ref: adc54741f03cf0cc5c639e917afd2442da9e3422
parent: c5500926bf7458aabb0e11945bfd24038bfeedee
author: Simon Tatham <[email protected]>
date: Wed Feb 24 14:36:41 EST 2016
Pearl: revise loop detection similarly to Loopy. Pearl has more or less the same attitude to loops as Loopy does, in that a loop is required in the solution but some loops during play want to be highlighted as errors. So it makes sense to use the same strategy for loop highlighting. I've cloned-and-hacked the code from Loopy rather than abstracting it out, because there were some fiddly differences in application (like checking of untouched clues in Pearl). Perhaps some day I can come back and make it all neater. Also, while I'm here, I've cleaned up the loop_length field in game_state, which was carefully set up by check_completion() but never actually used for anything. (If I remember rightly, it was going to be used for a fancy victory flash which never saw the light of day.)
--- a/pearl.c
+++ b/pearl.c
@@ -130,7 +130,6 @@
char *errors; /* size w*h: errors detected */
char *marks; /* size w*h: 'no line here' marks placed. */
int completed, used_solve;
- int loop_length; /* filled in by check_completion when complete. */
};
#define DEFAULT_PRESET 3
@@ -1496,12 +1495,11 @@
#define ERROR_CLUE 16
-static void dsf_update_completion(game_state *state, int *loopclass,
- int ax, int ay, char dir,
- int *dsf, int *dsfsize)
+static void dsf_update_completion(game_state *state, int ax, int ay, char dir,
+ int *dsf)
{
int w = state->shared->w /*, h = state->shared->h */;
- int ac = ay*w+ax, ae, bx, by, bc, be;
+ int ac = ay*w+ax, bx, by, bc;
if (!(state->lines[ac] & dir)) return; /* no link */
bx = ax + DX(dir); by = ay + DY(dir);
@@ -1512,27 +1510,16 @@
assert(state->lines[bc] & F(dir)); /* should have reciprocal link */
if (!(state->lines[bc] & F(dir))) return;
- ae = dsf_canonify(dsf, ac);
- be = dsf_canonify(dsf, bc);
-
- if (ae == be) { /* detected a loop! */
- if (*loopclass != -1) /* this is the second loop, doom. */
- return;
- *loopclass = ae;
- } else {
- int size = dsfsize[ae] + dsfsize[be];
- dsf_merge(dsf, ac, bc);
- ae = dsf_canonify(dsf, ac);
- dsfsize[ae] = size;
- }
- return;
+ dsf_merge(dsf, ac, bc);
}
static void check_completion(game_state *state, int mark)
{
int w = state->shared->w, h = state->shared->h, x, y, i, d;
- int had_error = FALSE /*, is_complete = FALSE */, loopclass;
- int *dsf, *dsfsize;
+ int had_error = FALSE;
+ int *dsf, *component_state;
+ int nsilly, nloop, npath, largest_comp, largest_size;
+ enum { COMP_NONE, COMP_LOOP, COMP_PATH, COMP_SILLY, COMP_EMPTY };
if (mark) {
for (i = 0; i < w*h; i++) {
@@ -1543,57 +1530,103 @@
#define ERROR(x,y,e) do { had_error = TRUE; if (mark) state->errors[(y)*w+(x)] |= (e); } while(0)
/*
- * First of all: we should have one single closed loop, passing through all clues.
+ * Analyse the solution into loops, paths and stranger things.
+ * Basic strategy here is all the same as in Loopy - see the big
+ * comment in loopy.c's check_completion() - and for exactly the
+ * same reasons, since Loopy and Pearl have basically the same
+ * form of expected solution.
*/
- dsf = snewn(w*h, int);
- dsfsize = snewn(w*h, int);
- dsf_init(dsf, w*h);
- for (i = 0; i < w*h; i++) dsfsize[i] = 1;
- loopclass = -1;
+ dsf = snew_dsf(w*h);
+ /* Build the dsf. */
for (x = 0; x < w; x++) {
for (y = 0; y < h; y++) {
- dsf_update_completion(state, &loopclass, x, y, R, dsf, dsfsize);
- dsf_update_completion(state, &loopclass, x, y, D, dsf, dsfsize);
+ dsf_update_completion(state, x, y, R, dsf);
+ dsf_update_completion(state, x, y, D, dsf);
}
}
- if (loopclass != -1) {
- /* We have a loop. Check all squares with lines on. */
- for (x = 0; x < w; x++) {
- for (y = 0; y < h; y++) {
- if (state->lines[y*w+x] == BLANK) {
- if (state->shared->clues[y*w+x] != NOCLUE) {
- /* the loop doesn't include this clue square! */
- ERROR(x, y, ERROR_CLUE);
- }
- } else {
- if (dsf_canonify(dsf, y*w+x) != loopclass) {
- /* these lines are not on the loop: mark them as error. */
- ERROR(x, y, state->lines[y*w+x]);
- }
- }
+
+ /* Initialise a state variable for each connected component. */
+ component_state = snewn(w*h, int);
+ for (i = 0; i < w*h; i++) {
+ if (dsf_canonify(dsf, i) == i)
+ component_state[i] = COMP_LOOP;
+ else
+ component_state[i] = COMP_NONE;
+ }
+
+ /*
+ * Classify components, and mark errors where a square has more
+ * than two line segments.
+ */
+ for (x = 0; x < w; x++) {
+ for (y = 0; y < h; y++) {
+ int type = state->lines[y*w+x];
+ int degree = NBITS(type);
+ int comp = dsf_canonify(dsf, y*w+x);
+ if (degree > 2) {
+ ERROR(x,y,type);
+ component_state[comp] = COMP_SILLY;
+ } else if (degree == 0) {
+ component_state[comp] = COMP_EMPTY;
+ } else if (degree == 1) {
+ if (component_state[comp] != COMP_SILLY)
+ component_state[comp] = COMP_PATH;
+ }
+ }
+ }
+
+ /* Count the components, and find the largest sensible one. */
+ nsilly = nloop = npath = 0;
+ largest_comp = largest_size = -1;
+ for (i = 0; i < w*h; i++) {
+ if (component_state[i] == COMP_SILLY) {
+ nsilly++;
+ } else if (component_state[i] == COMP_PATH ||
+ component_state[i] == COMP_LOOP) {
+ int this_size;
+
+ if (component_state[i] == COMP_PATH)
+ npath++;
+ else if (component_state[i] == COMP_LOOP)
+ nloop++;
+
+ if ((this_size = dsf_size(dsf, i)) > largest_size) {
+ largest_comp = i;
+ largest_size = this_size;
}
}
}
+ if (nloop > 0 && nloop + npath > 1) {
+ /*
+ * If there are at least two sensible components including at
+ * least one loop, highlight every sensible component that is
+ * not the largest one.
+ */
+ for (i = 0; i < w*h; i++) {
+ int comp = dsf_canonify(dsf, i);
+ if ((component_state[comp] == COMP_LOOP ||
+ component_state[comp] == COMP_PATH) && comp != largest_comp)
+ ERROR(i%w, i/w, state->lines[i]);
+ }
+ }
+
+ /* Now we've finished with the dsf and component states. The only
+ * thing we'll need to remember later on is whether all edges were
+ * part of a single loop, for which our counter variables
+ * nsilly,nloop,npath are enough. */
+ sfree(component_state);
+ sfree(dsf);
+
/*
- * Second: check no clues are contradicted.
+ * Check that no clues are contradicted. This code is similar to
+ * the code that sets up the maximal clue array for any given
+ * loop.
*/
-
for (x = 0; x < w; x++) {
for (y = 0; y < h; y++) {
int type = state->lines[y*w+x];
- /*
- * Check that no square has more than two line segments.
- */
- if (NBITS(type) > 2) {
- ERROR(x,y,type);
- }
- /*
- * Check that no clues are contradicted. This code is similar to
- * the code that sets up the maximal clue array for any given
- * loop.
- */
if (state->shared->clues[y*w+x] == CORNER) {
/* Supposed to be a corner: will find a contradiction if
* it actually contains a straight line, or if it touches any
@@ -1634,15 +1667,30 @@
}
}
}
- if (!had_error && loopclass != -1) {
- state->completed = TRUE;
- state->loop_length = dsfsize[loopclass];
- }
+
+ if (nloop == 1 && nsilly == 0 && npath == 0) {
+ /*
+ * If there's exactly one loop (so that the puzzle is at least
+ * potentially complete), we need to ensure it hasn't left any
+ * clue out completely.
+ */
+ for (x = 0; x < w; x++) {
+ for (y = 0; y < h; y++) {
+ if (state->lines[y*w+x] == BLANK) {
+ if (state->shared->clues[y*w+x] != NOCLUE) {
+ /* the loop doesn't include this clue square! */
+ ERROR(x, y, ERROR_CLUE);
+ }
+ }
+ }
+ }
- sfree(dsf);
- sfree(dsfsize);
-
- return;
+ /*
+ * But if not, then we're done!
+ */
+ if (!had_error)
+ state->completed = TRUE;
+ }
}
/* completion check: