues, count the satisfied clues, and count the
- * satisfied-minus-one clues.
- */
- for (j = 0; j < h+1; ++j) {
- for (i = 0; i < w+1; ++i) {
- if (RIGHTOF_DOT(sstate->state, i, j) == LINE_YES) {
- loop_found |= merge_dots(sstate, i, j, i+1, j);
- edgecount++;
- }
- if (BELOW_DOT(sstate->state, i, j) == LINE_YES) {
- loop_found |= merge_dots(sstate, i, j, i, j+1);
- edgecount++;
- }
+static int normal_mode_deductions(solver_state *sstate)
+{
+ int i, j;
+ game_state *state = sstate->state;
+ enum dline_desc dd;
+ enum diff diff = DIFF_MAX;
- if (CLUE_AT(sstate->state, i, j) != ' ') {
- int c = CLUE_AT(sstate->state, i, j) - '0';
- int o = square_order(sstate->state, i, j, LINE_YES);
- if (o == c)
- satclues++;
- else if (o == c-1)
- sm1clues++;
- clues++;
- }
- }
- }
+ FORALL_SQUARES(state, i, j) {
+ if (sstate->square_solved[SQUARE_INDEX(state, i, j)])
+ continue;
- for (i = 0; i < DOT_COUNT(sstate->state); ++i) {
- dots_connected = sstate->looplen[dsf_canonify(sstate->dotdsf,i)];
- if (dots_connected > 1)
- shortest_chainlen = min(shortest_chainlen, dots_connected);
- }
+ if (CLUE_AT(state, i, j) < 0)
+ continue;
- assert(sstate->solver_status == SOLVER_INCOMPLETE);
+ switch (CLUE_AT(state, i, j)) {
+ case 1:
+#if 0
+ fprintf(stderr, "clue [%d,%d] is 1, doing dline ops\n",
+ i, j);
+#endif
+ FORALL_SQUARE_DLINES(dd) {
+ /* At most one of any DLINE can be set */
+ if (set_square_dline(state,
+ sstate->normal->dot_atmostone,
+ i, j, dd)) {
+ diff = min(diff, DIFF_NORMAL);
+ }
- if (satclues == clues && shortest_chainlen == edgecount) {
- sstate->solver_status = SOLVER_SOLVED;
- /* This discovery clearly counts as progress, even if we haven't
- * just added any lines or anything */
- solver_progress = TRUE;
- goto finished_loop_checking;
- }
+ if (get_square_dline(state,
+ sstate->normal->dot_atleastone,
+ i, j, dd)) {
+ /* This DLINE provides enough YESes to solve the clue */
+ if (square_setboth_in_dline(sstate, OPP_DLINE(dd),
+ i, j, LINE_NO)) {
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ }
- /*
- * Now go through looking for LINE_UNKNOWN edges which
- * connect two dots that are already in the same
- * equivalence class. If we find one, test to see if the
- * loop it would create is a solution.
- */
- for (j = 0; j <= h; ++j) {
- for (i = 0; i <= w; ++i) {
- for (d = 0; d < 2; d++) {
- int i2, j2, eqclass, val;
+ break;
+ case 2:
+ /* If at least one of one DLINE is set, at most one
+ * of the opposing one is and vice versa */
+#if 0
+ fprintf(stderr, "clue [%d,%d] is 2, doing dline ops\n",
+ i, j);
+#endif
+ FORALL_SQUARE_DLINES(dd) {
+ if (get_square_dline(state,
+ sstate->normal->dot_atmostone,
+ i, j, dd)) {
+ if (set_square_opp_dline(state,
+ sstate->normal->dot_atleastone,
+ i, j, dd)) {
+ diff = min(diff, DIFF_NORMAL);
+ }
+ }
+ if (get_square_dline(state,
+ sstate->normal->dot_atleastone,
+ i, j, dd)) {
+ if (set_square_opp_dline(state,
+ sstate->normal->dot_atmostone,
+ i, j, dd)) {
+ diff = min(diff, DIFF_NORMAL);
+ }
+ }
+ }
+ break;
+ case 3:
+#if 0
+ fprintf(stderr, "clue [%d,%d] is 3, doing dline ops\n",
+ i, j);
+#endif
+ FORALL_SQUARE_DLINES(dd) {
+ /* At least one of any DLINE must be set */
+ if (set_square_dline(state,
+ sstate->normal->dot_atleastone,
+ i, j, dd)) {
+ diff = min(diff, DIFF_NORMAL);
+ }
- if (d == 0) {
- if (RIGHTOF_DOT(sstate->state, i, j) !=
- LINE_UNKNOWN)
- continue;
- i2 = i+1;
- j2 = j;
- } else {
- if (BELOW_DOT(sstate->state, i, j) !=
- LINE_UNKNOWN)
- continue;
- i2 = i;
- j2 = j+1;
- }
+ if (get_square_dline(state,
+ sstate->normal->dot_atmostone,
+ i, j, dd)) {
+ /* This DLINE provides enough NOs to solve the clue */
+ if (square_setboth_in_dline(sstate, OPP_DLINE(dd),
+ i, j, LINE_YES)) {
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ }
+ break;
+ }
+ }
- eqclass = dsf_canonify(sstate->dotdsf, j * (w+1) + i);
- if (eqclass != dsf_canonify(sstate->dotdsf,
- j2 * (w+1) + i2))
- continue;
+ check_caches(sstate);
- val = LINE_NO; /* loop is bad until proven otherwise */
+ if (diff < DIFF_NORMAL)
+ return diff;
- /*
- * This edge would form a loop. Next
- * question: how long would the loop be?
- * Would it equal the total number of edges
- * (plus the one we'd be adding if we added
- * it)?
- */
- if (sstate->looplen[eqclass] == edgecount + 1) {
- int sm1_nearby;
- int cx, cy;
+ FORALL_DOTS(state, i, j) {
+ if (sstate->dot_solved[DOT_INDEX(state, i, j)])
+ continue;
- /*
- * This edge would form a loop which
- * took in all the edges in the entire
- * grid. So now we need to work out
- * whether it would be a valid solution
- * to the puzzle, which means we have to
- * check if it satisfies all the clues.
- * This means that every clue must be
- * either satisfied or satisfied-minus-
- * 1, and also that the number of
- * satisfied-minus-1 clues must be at
- * most two and they must lie on either
- * side of this edge.
- */
- sm1_nearby = 0;
- cx = i - (j2-j);
- cy = j - (i2-i);
- if (CLUE_AT(sstate->state, cx,cy) != ' ' &&
- square_order(sstate->state, cx,cy, LINE_YES) ==
- CLUE_AT(sstate->state, cx,cy) - '0' - 1)
- sm1_nearby++;
- if (CLUE_AT(sstate->state, i, j) != ' ' &&
- square_order(sstate->state, i, j, LINE_YES) ==
- CLUE_AT(sstate->state, i, j) - '0' - 1)
- sm1_nearby++;
- if (sm1clues == sm1_nearby &&
- sm1clues + satclues == clues)
- val = LINE_YES; /* loop is good! */
- }
+#if 0
+ text = game_text_format(state);
+ fprintf(stderr, "-----------------\n%s", text);
+ sfree(text);
+#endif
- /*
- * Right. Now we know that adding this edge
- * would form a loop, and we know whether
- * that loop would be a viable solution or
- * not.
- *
- * If adding this edge produces a solution,
- * then we know we've found _a_ solution but
- * we don't know that it's _the_ solution -
- * if it were provably the solution then
- * we'd have deduced this edge some time ago
- * without the need to do loop detection. So
- * in this state we return SOLVER_AMBIGUOUS,
- * which has the effect that hitting Solve
- * on a user-provided puzzle will fill in a
- * solution but using the solver to
- * construct new puzzles won't consider this
- * a reasonable deduction for the user to
- * make.
- */
- if (d == 0) {
- LV_RIGHTOF_DOT(sstate->state, i, j) = val;
- solver_progress = TRUE;
- } else {
- LV_BELOW_DOT(sstate->state, i, j) = val;
- solver_progress = TRUE;
- }
- if (val == LINE_YES) {
- sstate->solver_status = SOLVER_AMBIGUOUS;
- goto finished_loop_checking;
- }
- }
- }
- }
+ switch (DOT_YES_COUNT(sstate, i, j)) {
+ case 0:
+ switch (DOT_NO_COUNT(sstate, i, j)) {
+ case 1:
+ /* Make note that at most one of each unknown DLINE
+ * is YES */
+ break;
+ }
+ break;
- finished_loop_checking:
+ case 1:
+ switch (DOT_NO_COUNT(sstate, i, j)) {
+ case 1:
+ /* 1 yes, 1 no, so exactly one of unknowns is
+ * yes */
+#if 0
+ fprintf(stderr, "dot [%d,%d]: 1 yes, 1 no\n", i, j);
+#endif
+ FORALL_DOT_DLINES(dd) {
+ if (dline_both_unknown(state,
+ i, j, dd)) {
+ if (set_dot_dline(state,
+ sstate->normal->dot_atleastone,
+ i, j, dd)) {
+ diff = min(diff, DIFF_NORMAL);
+ }
+ }
+ }
- if (!solver_progress ||
- sstate->solver_status == SOLVER_SOLVED ||
- sstate->solver_status == SOLVER_AMBIGUOUS) {
- break;
- }
- }
- }
+ /* fall through */
+ case 0:
+#if 0
+ fprintf(stderr, "dot [%d,%d]: 1 yes, 0 or 1 no\n", i, j);
+#endif
+ /* 1 yes, fewer than 2 no, so at most one of
+ * unknowns is yes */
+ FORALL_DOT_DLINES(dd) {
+ if (dline_both_unknown(state,
+ i, j, dd)) {
+ if (set_dot_dline(state,
+ sstate->normal->dot_atmostone,
+ i, j, dd)) {
+ diff = min(diff, DIFF_NORMAL);
+ }
+ }
+ }
+ break;
+ }
+ break;
+ }
- sfree(dot_solved); sfree(square_solved);
+ /* DLINE deductions that don't depend on the exact number of
+ * LINE_YESs or LINE_NOs */
- if (sstate->solver_status == SOLVER_SOLVED ||
- sstate->solver_status == SOLVER_AMBIGUOUS) {
- /* s/LINE_UNKNOWN/LINE_NO/g */
- array_setall(sstate->state->hl, LINE_UNKNOWN, LINE_NO,
- HL_COUNT(sstate->state));
- array_setall(sstate->state->vl, LINE_UNKNOWN, LINE_NO,
- VL_COUNT(sstate->state));
- return sstate;
- }
+ /* If at least one of a dline in a dot is YES, at most one
+ * of the opposite dline to that dot must be YES. */
+ FORALL_DOT_DLINES(dd) {
+ if (get_dot_dline(state,
+ sstate->normal->dot_atleastone,
+ i, j, dd)) {
+ if (set_dot_opp_dline(state,
+ sstate->normal->dot_atmostone,
+ i, j, dd)) {
+ diff = min(diff, DIFF_NORMAL);
+ }
+ }
+ }
- /* Perform recursive calls */
- if (sstate->recursion_remaining) {
- sstate_saved = dup_solver_state(sstate);
+ if (dot_collapse_dlines(sstate, i, j))
+ diff = min(diff, DIFF_EASY);
+ }
+ check_caches(sstate);
- sstate->recursion_remaining--;
+ return diff;
+}
- recursive_soln_count = 0;
- sstate_rec_solved = NULL;
+static int hard_mode_deductions(solver_state *sstate)
+{
+ int i, j, a, b, s;
+ game_state *state = sstate->state;
+ const int h=state->h, w=state->w;
+ enum direction dir1, dir2;
+ int can1, can2, inv1, inv2;
+ enum diff diff = DIFF_MAX;
+ const struct dline *dl;
+ enum dline_desc dd;
- /* Memory management:
- * sstate_saved won't be modified but needs to be freed when we have
- * finished with it.
- * sstate is expected to contain our 'best' solution by the time we
- * finish this section of code. It's the thing we'll try adding lines
- * to, seeing if they make it more solvable.
- * If sstate_rec_solved is non-NULL, it will supersede sstate
- * eventually. sstate_tmp should not hold a value persistently.
- */
+ FORALL_SQUARES(state, i, j) {
+ if (sstate->square_solved[SQUARE_INDEX(state, i, j)])
+ continue;
+
+ switch (CLUE_AT(state, i, j)) {
+ case -1:
+ continue;
+
+ case 1:
+ if (square_setall_identical(sstate, i, j, LINE_NO))
+ diff = min(diff, DIFF_EASY);
+ break;
+ case 3:
+ if (square_setall_identical(sstate, i, j, LINE_YES))
+ diff = min(diff, DIFF_EASY);
+ break;
+ }
- /* NB SOLVER_AMBIGUOUS is like SOLVER_SOLVED except the solver is aware
- * of the possibility of additional solutions. So as soon as we have a
- * SOLVER_AMBIGUOUS we can safely propagate it back to our caller, but
- * if we get a SOLVER_SOLVED we want to keep trying in case we find
- * further solutions and have to mark it ambiguous.
- */
+ if (SQUARE_YES_COUNT(sstate, i, j) +
+ SQUARE_NO_COUNT(sstate, i, j) == 2) {
+ /* There are exactly two unknown lines bordering this
+ * square. */
+ if (SQUARE_YES_COUNT(sstate, i, j) + 1 ==
+ CLUE_AT(state, i, j)) {
+ /* They must be different */
+ if (square_relate_2_unknowns(sstate, i, j, TRUE))
+ diff = min(diff, DIFF_HARD);
+ }
+ }
+ }
-#define DO_RECURSIVE_CALL(dir_dot) \
- if (dir_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
- debug(("Trying " #dir_dot " at [%d,%d]\n", i, j)); \
- LV_##dir_dot(sstate->state, i, j) = LINE_YES; \
- sstate_tmp = solve_game_rec(sstate, diff); \
- switch (sstate_tmp->solver_status) { \
- case SOLVER_AMBIGUOUS: \
- debug(("Solver ambiguous, returning\n")); \
- sstate_rec_solved = sstate_tmp; \
- goto finished_recursion; \
- case SOLVER_SOLVED: \
- switch (++recursive_soln_count) { \
- case 1: \
- debug(("One solution found\n")); \
- sstate_rec_solved = sstate_tmp; \
- break; \
- case 2: \
- debug(("Ambiguous solutions found\n")); \
- free_solver_state(sstate_tmp); \
- sstate_rec_solved->solver_status = SOLVER_AMBIGUOUS;\
- goto finished_recursion; \
- default: \
- assert(!"recursive_soln_count out of range"); \
- break; \
- } \
- break; \
- case SOLVER_MISTAKE: \
- debug(("Non-solution found\n")); \
- free_solver_state(sstate_tmp); \
- free_solver_state(sstate_saved); \
- LV_##dir_dot(sstate->state, i, j) = LINE_NO; \
- goto nonrecursive_solver; \
- case SOLVER_INCOMPLETE: \
- debug(("Recursive step inconclusive\n")); \
- free_solver_state(sstate_tmp); \
- break; \
- } \
- free_solver_state(sstate); \
- sstate = dup_solver_state(sstate_saved); \
- }
-
- for (j = 0; j < h + 1; ++j) {
- for (i = 0; i < w + 1; ++i) {
- /* Only perform recursive calls on 'loose ends' */
- if (dot_order(sstate->state, i, j, LINE_YES) == 1) {
- DO_RECURSIVE_CALL(LEFTOF_DOT);
- DO_RECURSIVE_CALL(RIGHTOF_DOT);
- DO_RECURSIVE_CALL(ABOVE_DOT);
- DO_RECURSIVE_CALL(BELOW_DOT);
- }
+ check_caches(sstate);
+
+ FORALL_DOTS(state, i, j) {
+ if (DOT_YES_COUNT(sstate, i, j) == 1 &&
+ DOT_NO_COUNT(sstate, i, j) == 1) {
+ if (dot_relate_2_unknowns(sstate, i, j, TRUE))
+ diff = min(diff, DIFF_HARD);
+ continue;
+ }
+
+ if (DOT_YES_COUNT(sstate, i, j) == 0 &&
+ DOT_NO_COUNT(sstate, i, j) == 2) {
+ if (dot_relate_2_unknowns(sstate, i, j, FALSE))
+ diff = min(diff, DIFF_HARD);
+ continue;
+ }
+ }
+
+ /* If two lines into a dot are related, the other two lines into that dot
+ * are related in the same way. */
+
+ /* iter over points that aren't on edges */
+ for (i = 1; i < w; ++i) {
+ for (j = 1; j < h; ++j) {
+ if (sstate->dot_solved[DOT_INDEX(state, i, j)])
+ continue;
+
+ /* iter over directions */
+ for (dir1 = 0; dir1 < 4; ++dir1) {
+ for (dir2 = dir1+1; dir2 < 4; ++dir2) {
+ /* canonify both lines */
+ can1 = edsf_canonify
+ (sstate->hard->linedsf,
+ LINEDSF_INDEX(state, i, j, dir1),
+ &inv1);
+ can2 = edsf_canonify
+ (sstate->hard->linedsf,
+ LINEDSF_INDEX(state, i, j, dir2),
+ &inv2);
+ /* merge opposite lines */
+ if (can1 == can2) {
+ if (merge_lines(sstate,
+ i, j, OPP_DIR(dir1),
+ i, j, OPP_DIR(dir2),
+ inv1 ^ inv2)) {
+ diff = min(diff, DIFF_HARD);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* If the state of a line is known, deduce the state of its canonical line
+ * too. */
+ FORALL_DOTS(state, i, j) {
+ /* Do this even if the dot we're on is solved */
+ if (i < w) {
+ can1 = edsf_canonify(sstate->hard->linedsf,
+ LINEDSF_INDEX(state, i, j, RIGHT),
+ &inv1);
+ linedsf_deindex(state, can1, &a, &b, &dir1);
+ s = RIGHTOF_DOT(state, i, j);
+ if (s != LINE_UNKNOWN)
+ {
+ if (set_line_bydot(sstate, a, b, dir1, inv1 ? OPP(s) : s))
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ if (j < h) {
+ can1 = edsf_canonify(sstate->hard->linedsf,
+ LINEDSF_INDEX(state, i, j, DOWN),
+ &inv1);
+ linedsf_deindex(state, can1, &a, &b, &dir1);
+ s = BELOW_DOT(state, i, j);
+ if (s != LINE_UNKNOWN)
+ {
+ if (set_line_bydot(sstate, a, b, dir1, inv1 ? OPP(s) : s))
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ }
+
+ /* Interactions between dline and linedsf */
+ FORALL_DOTS(state, i, j) {
+ if (sstate->dot_solved[DOT_INDEX(state, i, j)])
+ continue;
+
+ FORALL_DOT_DLINES(dd) {
+ dl = get_dline(dd);
+ if (i == 0 && (dl->dir1 == LEFT || dl->dir2 == LEFT))
+ continue;
+ if (i == w && (dl->dir1 == RIGHT || dl->dir2 == RIGHT))
+ continue;
+ if (j == 0 && (dl->dir1 == UP || dl->dir2 == UP))
+ continue;
+ if (j == h && (dl->dir1 == DOWN || dl->dir2 == DOWN))
+ continue;
+
+ if (get_dot_dline(state, sstate->normal->dot_atleastone,
+ i, j, dd) &&
+ get_dot_dline(state, sstate->normal->dot_atmostone,
+ i, j, dd)) {
+ /* atleastone && atmostone => inverse */
+ if (merge_lines(sstate, i, j, dl->dir1, i, j, dl->dir2, 1)) {
+ diff = min(diff, DIFF_HARD);
+ }
+ } else {
+ /* don't have atleastone and atmostone for this dline */
+ can1 = edsf_canonify(sstate->hard->linedsf,
+ LINEDSF_INDEX(state, i, j, dl->dir1),
+ &inv1);
+ can2 = edsf_canonify(sstate->hard->linedsf,
+ LINEDSF_INDEX(state, i, j, dl->dir2),
+ &inv2);
+ if (can1 == can2) {
+ if (inv1 == inv2) {
+ /* identical => collapse dline */
+ if (get_dot_dline(state,
+ sstate->normal->dot_atleastone,
+ i, j, dd)) {
+ if (set_line_bydot(sstate, i, j,
+ dl->dir1, LINE_YES)) {
+ diff = min(diff, DIFF_EASY);
+ }
+ if (set_line_bydot(sstate, i, j,
+ dl->dir2, LINE_YES)) {
+ diff = min(diff, DIFF_EASY);
+ }
+ } else if (get_dot_dline(state,
+ sstate->normal->dot_atmostone,
+ i, j, dd)) {
+ if (set_line_bydot(sstate, i, j,
+ dl->dir1, LINE_NO)) {
+ diff = min(diff, DIFF_EASY);
+ }
+ if (set_line_bydot(sstate, i, j,
+ dl->dir2, LINE_NO)) {
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ } else {
+ /* inverse => atleastone && atmostone */
+ if (set_dot_dline(state,
+ sstate->normal->dot_atleastone,
+ i, j, dd)) {
+ diff = min(diff, DIFF_NORMAL);
+ }
+ if (set_dot_dline(state,
+ sstate->normal->dot_atmostone,
+ i, j, dd)) {
+ diff = min(diff, DIFF_NORMAL);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* If the state of the canonical line for line 'l' is known, deduce the
+ * state of 'l' */
+ FORALL_DOTS(state, i, j) {
+ if (sstate->dot_solved[DOT_INDEX(state, i, j)])
+ continue;
+
+ if (i < w) {
+ can1 = edsf_canonify(sstate->hard->linedsf,
+ LINEDSF_INDEX(state, i, j, RIGHT),
+ &inv1);
+ linedsf_deindex(state, can1, &a, &b, &dir1);
+ s = get_line_status_from_point(state, a, b, dir1);
+ if (s != LINE_UNKNOWN)
+ {
+ if (set_line_bydot(sstate, i, j, RIGHT, inv1 ? OPP(s) : s))
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ if (j < h) {
+ can1 = edsf_canonify(sstate->hard->linedsf,
+ LINEDSF_INDEX(state, i, j, DOWN),
+ &inv1);
+ linedsf_deindex(state, can1, &a, &b, &dir1);
+ s = get_line_status_from_point(state, a, b, dir1);
+ if (s != LINE_UNKNOWN)
+ {
+ if (set_line_bydot(sstate, i, j, DOWN, inv1 ? OPP(s) : s))
+ diff = min(diff, DIFF_EASY);
+ }
+ }
+ }
+
+ return diff;
+}
+
+static int loop_deductions(solver_state *sstate)
+{
+ int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
+ game_state *state = sstate->state;
+ int shortest_chainlen = DOT_COUNT(state);
+ int loop_found = FALSE;
+ int d;
+ int dots_connected;
+ int progress = FALSE;
+ int i, j;
+
+ /*
+ * Go through the grid and update for all the new edges.
+ * Since merge_dots() is idempotent, the simplest way to
+ * do this is just to update for _all_ the edges.
+ *
+ * Also, while we're here, we count the edges, count the
+ * clues, count the satisfied clues, and count the
+ * satisfied-minus-one clues.
+ */
+ FORALL_DOTS(state, i, j) {
+ if (RIGHTOF_DOT(state, i, j) == LINE_YES) {
+ loop_found |= merge_dots(sstate, i, j, i+1, j);
+ edgecount++;
+ }
+ if (BELOW_DOT(state, i, j) == LINE_YES) {
+ loop_found |= merge_dots(sstate, i, j, i, j+1);
+ edgecount++;
+ }
+
+ if (CLUE_AT(state, i, j) >= 0) {
+ int c = CLUE_AT(state, i, j);
+ int o = SQUARE_YES_COUNT(sstate, i, j);
+ if (o == c)
+ satclues++;
+ else if (o == c-1)
+ sm1clues++;
+ clues++;
+ }
+ }
+
+ for (i = 0; i < DOT_COUNT(state); ++i) {
+ dots_connected =
+ sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
+ if (dots_connected > 1)
+ shortest_chainlen = min(shortest_chainlen, dots_connected);
+ }
+
+ assert(sstate->solver_status == SOLVER_INCOMPLETE);
+
+ if (satclues == clues && shortest_chainlen == edgecount) {
+ sstate->solver_status = SOLVER_SOLVED;
+ /* This discovery clearly counts as progress, even if we haven't
+ * just added any lines or anything */
+ progress = TRUE;
+ goto finished_loop_deductionsing;
+ }
+
+ /*
+ * Now go through looking for LINE_UNKNOWN edges which
+ * connect two dots that are already in the same
+ * equivalence class. If we find one, test to see if the
+ * loop it would create is a solution.
+ */
+ FORALL_DOTS(state, i, j) {
+ for (d = 0; d < 2; d++) {
+ int i2, j2, eqclass, val;
+
+ if (d == 0) {
+ if (RIGHTOF_DOT(state, i, j) !=
+ LINE_UNKNOWN)
+ continue;
+ i2 = i+1;
+ j2 = j;
+ } else {
+ if (BELOW_DOT(state, i, j) !=
+ LINE_UNKNOWN) {
+ continue;
+ }
+ i2 = i;
+ j2 = j+1;
+ }
+
+ eqclass = dsf_canonify(sstate->dotdsf, j * (state->w+1) + i);
+ if (eqclass != dsf_canonify(sstate->dotdsf,
+ j2 * (state->w+1) + i2)) {
+ continue;
+ }
+
+ val = LINE_NO; /* loop is bad until proven otherwise */
+
+ /*
+ * This edge would form a loop. Next
+ * question: how long would the loop be?
+ * Would it equal the total number of edges
+ * (plus the one we'd be adding if we added
+ * it)?
+ */
+ if (sstate->looplen[eqclass] == edgecount + 1) {
+ int sm1_nearby;
+ int cx, cy;
+
+ /*
+ * This edge would form a loop which
+ * took in all the edges in the entire
+ * grid. So now we need to work out
+ * whether it would be a valid solution
+ * to the puzzle, which means we have to
+ * check if it satisfies all the clues.
+ * This means that every clue must be
+ * either satisfied or satisfied-minus-
+ * 1, and also that the number of
+ * satisfied-minus-1 clues must be at
+ * most two and they must lie on either
+ * side of this edge.
+ */
+ sm1_nearby = 0;
+ cx = i - (j2-j);
+ cy = j - (i2-i);
+ if (CLUE_AT(state, cx,cy) >= 0 &&
+ square_order(state, cx,cy, LINE_YES) ==
+ CLUE_AT(state, cx,cy) - 1) {
+ sm1_nearby++;
+ }
+ if (CLUE_AT(state, i, j) >= 0 &&
+ SQUARE_YES_COUNT(sstate, i, j) ==
+ CLUE_AT(state, i, j) - 1) {
+ sm1_nearby++;
+ }
+ if (sm1clues == sm1_nearby &&
+ sm1clues + satclues == clues) {
+ val = LINE_YES; /* loop is good! */
+ }
+ }
+
+ /*
+ * Right. Now we know that adding this edge
+ * would form a loop, and we know whether
+ * that loop would be a viable solution or
+ * not.
+ *
+ * If adding this edge produces a solution,
+ * then we know we've found _a_ solution but
+ * we don't know that it's _the_ solution -
+ * if it were provably the solution then
+ * we'd have deduced this edge some time ago
+ * without the need to do loop detection. So
+ * in this state we return SOLVER_AMBIGUOUS,
+ * which has the effect that hitting Solve
+ * on a user-provided puzzle will fill in a
+ * solution but using the solver to
+ * construct new puzzles won't consider this
+ * a reasonable deduction for the user to
+ * make.
+ */
+ if (d == 0) {
+ progress = set_line_bydot(sstate, i, j, RIGHT, val);
+ assert(progress == TRUE);
+ } else {
+ progress = set_line_bydot(sstate, i, j, DOWN, val);
+ assert(progress == TRUE);
+ }
+ if (val == LINE_YES) {
+ sstate->solver_status = SOLVER_AMBIGUOUS;
+ goto finished_loop_deductionsing;
+ }
+ }
+ }
+
+finished_loop_deductionsing:
+ return progress ? DIFF_EASY : DIFF_MAX;
+}
+
+/* This will return a dynamically allocated solver_state containing the (more)
+ * solved grid */
+static solver_state *solve_game_rec(const solver_state *sstate_start,
+ enum diff diff)
+{
+ int i, j;
+ int w, h;
+ solver_state *sstate, *sstate_saved, *sstate_tmp;
+ solver_state *sstate_rec_solved;
+ int recursive_soln_count;
+ int solver_progress;
+ game_state *state;
+
+ /* Indicates which solver we should call next. This is a sensible starting
+ * point */
+ int current_solver = DIFF_EASY, next_solver;
+#ifdef SHOW_WORKING
+ char *text;
+#endif
+
+#if 0
+ printf("solve_game_rec: recursion_remaining = %d\n",
+ sstate_start->recursion_remaining);
+#endif
+
+ sstate = dup_solver_state(sstate_start);
+
+ /* Cache the values of some variables for readability */
+ state = sstate->state;
+ h = state->h;
+ w = state->w;
+
+ sstate_saved = NULL;
+
+nonrecursive_solver:
+ solver_progress = FALSE;
+
+ check_caches(sstate);
+
+ do {
+#ifdef SHOW_WORKING
+ text = game_text_format(state);
+ fprintf(stderr, "-----------------\n%s", text);
+ sfree(text);
+#endif
+
+ if (sstate->solver_status == SOLVER_MISTAKE)
+ return sstate;
+
+/* fprintf(stderr, "Invoking solver %d\n", current_solver); */
+ next_solver = solver_fns[current_solver](sstate);
+
+ if (next_solver == DIFF_MAX) {
+/* fprintf(stderr, "Current solver failed\n"); */
+ if (current_solver < diff && current_solver + 1 < DIFF_MAX) {
+ /* Try next beefier solver */
+ next_solver = current_solver + 1;
+ } else {
+/* fprintf(stderr, "Doing loop deductions\n"); */
+ next_solver = loop_deductions(sstate);
+ }
+ }
+
+ if (sstate->solver_status == SOLVER_SOLVED ||
+ sstate->solver_status == SOLVER_AMBIGUOUS) {
+/* fprintf(stderr, "Solver completed\n"); */
+ break;
+ }
+
+ /* Once we've looped over all permitted solvers then the loop
+ * deductions without making any progress, we'll exit this while loop */
+ current_solver = next_solver;
+ } while (current_solver < DIFF_MAX);
+
+ if (sstate->solver_status == SOLVER_SOLVED ||
+ sstate->solver_status == SOLVER_AMBIGUOUS) {
+ /* s/LINE_UNKNOWN/LINE_NO/g */
+ array_setall(sstate->state->hl, LINE_UNKNOWN, LINE_NO,
+ HL_COUNT(sstate->state));
+ array_setall(sstate->state->vl, LINE_UNKNOWN, LINE_NO,
+ VL_COUNT(sstate->state));
+ return sstate;
+ }
+
+ /* Perform recursive calls */
+ if (sstate->recursion_remaining) {
+ sstate_saved = dup_solver_state(sstate);
+
+ sstate->recursion_remaining--;
+
+ recursive_soln_count = 0;
+ sstate_rec_solved = NULL;
+
+ /* Memory management:
+ * sstate_saved won't be modified but needs to be freed when we have
+ * finished with it.
+ * sstate is expected to contain our 'best' solution by the time we
+ * finish this section of code. It's the thing we'll try adding lines
+ * to, seeing if they make it more solvable.
+ * If sstate_rec_solved is non-NULL, it will supersede sstate
+ * eventually. sstate_tmp should not hold a value persistently.
+ */
+
+ /* NB SOLVER_AMBIGUOUS is like SOLVER_SOLVED except the solver is aware
+ * of the possibility of additional solutions. So as soon as we have a
+ * SOLVER_AMBIGUOUS we can safely propagate it back to our caller, but
+ * if we get a SOLVER_SOLVED we want to keep trying in case we find
+ * further solutions and have to mark it ambiguous.
+ */
+
+#define DO_RECURSIVE_CALL(dir_dot) \
+ if (dir_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
+ debug(("Trying " #dir_dot " at [%d,%d]\n", i, j)); \
+ LV_##dir_dot(sstate->state, i, j) = LINE_YES; \
+ sstate_tmp = solve_game_rec(sstate, diff); \
+ switch (sstate_tmp->solver_status) { \
+ case SOLVER_AMBIGUOUS: \
+ debug(("Solver ambiguous, returning\n")); \
+ sstate_rec_solved = sstate_tmp; \
+ goto finished_recursion; \
+ case SOLVER_SOLVED: \
+ switch (++recursive_soln_count) { \
+ case 1: \
+ debug(("One solution found\n")); \
+ sstate_rec_solved = sstate_tmp; \
+ break; \
+ case 2: \
+ debug(("Ambiguous solutions found\n")); \
+ free_solver_state(sstate_tmp); \
+ sstate_rec_solved->solver_status = SOLVER_AMBIGUOUS; \
+ goto finished_recursion; \
+ default: \
+ assert(!"recursive_soln_count out of range"); \
+ break; \
+ } \
+ break; \
+ case SOLVER_MISTAKE: \
+ debug(("Non-solution found\n")); \
+ free_solver_state(sstate_tmp); \
+ free_solver_state(sstate_saved); \
+ LV_##dir_dot(sstate->state, i, j) = LINE_NO; \
+ goto nonrecursive_solver; \
+ case SOLVER_INCOMPLETE: \
+ debug(("Recursive step inconclusive\n")); \
+ free_solver_state(sstate_tmp); \
+ break; \
+ } \
+ free_solver_state(sstate); \
+ sstate = dup_solver_state(sstate_saved); \
+ }
+
+ FORALL_DOTS(state, i, j) {
+ /* Only perform recursive calls on 'loose ends' */
+ if (DOT_YES_COUNT(sstate, i, j) == 1) {
+ DO_RECURSIVE_CALL(LEFTOF_DOT);
+ DO_RECURSIVE_CALL(RIGHTOF_DOT);
+ DO_RECURSIVE_CALL(ABOVE_DOT);
+ DO_RECURSIVE_CALL(BELOW_DOT);
}
}
@@ -1894,81 +3218,27 @@
free_solver_state(sstate);
sstate = sstate_rec_solved;
}
- }
+ }
- return sstate;
+ return sstate;
}
-/* XXX bits of solver that may come in handy one day */
#if 0
-#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
- /* dline from this dot that's entirely unknown must have
- * both lines identical */ \
- if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN && \
- dir2_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
- sstate->dline_identical[i + (sstate->state->w + 1) * j] |= \
- 1<<dline; \
- } else if (sstate->dline_identical[i +
- (sstate->state->w + 1) * j] &\
- 1<<dline) { \
- /* If they're identical and one is known do the obvious
- * thing */ \
- t = dir1_dot(sstate->state, i, j); \
- if (t != LINE_UNKNOWN) \
- dir2_dot(sstate->state, i, j) = t; \
- else { \
- t = dir2_dot(sstate->state, i, j); \
- if (t != LINE_UNKNOWN) \
- dir1_dot(sstate->state, i, j) = t; \
- } \
- } \
- DOT_DLINES;
-#undef HANDLE_DLINE
-#endif
-
-#if 0
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
- if (sstate->dline_identical[i+a + \
- (sstate->state->w + 1) * (j+b)] &\
- 1<<dline) { \
- dir1_sq(sstate->state, i, j) = LINE_YES; \
- dir2_sq(sstate->state, i, j) = LINE_YES; \
- }
- /* If two lines are the same they must be on */
- SQUARE_DLINES;
-#undef HANDLE_DLINE
-#endif
-
-
-#if 0
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
- if (sstate->dot_atmostone[i+a + (sstate->state->w + 1) * (j+b)] & \
- 1<<dline) { \
- if (square_order(sstate->state, i, j, LINE_UNKNOWN) - 1 == \
- CLUE_AT(sstate->state, i, j) - '0') { \
+ if (sstate->normal->dot_atmostone[i+a + (sstate->state->w + 1) * (j+b)] & \
+ 1<<dline) { \
+ if (square_order(sstate->state, i, j, LINE_UNKNOWN) - 1 == \
+ CLUE_AT(sstate->state, i, j) - '0') { \
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES); \
/* XXX the following may overwrite known data! */ \
- dir1_sq(sstate->state, i, j) = LINE_UNKNOWN; \
- dir2_sq(sstate->state, i, j) = LINE_UNKNOWN; \
- } \
+ dir1_sq(sstate->state, i, j) = LINE_UNKNOWN; \
+ dir2_sq(sstate->state, i, j) = LINE_UNKNOWN; \
+ } \
}
SQUARE_DLINES;
#undef HANDLE_DLINE
#endif
-#if 0
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
- if (sstate->dline_identical[i+a +
- (sstate->state->w + 1) * (j+b)] &\
- 1<<dline) { \
- dir1_sq(sstate->state, i, j) = LINE_NO; \
- dir2_sq(sstate->state, i, j) = LINE_NO; \
- }
- /* If two lines are the same they must be off */
- SQUARE_DLINES;
-#undef HANDLE_DLINE
-#endif
-
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
@@ -1975,8 +3245,8 @@
char *soln = NULL;
solver_state *sstate, *new_sstate;
- sstate = new_solver_state(state);
- new_sstate = solve_game_rec(sstate, DIFFCOUNT);
+ sstate = new_solver_state(state, DIFF_MAX);
+ new_sstate = solve_game_rec(sstate, DIFF_MAX);
if (new_sstate->solver_status == SOLVER_SOLVED) {
soln = encode_solve_move(new_sstate->state);
@@ -1994,97 +3264,10 @@
return soln;
}
-static char *game_text_format(game_state *state)
-{
- int i, j;
- int len;
- char *ret, *rp;
+/* ----------------------------------------------------------------------
+ * Drawing and mouse-handling
+ */
- len = (2 * state->w + 2) * (2 * state->h + 1);
- rp = ret = snewn(len + 1, char);
-
-#define DRAW_HL \
- switch (ABOVE_SQUARE(state, i, j)) { \
- case LINE_YES: \
- rp += sprintf(rp, " -"); \
- break; \
- case LINE_NO: \
- rp += sprintf(rp, " x"); \
- break; \
- case LINE_UNKNOWN: \
- rp += sprintf(rp, " "); \
- break; \
- default: \
- assert(!"Illegal line state for HL");\
- }
-
-#define DRAW_VL \
- switch (LEFTOF_SQUARE(state, i, j)) {\
- case LINE_YES: \
- rp += sprintf(rp, "|"); \
- break; \
- case LINE_NO: \
- rp += sprintf(rp, "x"); \
- break; \
- case LINE_UNKNOWN: \
- rp += sprintf(rp, " "); \
- break; \
- default: \
- assert(!"Illegal line state for VL");\
- }
-
- for (j = 0; j < state->h; ++j) {
- for (i = 0; i < state->w; ++i) {
- DRAW_HL;
- }
- rp += sprintf(rp, " \n");
- for (i = 0; i < state->w; ++i) {
- DRAW_VL;
- rp += sprintf(rp, "%c", (int)(CLUE_AT(state, i, j)));
- }
- DRAW_VL;
- rp += sprintf(rp, "\n");
- }
- for (i = 0; i < state->w; ++i) {
- DRAW_HL;
- }
- rp += sprintf(rp, " \n");
-
- assert(strlen(ret) == len);
- return ret;
-}
-
-static game_ui *new_ui(game_state *state)
-{
- return NULL;
-}
-
-static void free_ui(game_ui *ui)
-{
-}
-
-static char *encode_ui(game_ui *ui)
-{
- return NULL;
-}
-
-static void decode_ui(game_ui *ui, char *encoding)
-{
-}
-
-static void game_changed_state(game_ui *ui, game_state *oldstate,
- game_state *newstate)
-{
-}
-
-struct game_drawstate {
- int started;
- int tilesize, linewidth;
- int flashing;
- char *hl, *vl;
- char *clue_error;
-};
-
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
@@ -2246,91 +3429,89 @@
/*
* Check for completion.
*/
- i = 0; /* placate optimiser */
+ i = 0; /* placate optimiser */
for (j = 0; j <= newstate->h; j++) {
- for (i = 0; i < newstate->w; i++)
- if (LV_RIGHTOF_DOT(newstate, i, j) == LINE_YES)
- break;
- if (i < newstate->w)
- break;
+ for (i = 0; i < newstate->w; i++)
+ if (LV_RIGHTOF_DOT(newstate, i, j) == LINE_YES)
+ break;
+ if (i < newstate->w)
+ break;
}
if (j <= newstate->h) {
- int prevdir = 'R';
- int x = i, y = j;
- int looplen, count;
+ int prevdir = 'R';
+ int x = i, y = j;
+ int looplen, count;
- /*
- * We've found a horizontal edge at (i,j). Follow it round
- * to see if it's part of a loop.
- */
- looplen = 0;
- while (1) {
- int order = dot_order(newstate, x, y, LINE_YES);
- if (order != 2)
- goto completion_check_done;
+ /*
+ * We've found a horizontal edge at (i,j). Follow it round
+ * to see if it's part of a loop.
+ */
+ looplen = 0;
+ while (1) {
+ int order = dot_order(newstate, x, y, LINE_YES);
+ if (order != 2)
+ goto completion_check_done;
- if (LEFTOF_DOT(newstate, x, y) == LINE_YES && prevdir != 'L') {
- x--;
- prevdir = 'R';
- } else if (RIGHTOF_DOT(newstate, x, y) == LINE_YES &&
- prevdir != 'R') {
- x++;
- prevdir = 'L';
- } else if (ABOVE_DOT(newstate, x, y) == LINE_YES &&
- prevdir != 'U') {
- y--;
- prevdir = 'D';
- } else if (BELOW_DOT(newstate, x, y) == LINE_YES &&
- prevdir != 'D') {
- y++;
- prevdir = 'U';
- } else {
- assert(!"Can't happen"); /* dot_order guarantees success */
- }
+ if (LEFTOF_DOT(newstate, x, y) == LINE_YES && prevdir != 'L') {
+ x--;
+ prevdir = 'R';
+ } else if (RIGHTOF_DOT(newstate, x, y) == LINE_YES &&
+ prevdir != 'R') {
+ x++;
+ prevdir = 'L';
+ } else if (ABOVE_DOT(newstate, x, y) == LINE_YES &&
+ prevdir != 'U') {
+ y--;
+ prevdir = 'D';
+ } else if (BELOW_DOT(newstate, x, y) == LINE_YES &&
+ prevdir != 'D') {
+ y++;
+ prevdir = 'U';
+ } else {
+ assert(!"Can't happen"); /* dot_order guarantees success */
+ }
- looplen++;
+ looplen++;
- if (x == i && y == j)
- break;
- }
+ if (x == i && y == j)
+ break;
+ }
- if (x != i || y != j || looplen == 0)
- goto completion_check_done;
+ if (x != i || y != j || looplen == 0)
+ goto completion_check_done;
- /*
- * We've traced our way round a loop, and we know how many
- * line segments were involved. Count _all_ the line
- * segments in the grid, to see if the loop includes them
- * all.
- */
- count = 0;
- for (j = 0; j <= newstate->h; j++)
- for (i = 0; i <= newstate->w; i++)
- count += ((RIGHTOF_DOT(newstate, i, j) == LINE_YES) +
- (BELOW_DOT(newstate, i, j) == LINE_YES));
- assert(count >= looplen);
- if (count != looplen)
- goto completion_check_done;
+ /*
+ * We've traced our way round a loop, and we know how many
+ * line segments were involved. Count _all_ the line
+ * segments in the grid, to see if the loop includes them
+ * all.
+ */
+ count = 0;
+ FORALL_DOTS(newstate, i, j) {
+ count += ((RIGHTOF_DOT(newstate, i, j) == LINE_YES) +
+ (BELOW_DOT(newstate, i, j) == LINE_YES));
+ }
+ assert(count >= looplen);
+ if (count != looplen)
+ goto completion_check_done;
- /*
- * The grid contains one closed loop and nothing else.
- * Check that all the clues are satisfied.
- */
- for (j = 0; j < newstate->h; ++j) {
- for (i = 0; i < newstate->w; ++i) {
- int n = CLUE_AT(newstate, i, j);
- if (n != ' ') {
- if (square_order(newstate, i, j, LINE_YES) != n - '0') {
- goto completion_check_done;
- }
- }
- }
- }
+ /*
+ * The grid contains one closed loop and nothing else.
+ * Check that all the clues are satisfied.
+ */
+ FORALL_SQUARES(newstate, i, j) {
+ if (CLUE_AT(newstate, i, j) >= 0) {
+ if (square_order(newstate, i, j, LINE_YES) !=
+ CLUE_AT(newstate, i, j)) {
+ goto completion_check_done;
+ }
+ }
+ }
- /*
- * Completed!
- */
- newstate->solved = TRUE;
+ /*
+ * Completed!
+ */
+ newstate->solved = TRUE;
}
completion_check_done:
@@ -2344,80 +3525,11 @@
/* ----------------------------------------------------------------------
* Drawing routines.
*/
-
-#define SIZE(d) ((d) * TILE_SIZE + 2 * BORDER + 1)
-
-static void game_compute_size(game_params *params, int tilesize,
- int *x, int *y)
-{
- struct { int tilesize; } ads, *ds = &ads;
- ads.tilesize = tilesize;
-
- *x = SIZE(params->w);
- *y = SIZE(params->h);
-}
-
-static void game_set_size(drawing *dr, game_drawstate *ds,
- game_params *params, int tilesize)
-{
- ds->tilesize = tilesize;
- ds->linewidth = max(1,tilesize/16);
-}
-
-static float *game_colours(frontend *fe, int *ncolours)
-{
- float *ret = snewn(4 * NCOLOURS, float);
-
- frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
-
- ret[COL_FOREGROUND * 3 + 0] = 0.0F;
- ret[COL_FOREGROUND * 3 + 1] = 0.0F;
- ret[COL_FOREGROUND * 3 + 2] = 0.0F;
-
- ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
- ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
- ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
-
- ret[COL_MISTAKE * 3 + 0] = 1.0F;
- ret[COL_MISTAKE * 3 + 1] = 0.0F;
- ret[COL_MISTAKE * 3 + 2] = 0.0F;
-
- *ncolours = NCOLOURS;
- return ret;
-}
-
-static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
-{
- struct game_drawstate *ds = snew(struct game_drawstate);
-
- ds->tilesize = ds->linewidth = 0;
- ds->started = 0;
- ds->hl = snewn(HL_COUNT(state), char);
- ds->vl = snewn(VL_COUNT(state), char);
- ds->clue_error = snewn(SQUARE_COUNT(state), char);
- ds->flashing = 0;
-
- memset(ds->hl, LINE_UNKNOWN, HL_COUNT(state));
- memset(ds->vl, LINE_UNKNOWN, VL_COUNT(state));
- memset(ds->clue_error, 0, SQUARE_COUNT(state));
-
- return ds;
-}
-
-static void game_free_drawstate(drawing *dr, game_drawstate *ds)
-{
- sfree(ds->clue_error);
- sfree(ds->hl);
- sfree(ds->vl);
- sfree(ds);
-}
-
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int i, j, n;
- int w = state->w, h = state->h;
char c[2];
int line_colour, flash_changed;
int clue_mistake;
@@ -2432,26 +3544,22 @@
draw_rect(dr, 0, 0, SIZE(state->w), SIZE(state->h), COL_BACKGROUND);
/* Draw dots */
- for (j = 0; j < h + 1; ++j) {
- for (i = 0; i < w + 1; ++i) {
- draw_rect(dr,
- BORDER + i * TILE_SIZE - LINEWIDTH/2,
- BORDER + j * TILE_SIZE - LINEWIDTH/2,
- LINEWIDTH, LINEWIDTH, COL_FOREGROUND);
- }
+ FORALL_DOTS(state, i, j) {
+ draw_rect(dr,
+ BORDER + i * TILE_SIZE - LINEWIDTH/2,
+ BORDER + j * TILE_SIZE - LINEWIDTH/2,
+ LINEWIDTH, LINEWIDTH, COL_FOREGROUND);
}
/* Draw clues */
- for (j = 0; j < h; ++j) {
- for (i = 0; i < w; ++i) {
- c[0] = CLUE_AT(state, i, j);
- c[1] = '\0';
- draw_text(dr,
- BORDER + i * TILE_SIZE + TILE_SIZE/2,
- BORDER + j * TILE_SIZE + TILE_SIZE/2,
- FONT_VARIABLE, TILE_SIZE/2,
- ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
- }
+ FORALL_SQUARES(state, i, j) {
+ c[0] = CLUE2CHAR(CLUE_AT(state, i, j));
+ c[1] = '\0';
+ draw_text(dr,
+ BORDER + i * TILE_SIZE + TILE_SIZE/2,
+ BORDER + j * TILE_SIZE + TILE_SIZE/2,
+ FONT_VARIABLE, TILE_SIZE/2,
+ ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
}
draw_update(dr, 0, 0,
state->w * TILE_SIZE + 2*BORDER + 1,
@@ -2474,36 +3582,35 @@
#define CROSS_SIZE (3 * LINEWIDTH / 2)
/* Redraw clue colours if necessary */
- for (j = 0; j < h; ++j) {
- for (i = 0; i < w; ++i) {
- c[0] = CLUE_AT(state, i, j);
- c[1] = '\0';
- if (c[0] == ' ')
- continue;
+ FORALL_SQUARES(state, i, j) {
+ n = CLUE_AT(state, i, j);
+ if (n < 0)
+ continue;
- n = c[0] - '0';
- assert(n >= 0 && n <= 4);
+ assert(n >= 0 && n <= 4);
- clue_mistake = (square_order(state, i, j, LINE_YES) > n ||
- square_order(state, i, j, LINE_NO ) > (4-n));
+ c[0] = CLUE2CHAR(CLUE_AT(state, i, j));
+ c[1] = '\0';
- if (clue_mistake != ds->clue_error[j * w + i]) {
- draw_rect(dr,
- BORDER + i * TILE_SIZE + CROSS_SIZE,
- BORDER + j * TILE_SIZE + CROSS_SIZE,
- TILE_SIZE - CROSS_SIZE * 2, TILE_SIZE - CROSS_SIZE * 2,
- COL_BACKGROUND);
- draw_text(dr,
- BORDER + i * TILE_SIZE + TILE_SIZE/2,
- BORDER + j * TILE_SIZE + TILE_SIZE/2,
- FONT_VARIABLE, TILE_SIZE/2,
- ALIGN_VCENTRE | ALIGN_HCENTRE,
- clue_mistake ? COL_MISTAKE : COL_FOREGROUND, c);
- draw_update(dr, i * TILE_SIZE + BORDER, j * TILE_SIZE + BORDER,
- TILE_SIZE, TILE_SIZE);
+ clue_mistake = (square_order(state, i, j, LINE_YES) > n ||
+ square_order(state, i, j, LINE_NO ) > (4-n));
- ds->clue_error[j * w + i] = clue_mistake;
- }
+ if (clue_mistake != ds->clue_error[SQUARE_INDEX(state, i, j)]) {
+ draw_rect(dr,
+ BORDER + i * TILE_SIZE + CROSS_SIZE,
+ BORDER + j * TILE_SIZE + CROSS_SIZE,
+ TILE_SIZE - CROSS_SIZE * 2, TILE_SIZE - CROSS_SIZE * 2,
+ COL_BACKGROUND);
+ draw_text(dr,
+ BORDER + i * TILE_SIZE + TILE_SIZE/2,
+ BORDER + j * TILE_SIZE + TILE_SIZE/2,
+ FONT_VARIABLE, TILE_SIZE/2,
+ ALIGN_VCENTRE | ALIGN_HCENTRE,
+ clue_mistake ? COL_MISTAKE : COL_FOREGROUND, c);
+ draw_update(dr, i * TILE_SIZE + BORDER, j * TILE_SIZE + BORDER,
+ TILE_SIZE, TILE_SIZE);
+
+ ds->clue_error[SQUARE_INDEX(state, i, j)] = clue_mistake;
}
}
@@ -2511,125 +3618,117 @@
* loop, or if more than two lines go into any point. I think that would
* be good some time. */
-#define CLEAR_VL(i, j) do { \
- draw_rect(dr, \
- BORDER + i * TILE_SIZE - CROSS_SIZE, \
- BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
- CROSS_SIZE * 2, \
- TILE_SIZE - LINEWIDTH, \
- COL_BACKGROUND); \
- draw_update(dr, \
- BORDER + i * TILE_SIZE - CROSS_SIZE, \
- BORDER + j * TILE_SIZE - CROSS_SIZE, \
- CROSS_SIZE*2, \
- TILE_SIZE + CROSS_SIZE*2); \
- } while (0)
+#define CLEAR_VL(i, j) \
+ do { \
+ draw_rect(dr, \
+ BORDER + i * TILE_SIZE - CROSS_SIZE, \
+ BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
+ CROSS_SIZE * 2, \
+ TILE_SIZE - LINEWIDTH, \
+ COL_BACKGROUND); \
+ draw_update(dr, \
+ BORDER + i * TILE_SIZE - CROSS_SIZE, \
+ BORDER + j * TILE_SIZE - CROSS_SIZE, \
+ CROSS_SIZE*2, \
+ TILE_SIZE + CROSS_SIZE*2); \
+ } while (0)
-#define CLEAR_HL(i, j) do { \
- draw_rect(dr, \
- BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
- BORDER + j * TILE_SIZE - CROSS_SIZE, \
- TILE_SIZE - LINEWIDTH, \
- CROSS_SIZE * 2, \
- COL_BACKGROUND); \
- draw_update(dr, \
- BORDER + i * TILE_SIZE - CROSS_SIZE, \
- BORDER + j * TILE_SIZE - CROSS_SIZE, \
- TILE_SIZE + CROSS_SIZE*2, \
- CROSS_SIZE*2); \
- } while (0)
+#define CLEAR_HL(i, j) \
+ do { \
+ draw_rect(dr, \
+ BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \
+ BORDER + j * TILE_SIZE - CROSS_SIZE, \
+ TILE_SIZE - LINEWIDTH, \
+ CROSS_SIZE * 2, \
+ COL_BACKGROUND); \
+ draw_update(dr, \
+ BORDER + i * TILE_SIZE - CROSS_SIZE, \
+ BORDER + j * TILE_SIZE - CROSS_SIZE, \
+ TILE_SIZE + CROSS_SIZE*2, \
+ CROSS_SIZE*2); \
+ } while (0)
/* Vertical lines */
- for (j = 0; j < h; ++j) {
- for (i = 0; i < w + 1; ++i) {
- switch (BELOW_DOT(state, i, j)) {
- case LINE_UNKNOWN:
- if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j)) {
- CLEAR_VL(i, j);
- }
- break;
- case LINE_YES:
- if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j) ||
- flash_changed) {
- CLEAR_VL(i, j);
- draw_rect(dr,
- BORDER + i * TILE_SIZE - LINEWIDTH/2,
- BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
- LINEWIDTH, TILE_SIZE - LINEWIDTH,
- line_colour);
- }
- break;
- case LINE_NO:
- if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j)) {
- CLEAR_VL(i, j);
- draw_line(dr,
- BORDER + i * TILE_SIZE - CROSS_SIZE,
- BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
- BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
- BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
- COL_FOREGROUND);
- draw_line(dr,
- BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
- BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
- BORDER + i * TILE_SIZE - CROSS_SIZE,
- BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
- COL_FOREGROUND);
- }
- break;
- }
- ds->vl[i + (w + 1) * j] = BELOW_DOT(state, i, j);
+ FORALL_VL(state, i, j) {
+ switch (BELOW_DOT(state, i, j)) {
+ case LINE_UNKNOWN:
+ if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j)) {
+ CLEAR_VL(i, j);
+ }
+ break;
+ case LINE_YES:
+ if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j) ||
+ flash_changed) {
+ CLEAR_VL(i, j);
+ draw_rect(dr,
+ BORDER + i * TILE_SIZE - LINEWIDTH/2,
+ BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
+ LINEWIDTH, TILE_SIZE - LINEWIDTH,
+ line_colour);
+ }
+ break;
+ case LINE_NO:
+ if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j)) {
+ CLEAR_VL(i, j);
+ draw_line(dr,
+ BORDER + i * TILE_SIZE - CROSS_SIZE,
+ BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
+ BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
+ BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
+ COL_FOREGROUND);
+ draw_line(dr,
+ BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
+ BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
+ BORDER + i * TILE_SIZE - CROSS_SIZE,
+ BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
+ COL_FOREGROUND);
+ }
+ break;
}
+ ds->vl[VL_INDEX(state, i, j)] = BELOW_DOT(state, i, j);
}
/* Horizontal lines */
- for (j = 0; j < h + 1; ++j) {
- for (i = 0; i < w; ++i) {
- switch (RIGHTOF_DOT(state, i, j)) {
- case LINE_UNKNOWN:
- if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j)) {
- CLEAR_HL(i, j);
+ FORALL_HL(state, i, j) {
+ switch (RIGHTOF_DOT(state, i, j)) {
+ case LINE_UNKNOWN:
+ if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j)) {
+ CLEAR_HL(i, j);
}
- break;
- case LINE_YES:
- if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j) ||
- flash_changed) {
- CLEAR_HL(i, j);
- draw_rect(dr,
- BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
- BORDER + j * TILE_SIZE - LINEWIDTH/2,
- TILE_SIZE - LINEWIDTH, LINEWIDTH,
- line_colour);
- break;
- }
- case LINE_NO:
- if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j)) {
- CLEAR_HL(i, j);
- draw_line(dr,
- BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
- BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
- BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
- BORDER + j * TILE_SIZE - CROSS_SIZE,
- COL_FOREGROUND);
- draw_line(dr,
- BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
- BORDER + j * TILE_SIZE - CROSS_SIZE,
- BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
- BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
- COL_FOREGROUND);
- break;
- }
- }
- ds->hl[i + w * j] = RIGHTOF_DOT(state, i, j);
+ break;
+ case LINE_YES:
+ if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j) ||
+ flash_changed) {
+ CLEAR_HL(i, j);
+ draw_rect(dr,
+ BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2,
+ BORDER + j * TILE_SIZE - LINEWIDTH/2,
+ TILE_SIZE - LINEWIDTH, LINEWIDTH,
+ line_colour);
+ }
+ break;
+ case LINE_NO:
+ if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j)) {
+ CLEAR_HL(i, j);
+ draw_line(dr,
+ BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
+ BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
+ BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
+ BORDER + j * TILE_SIZE - CROSS_SIZE,
+ COL_FOREGROUND);
+ draw_line(dr,
+ BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
+ BORDER + j * TILE_SIZE - CROSS_SIZE,
+ BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
+ BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
+ COL_FOREGROUND);
+ break;
+ }
}
+ ds->hl[HL_INDEX(state, i, j)] = RIGHTOF_DOT(state, i, j);
}
}
-static float game_anim_length(game_state *oldstate, game_state *newstate,
- int dir, game_ui *ui)
-{
- return 0.0F;
-}
-
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
@@ -2641,11 +3740,6 @@
return 0.0F;
}
-static int game_timing_state(game_state *state, game_ui *ui)
-{
- return TRUE;
-}
-
static void game_print_size(game_params *params, float *x, float *y)
{
int pw, ph;
@@ -2660,7 +3754,6 @@
static void game_print(drawing *dr, game_state *state, int tilesize)
{
- int w = state->w, h = state->h;
int ink = print_mono_colour(dr, 0);
int x, y;
game_drawstate ads, *ds = &ads;
@@ -2672,43 +3765,44 @@
* lines, so you can still see them. (And also because it's
* annoyingly tricky to make them _exactly_ the same size...)
*/
- for (y = 0; y <= h; y++)
- for (x = 0; x <= w; x++)
- draw_circle(dr, BORDER + x * TILE_SIZE, BORDER + y * TILE_SIZE,
- LINEWIDTH, ink, ink);
+ FORALL_DOTS(state, x, y) {
+ draw_circle(dr, BORDER + x * TILE_SIZE, BORDER + y * TILE_SIZE,
+ LINEWIDTH, ink, ink);
+ }
/*
* Clues.
*/
- for (y = 0; y < h; y++)
- for (x = 0; x < w; x++)
- if (CLUE_AT(state, x, y) != ' ') {
- char c[2];
+ FORALL_SQUARES(state, x, y) {
+ if (CLUE_AT(state, x, y) >= 0) {
+ char c[2];
- c[0] = CLUE_AT(state, x, y);
- c[1] = '\0';
- draw_text(dr,
- BORDER + x * TILE_SIZE + TILE_SIZE/2,
- BORDER + y * TILE_SIZE + TILE_SIZE/2,
- FONT_VARIABLE, TILE_SIZE/2,
- ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
- }
+ c[0] = CLUE2CHAR(CLUE_AT(state, x, y));
+ c[1] = '\0';
+ draw_text(dr,
+ BORDER + x * TILE_SIZE + TILE_SIZE/2,
+ BORDER + y * TILE_SIZE + TILE_SIZE/2,
+ FONT_VARIABLE, TILE_SIZE/2,
+ ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
+ }
+ }
/*
* Lines. (At the moment, I'm not bothering with crosses.)
*/
- for (y = 0; y <= h; y++)
- for (x = 0; x < w; x++)
- if (RIGHTOF_DOT(state, x, y) == LINE_YES)
- draw_rect(dr, BORDER + x * TILE_SIZE,
- BORDER + y * TILE_SIZE - LINEWIDTH/2,
- TILE_SIZE, (LINEWIDTH/2) * 2 + 1, ink);
- for (y = 0; y < h; y++)
- for (x = 0; x <= w; x++)
- if (BELOW_DOT(state, x, y) == LINE_YES)
- draw_rect(dr, BORDER + x * TILE_SIZE - LINEWIDTH/2,
- BORDER + y * TILE_SIZE,
- (LINEWIDTH/2) * 2 + 1, TILE_SIZE, ink);
+ FORALL_VL(state, x, y) {
+ if (RIGHTOF_DOT(state, x, y) == LINE_YES)
+ draw_rect(dr, BORDER + x * TILE_SIZE,
+ BORDER + y * TILE_SIZE - LINEWIDTH/2,
+ TILE_SIZE, (LINEWIDTH/2) * 2 + 1, ink);
+ }
+
+ FORALL_HL(state, x, y) {
+ if (BELOW_DOT(state, x, y) == LINE_YES)
+ draw_rect(dr, BORDER + x * TILE_SIZE - LINEWIDTH/2,
+ BORDER + y * TILE_SIZE,
+ (LINEWIDTH/2) * 2 + 1, TILE_SIZE, ink);
+ }
}
#ifdef COMBINED
@@ -2747,7 +3841,7 @@
game_anim_length,
game_flash_length,
TRUE, FALSE, game_print_size, game_print,
- FALSE, /* wants_statusbar */
+ FALSE /* wants_statusbar */,
FALSE, game_timing_state,
- 0, /* flags */
+ 0, /* mouse_priorities */
};
--- a/puzzles.h
+++ b/puzzles.h
@@ -278,7 +278,22 @@
/*
* dsf.c
*/
+int *snew_dsf(int size);
+
+void print_dsf(int *dsf, int size);
+
+/* Return the canonical element of the equivalence class containing element
+ * val. If 'inverse' is non-NULL, this function will put into it a flag
+ * indicating whether the canonical element is inverse to val. */
+int edsf_canonify(int *dsf, int val, int *inverse);
int dsf_canonify(int *dsf, int val);
+
+/* Allow the caller to specify that two elements should be in the same
+ * equivalence class. If 'inverse' is TRUE, the elements are actually opposite
+ * to one another in some sense. This function will fail an assertion if the
+ * caller gives it self-contradictory data, ie if two elements are claimed to
+ * be both opposite and non-opposite. */
+void edsf_merge(int *dsf, int v1, int v2, int inverse);
void dsf_merge(int *dsf, int v1, int v2);
void dsf_init(int *dsf, int len);