ref: 42ec08493a3dc95b6214c0676e4a280a0281ec05
parent: a2b70e2a6e90819df09812e96b153b1f6a408cde
author: Simon Tatham <[email protected]>
date: Wed Apr 10 03:37:54 EDT 2019
Dominosa: more sophisticated grid layout in >= Hard mode. The new Hard and Extreme difficulty levels allow you to make a start on a grid even if there is no individual domino that can be easily placed. So it's more elegant to _enforce_ that, in the same way that Hard-mode Slant tries to avoid the initial toeholds that Easy mode depends on. Hence, I've refactored the domino layout code into several alternative versions. The new one, enabled at Hard mode and above, arranges that every domino has more than one possible position, so that you have to use some kind of hard deduction to even get off the ground. While I'm at it, the old layout system has had a makeover: in the course of its refactoring, I've arranged to iterate over the domino values _and_ locations in random order, instead of going over the locations in grid order. The idea is that that might eliminate a directional bias. But more importantly, it changes the previous meaning of random number seeds.
--- a/dominosa.c
+++ b/dominosa.c
@@ -1450,15 +1450,407 @@
}
/* ----------------------------------------------------------------------
- * End of solver code.
+ * Functions for generating a candidate puzzle (before we run the
+ * solver to check it's soluble at the right difficulty level).
*/
+struct alloc_val;
+struct alloc_loc;
+
+struct alloc_scratch {
+ /* Game parameters. */
+ int n, w, h, wh, dc;
+
+ /* The domino layout. Indexed by squares in the usual y*w+x raster
+ * order: layout[i] gives the index of the other square in the
+ * same domino as square i. */
+ int *layout;
+
+ /* The output array, containing a number in every square. */
+ int *numbers;
+
+ /* List of domino values (i.e. number pairs), indexed by DINDEX. */
+ struct alloc_val *vals;
+
+ /* List of domino locations, indexed arbitrarily. */
+ struct alloc_loc *locs;
+
+ /* Preallocated scratch spaces. */
+ int *wh_scratch; /* size wh */
+ int *wh2_scratch; /* size 2*wh */
+};
+
+struct alloc_val {
+ int lo, hi;
+ bool confounder;
+};
+
+struct alloc_loc {
+ int sq[2];
+};
+
+static struct alloc_scratch *alloc_make_scratch(int n)
+{
+ struct alloc_scratch *as = snew(struct alloc_scratch);
+ int lo, hi;
+
+ as->n = n;
+ as->w = n+2;
+ as->h = n+1;
+ as->wh = as->w * as->h;
+ as->dc = DCOUNT(n);
+
+ as->layout = snewn(as->wh, int);
+ as->numbers = snewn(as->wh, int);
+ as->vals = snewn(as->dc, struct alloc_val);
+ as->locs = snewn(as->dc, struct alloc_loc);
+ as->wh_scratch = snewn(as->wh, int);
+ as->wh2_scratch = snewn(as->wh * 2, int);
+
+ for (hi = 0; hi <= n; hi++)
+ for (lo = 0; lo <= hi; lo++) {
+ struct alloc_val *v = &as->vals[DINDEX(hi, lo)];
+ v->lo = lo;
+ v->hi = hi;
+ }
+
+ return as;
+}
+
+static void alloc_free_scratch(struct alloc_scratch *as)
+{
+ sfree(as->layout);
+ sfree(as->numbers);
+ sfree(as->vals);
+ sfree(as->locs);
+ sfree(as->wh_scratch);
+ sfree(as->wh2_scratch);
+ sfree(as);
+}
+
+static void alloc_make_layout(struct alloc_scratch *as, random_state *rs)
+{
+ int i, pos;
+
+ domino_layout_prealloc(as->w, as->h, rs,
+ as->layout, as->wh_scratch, as->wh2_scratch);
+
+ for (i = pos = 0; i < as->wh; i++) {
+ if (as->layout[i] > i) {
+ struct alloc_loc *loc;
+ assert(pos < as->dc);
+
+ loc = &as->locs[pos++];
+ loc->sq[0] = i;
+ loc->sq[1] = as->layout[i];
+ }
+ }
+ assert(pos == as->dc);
+}
+
+static void alloc_trivial(struct alloc_scratch *as, random_state *rs)
+{
+ int i;
+ for (i = 0; i < as->dc; i++)
+ as->wh_scratch[i] = i;
+ shuffle(as->wh_scratch, as->dc, sizeof(*as->wh_scratch), rs);
+
+ for (i = 0; i < as->dc; i++) {
+ struct alloc_val *val = &as->vals[as->wh_scratch[i]];
+ struct alloc_loc *loc = &as->locs[i];
+ int which_lo = random_upto(rs, 2), which_hi = 1 - which_lo;
+ as->numbers[loc->sq[which_lo]] = val->lo;
+ as->numbers[loc->sq[which_hi]] = val->hi;
+ }
+}
+
+/*
+ * Given a domino location in the form of two square indices, compute
+ * the square indices of the domino location that would lie on one
+ * side of it. Returns false if the location would be outside the
+ * grid, or if it isn't actually a domino in the layout.
+ */
+static bool alloc_find_neighbour(
+ struct alloc_scratch *as, int p0, int p1, int *n0, int *n1)
+{
+ int x0 = p0 % as->w, y0 = p0 / as->w, x1 = p1 % as->w, y1 = p1 / as->w;
+ int dy = y1-y0, dx = x1-x0;
+ int nx0 = x0 + dy, ny0 = y0 - dx, nx1 = x1 + dy, ny1 = y1 - dx;
+ int np0, np1;
+
+ if (!(nx0 >= 0 && nx0 < as->w && ny0 >= 0 && ny0 < as->h &&
+ nx1 >= 1 && nx1 < as->w && ny1 >= 1 && ny1 < as->h))
+ return false; /* out of bounds */
+
+ np0 = ny0 * as->w + nx0;
+ np1 = ny1 * as->w + nx1;
+ if (as->layout[np0] != np1)
+ return false; /* not a domino */
+
+ *n0 = np0;
+ *n1 = np1;
+ return true;
+}
+
+static bool alloc_try_unique(struct alloc_scratch *as, random_state *rs)
+{
+ int i;
+ for (i = 0; i < as->dc; i++)
+ as->wh_scratch[i] = i;
+ shuffle(as->wh_scratch, as->dc, sizeof(*as->wh_scratch), rs);
+ for (i = 0; i < as->dc; i++)
+ as->wh2_scratch[i] = i;
+ shuffle(as->wh2_scratch, as->dc, sizeof(*as->wh2_scratch), rs);
+
+ for (i = 0; i < as->wh; i++)
+ as->numbers[i] = -1;
+
+ for (i = 0; i < as->dc; i++) {
+ struct alloc_val *val = &as->vals[as->wh_scratch[i]];
+ struct alloc_loc *loc = &as->locs[as->wh2_scratch[i]];
+ int which_lo, which_hi;
+ bool can_lo_0 = true, can_lo_1 = true;
+ int n0, n1;
+
+ /*
+ * This is basically the same strategy as alloc_trivial:
+ * simply iterate through the locations and values in random
+ * relative order and pair them up. But we make sure to avoid
+ * the most common, and also simplest, cause of a non-unique
+ * solution:two dominoes side by side, sharing a number at
+ * opposite ends. Any section of that form automatically leads
+ * to an alternative solution:
+ *
+ * +-------+ +---+---+
+ * | 1 2 | | 1 | 2 |
+ * +-------+ <-> | | |
+ * | 2 3 | | 2 | 3 |
+ * +-------+ +---+---+
+ *
+ * So as we place each domino, we check for a neighbouring
+ * domino on each side, and if there is one, rule out any
+ * placement of _this_ domino that places a number diagonally
+ * opposite the same number in the neighbour.
+ *
+ * Sometimes this can fail completely, if a domino on each
+ * side is already placed and between them they rule out all
+ * placements of this one. But it happens rarely enough that
+ * it's fine to just abort and try the layout again.
+ */
+
+ if (alloc_find_neighbour(as, loc->sq[0], loc->sq[1], &n0, &n1) &&
+ (as->numbers[n0] == val->hi || as->numbers[n1] == val->lo))
+ can_lo_0 = false;
+ if (alloc_find_neighbour(as, loc->sq[1], loc->sq[0], &n0, &n1) &&
+ (as->numbers[n0] == val->hi || as->numbers[n1] == val->lo))
+ can_lo_1 = false;
+
+ if (!can_lo_0 && !can_lo_1)
+ return false; /* layout failed */
+ else if (can_lo_0 && can_lo_1)
+ which_lo = random_upto(rs, 2);
+ else
+ which_lo = can_lo_0 ? 0 : 1;
+
+ which_hi = 1 - which_lo;
+ as->numbers[loc->sq[which_lo]] = val->lo;
+ as->numbers[loc->sq[which_hi]] = val->hi;
+ }
+
+ return true;
+}
+
+static bool alloc_try_hard(struct alloc_scratch *as, random_state *rs)
+{
+ int i, x, y, hi, lo, vals, locs, confounders_needed;
+ bool ok;
+
+ for (i = 0; i < as->wh; i++)
+ as->numbers[i] = -1;
+
+ /*
+ * Shuffle the location indices.
+ */
+ for (i = 0; i < as->dc; i++)
+ as->wh2_scratch[i] = i;
+ shuffle(as->wh2_scratch, as->dc, sizeof(*as->wh2_scratch), rs);
+
+ /*
+ * Start by randomly placing the double dominoes, to give a
+ * starting instance of every number to try to put other things
+ * next to.
+ */
+ for (i = 0; i <= as->n; i++)
+ as->wh_scratch[i] = DINDEX(i, i);
+ shuffle(as->wh_scratch, i, sizeof(*as->wh_scratch), rs);
+ for (i = 0; i <= as->n; i++) {
+ struct alloc_loc *loc = &as->locs[as->wh2_scratch[i]];
+ as->numbers[loc->sq[0]] = as->numbers[loc->sq[1]] = i;
+ }
+
+ /*
+ * Find all the dominoes that don't yet have a _wrong_ placement
+ * somewhere in the grid.
+ */
+ for (i = 0; i < as->dc; i++)
+ as->vals[i].confounder = false;
+ for (y = 0; y < as->h; y++) {
+ for (x = 0; x < as->w; x++) {
+ int p = y * as->w + x;
+ if (as->numbers[p] == -1)
+ continue;
+
+ if (x+1 < as->w) {
+ int p1 = y * as->w + (x+1);
+ if (as->layout[p] != p1 && as->numbers[p1] != -1)
+ as->vals[DINDEX(as->numbers[p], as->numbers[p1])]
+ .confounder = true;
+ }
+ if (y+1 < as->h) {
+ int p1 = (y+1) * as->w + x;
+ if (as->layout[p] != p1 && as->numbers[p1] != -1)
+ as->vals[DINDEX(as->numbers[p], as->numbers[p1])]
+ .confounder = true;
+ }
+ }
+ }
+
+ for (i = confounders_needed = 0; i < as->dc; i++)
+ if (!as->vals[i].confounder)
+ confounders_needed++;
+
+ /*
+ * Make a shuffled list of all the unplaced dominoes, and go
+ * through it trying to find a placement for each one that also
+ * fills in at least one of the needed confounders.
+ */
+ vals = 0;
+ for (hi = 0; hi <= as->n; hi++)
+ for (lo = 0; lo < hi; lo++)
+ as->wh_scratch[vals++] = DINDEX(hi, lo);
+ shuffle(as->wh_scratch, vals, sizeof(*as->wh_scratch), rs);
+
+ locs = as->dc;
+
+ while (vals > 0) {
+ int valpos, valout, oldvals = vals;
+
+ for (valpos = valout = 0; valpos < vals; valpos++) {
+ int validx = as->wh_scratch[valpos];
+ struct alloc_val *val = &as->vals[validx];
+ struct alloc_loc *loc;
+ int locpos, si, which_lo;
+
+ for (locpos = 0; locpos < locs; locpos++) {
+ int locidx = as->wh2_scratch[locpos];
+ int wi, flip;
+
+ loc = &as->locs[locidx];
+ if (as->numbers[loc->sq[0]] != -1)
+ continue; /* this location is already filled */
+
+ flip = random_upto(rs, 2);
+
+ /* Try this location both ways round. */
+ for (wi = 0; wi < 2; wi++) {
+ int n0, n1;
+
+ which_lo = wi ^ flip;
+
+ /* First, do the same check as in alloc_try_unique, to
+ * avoid making an obviously insoluble puzzle. */
+ if (alloc_find_neighbour(as, loc->sq[which_lo],
+ loc->sq[1-which_lo], &n0, &n1) &&
+ (as->numbers[n0] == val->hi ||
+ as->numbers[n1] == val->lo))
+ break; /* can't place it this way round */
+
+ if (confounders_needed == 0)
+ goto place_ok;
+
+ /* Look to see if we're adding at least one
+ * previously absent confounder. */
+ for (si = 0; si < 2; si++) {
+ int x = loc->sq[si] % as->w, y = loc->sq[si] / as->w;
+ int n = (si == which_lo ? val->lo : val->hi);
+ int d;
+ for (d = 0; d < 4; d++) {
+ int dx = d==0 ? +1 : d==2 ? -1 : 0;
+ int dy = d==1 ? +1 : d==3 ? -1 : 0;
+ int x1 = x+dx, y1 = y+dy, p1 = y1 * as->w + x1;
+ if (x1 >= 0 && x1 < as->w &&
+ y1 >= 0 && y1 < as->h &&
+ as->numbers[p1] != -1 &&
+ !(as->vals[DINDEX(n, as->numbers[p1])]
+ .confounder)) {
+ /*
+ * Place this domino.
+ */
+ goto place_ok;
+ }
+ }
+ }
+ }
+ }
+
+ /* If we get here without executing 'goto place_ok', we
+ * didn't find anywhere useful to put this domino. Put it
+ * back on the list for the next pass. */
+ as->wh_scratch[valout++] = validx;
+ continue;
+
+ place_ok:;
+
+ /* We've found a domino to place. Place it, and fill in
+ * all the confounders it adds. */
+ as->numbers[loc->sq[which_lo]] = val->lo;
+ as->numbers[loc->sq[1 - which_lo]] = val->hi;
+
+ for (si = 0; si < 2; si++) {
+ int p = loc->sq[si];
+ int n = as->numbers[p];
+ int x = p % as->w, y = p / as->w;
+ int d;
+ for (d = 0; d < 4; d++) {
+ int dx = d==0 ? +1 : d==2 ? -1 : 0;
+ int dy = d==1 ? +1 : d==3 ? -1 : 0;
+ int x1 = x+dx, y1 = y+dy, p1 = y1 * as->w + x1;
+
+ if (x1 >= 0 && x1 < as->w && y1 >= 0 && y1 < as->h &&
+ p1 != loc->sq[1-si] && as->numbers[p1] != -1) {
+ int di = DINDEX(n, as->numbers[p1]);
+ if (!as->vals[di].confounder)
+ confounders_needed--;
+ as->vals[di].confounder = true;
+ }
+ }
+ }
+ }
+
+ vals = valout;
+
+ if (oldvals == vals)
+ break;
+ }
+
+ ok = true;
+
+ for (i = 0; i < as->dc; i++)
+ if (!as->vals[i].confounder)
+ ok = false;
+ for (i = 0; i < as->wh; i++)
+ if (as->numbers[i] == -1)
+ ok = false;
+
+ return ok;
+}
+
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
int n = params->n, w = n+2, h = n+1, wh = w*h, diff = params->diff;
- int *grid, *grid2, *list;
struct solver_scratch *sc;
+ struct alloc_scratch *as;
int i, j, k, len;
char *ret;
@@ -1481,10 +1873,8 @@
/*
* Allocate space in which to lay the grid out.
*/
- grid = snewn(wh, int);
- grid2 = snewn(wh, int);
- list = snewn(2*wh, int);
sc = solver_make_scratch(n);
+ as = alloc_make_scratch(n);
/*
* I haven't been able to think of any particularly clever
@@ -1515,95 +1905,38 @@
* and 26 respectively, which is a lot more sensible.
*/
- do {
- domino_layout_prealloc(w, h, rs, grid, grid2, list);
+ while (1) {
+ alloc_make_layout(as, rs);
- /*
- * Now we have a complete layout covering the whole
- * rectangle with dominoes. So shuffle the actual domino
- * values and fill the rectangle with numbers.
- */
- k = 0;
- for (i = 0; i <= params->n; i++)
- for (j = 0; j <= i; j++) {
- list[k++] = i;
- list[k++] = j;
- }
- shuffle(list, k/2, 2*sizeof(*list), rs);
- j = 0;
- for (i = 0; i < wh; i++)
- if (grid[i] > i) {
- /* Optionally flip the domino round. */
- int flip = -1;
+ if (diff == DIFF_AMBIGUOUS) {
+ /* Just assign numbers to each domino completely at random. */
+ alloc_trivial(as, rs);
+ } else if (diff < DIFF_HARD) {
+ /* Try to rule out the most common case of a non-unique solution */
+ if (!alloc_try_unique(as, rs))
+ continue;
+ } else {
+ /* Try to arrange that there is no easy starting point */
+ if (!alloc_try_hard(as, rs))
+ continue;
+ }
- if (diff != DIFF_AMBIGUOUS) {
- int t1, t2;
- /*
- * If we're after a unique solution, we can do
- * something here to improve the chances. If
- * we're placing a domino so that it forms a
- * 2x2 rectangle with one we've already placed,
- * and if that domino and this one share a
- * number, we can try not to put them so that
- * the identical numbers are diagonally
- * separated, because that automatically causes
- * non-uniqueness:
- *
- * +---+ +-+-+
- * |2 3| |2|3|
- * +---+ -> | | |
- * |4 2| |4|2|
- * +---+ +-+-+
- */
- t1 = i;
- t2 = grid[i];
- if (t2 == t1 + w) { /* this domino is vertical */
- if (t1 % w > 0 &&/* and not on the left hand edge */
- grid[t1-1] == t2-1 &&/* alongside one to left */
- (grid2[t1-1] == list[j] || /* and has a number */
- grid2[t1-1] == list[j+1] || /* in common */
- grid2[t2-1] == list[j] ||
- grid2[t2-1] == list[j+1])) {
- if (grid2[t1-1] == list[j] ||
- grid2[t2-1] == list[j+1])
- flip = 0;
- else
- flip = 1;
- }
- } else { /* this domino is horizontal */
- if (t1 / w > 0 &&/* and not on the top edge */
- grid[t1-w] == t2-w &&/* alongside one above */
- (grid2[t1-w] == list[j] || /* and has a number */
- grid2[t1-w] == list[j+1] || /* in common */
- grid2[t2-w] == list[j] ||
- grid2[t2-w] == list[j+1])) {
- if (grid2[t1-w] == list[j] ||
- grid2[t2-w] == list[j+1])
- flip = 0;
- else
- flip = 1;
- }
- }
- }
+ if (diff != DIFF_AMBIGUOUS) {
+ solver_setup_grid(sc, as->numbers);
+ int solver_result = run_solver(sc, diff);
+ if (solver_result > 1)
+ continue; /* puzzle couldn't be solved at this difficulty */
+ if (sc->max_diff_used < diff)
+ continue; /* puzzle _could_ be solved at easier difficulty */
+ }
+
+ break;
+ }
- if (flip < 0)
- flip = random_upto(rs, 2);
-
- grid2[i] = list[j + flip];
- grid2[grid[i]] = list[j + 1 - flip];
- j += 2;
- }
- assert(j == k);
- solver_setup_grid(sc, grid2);
- } while (diff != DIFF_AMBIGUOUS &&
- (run_solver(sc, diff) > 1 || sc->max_diff_used < diff));
-
- solver_free_scratch(sc);
-
#ifdef GENERATION_DIAGNOSTICS
for (j = 0; j < h; j++) {
for (i = 0; i < w; i++) {
- putchar('0' + grid2[j*w+i]);
+ putchar('0' + as->numbers[j*w+i]);
}
putchar('\n');
}
@@ -1643,7 +1976,7 @@
ret = snewn(len+1, char);
j = 0;
for (i = 0; i < wh; i++) {
- k = grid2[i];
+ k = as->numbers[i];
if (k < 10)
ret[j++] = '0' + k;
else
@@ -1660,7 +1993,7 @@
char *auxinfo = snewn(wh+1, char);
for (i = 0; i < wh; i++) {
- int v = grid[i];
+ int v = as->layout[i];
auxinfo[i] = (v == i+1 ? 'L' : v == i-1 ? 'R' :
v == i+w ? 'T' : v == i-w ? 'B' : '.');
}
@@ -1669,9 +2002,8 @@
*aux = auxinfo;
}
- sfree(list);
- sfree(grid2);
- sfree(grid);
+ solver_free_scratch(sc);
+ alloc_free_scratch(as);
return ret;
}