shithub: puzzles

Download patch

ref: 2f8dba92578933228d0f6d2d817af5b8a5c1bf3a
parent: 9993f71e4c98eef4d3a7c407a8b0f7cf0d471d92
author: Simon Tatham <[email protected]>
date: Sat Jan 13 09:44:50 EST 2007

Add James H's new puzzle, `Unequal' (otherwise known as the
Guardian's `Futoshiki').

[originally from svn r7100]

--- /dev/null
+++ b/latin.c
@@ -1,0 +1,1320 @@
+#include <assert.h>
+#include <string.h>
+#include <stdarg.h>
+
+#include "puzzles.h"
+#include "tree234.h"
+#include "maxflow.h"
+
+#ifdef STANDALONE_LATIN_TEST
+#define STANDALONE_SOLVER
+#endif
+
+#include "latin.h"
+
+/* --------------------------------------------------------
+ * Solver.
+ */
+
+/*
+ * Function called when we are certain that a particular square has
+ * a particular number in it. The y-coordinate passed in here is
+ * transformed.
+ */
+void latin_solver_place(struct latin_solver *solver, int x, int y, int n)
+{
+    int i, o = solver->o;
+
+    assert(n <= o);
+    assert(cube(x,y,n));
+
+    /*
+     * Rule out all other numbers in this square.
+     */
+    for (i = 1; i <= o; i++)
+	if (i != n)
+            cube(x,y,i) = FALSE;
+
+    /*
+     * Rule out this number in all other positions in the row.
+     */
+    for (i = 0; i < o; i++)
+	if (i != y)
+            cube(x,i,n) = FALSE;
+
+    /*
+     * Rule out this number in all other positions in the column.
+     */
+    for (i = 0; i < o; i++)
+	if (i != x)
+            cube(i,y,n) = FALSE;
+
+    /*
+     * Enter the number in the result grid.
+     */
+    solver->grid[YUNTRANS(y)*o+x] = n;
+
+    /*
+     * Cross out this number from the list of numbers left to place
+     * in its row, its column and its block.
+     */
+    solver->row[y*o+n-1] = solver->col[x*o+n-1] = TRUE;
+}
+
+int latin_solver_elim(struct latin_solver *solver, int start, int step
+#ifdef STANDALONE_SOLVER
+		      , char *fmt, ...
+#endif
+		      )
+{
+    int o = solver->o;
+    int fpos, m, i;
+
+    /*
+     * Count the number of set bits within this section of the
+     * cube.
+     */
+    m = 0;
+    fpos = -1;
+    for (i = 0; i < o; i++)
+	if (solver->cube[start+i*step]) {
+	    fpos = start+i*step;
+	    m++;
+	}
+
+    if (m == 1) {
+	int x, y, n;
+	assert(fpos >= 0);
+
+	n = 1 + fpos % o;
+	y = fpos / o;
+	x = y / o;
+	y %= o;
+
+        if (!solver->grid[YUNTRANS(y)*o+x]) {
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working) {
+                va_list ap;
+		printf("%*s", solver_recurse_depth*4, "");
+                va_start(ap, fmt);
+                vprintf(fmt, ap);
+                va_end(ap);
+                printf(":\n%*s  placing %d at (%d,%d)\n",
+                       solver_recurse_depth*4, "", n, x, YUNTRANS(y));
+            }
+#endif
+            latin_solver_place(solver, x, y, n);
+            return +1;
+        }
+    } else if (m == 0) {
+#ifdef STANDALONE_SOLVER
+	if (solver_show_working) {
+	    va_list ap;
+	    printf("%*s", solver_recurse_depth*4, "");
+	    va_start(ap, fmt);
+	    vprintf(fmt, ap);
+	    va_end(ap);
+	    printf(":\n%*s  no possibilities available\n",
+		   solver_recurse_depth*4, "");
+	}
+#endif
+        return -1;
+    }
+
+    return 0;
+}
+
+struct latin_solver_scratch {
+    unsigned char *grid, *rowidx, *colidx, *set;
+    int *neighbours, *bfsqueue;
+#ifdef STANDALONE_SOLVER
+    int *bfsprev;
+#endif
+};
+
+int latin_solver_set(struct latin_solver *solver,
+                     struct latin_solver_scratch *scratch,
+                     int start, int step1, int step2
+#ifdef STANDALONE_SOLVER
+                     , char *fmt, ...
+#endif
+                     )
+{
+    int o = solver->o;
+    int i, j, n, count;
+    unsigned char *grid = scratch->grid;
+    unsigned char *rowidx = scratch->rowidx;
+    unsigned char *colidx = scratch->colidx;
+    unsigned char *set = scratch->set;
+
+    /*
+     * We are passed a o-by-o matrix of booleans. Our first job
+     * is to winnow it by finding any definite placements - i.e.
+     * any row with a solitary 1 - and discarding that row and the
+     * column containing the 1.
+     */
+    memset(rowidx, TRUE, o);
+    memset(colidx, TRUE, o);
+    for (i = 0; i < o; i++) {
+        int count = 0, first = -1;
+        for (j = 0; j < o; j++)
+            if (solver->cube[start+i*step1+j*step2])
+                first = j, count++;
+
+	if (count == 0) return -1;
+        if (count == 1)
+            rowidx[i] = colidx[first] = FALSE;
+    }
+
+    /*
+     * Convert each of rowidx/colidx from a list of 0s and 1s to a
+     * list of the indices of the 1s.
+     */
+    for (i = j = 0; i < o; i++)
+        if (rowidx[i])
+            rowidx[j++] = i;
+    n = j;
+    for (i = j = 0; i < o; i++)
+        if (colidx[i])
+            colidx[j++] = i;
+    assert(n == j);
+
+    /*
+     * And create the smaller matrix.
+     */
+    for (i = 0; i < n; i++)
+        for (j = 0; j < n; j++)
+            grid[i*o+j] = solver->cube[start+rowidx[i]*step1+colidx[j]*step2];
+
+    /*
+     * Having done that, we now have a matrix in which every row
+     * has at least two 1s in. Now we search to see if we can find
+     * a rectangle of zeroes (in the set-theoretic sense of
+     * `rectangle', i.e. a subset of rows crossed with a subset of
+     * columns) whose width and height add up to n.
+     */
+
+    memset(set, 0, n);
+    count = 0;
+    while (1) {
+        /*
+         * We have a candidate set. If its size is <=1 or >=n-1
+         * then we move on immediately.
+         */
+        if (count > 1 && count < n-1) {
+            /*
+             * The number of rows we need is n-count. See if we can
+             * find that many rows which each have a zero in all
+             * the positions listed in `set'.
+             */
+            int rows = 0;
+            for (i = 0; i < n; i++) {
+                int ok = TRUE;
+                for (j = 0; j < n; j++)
+                    if (set[j] && grid[i*o+j]) {
+                        ok = FALSE;
+                        break;
+                    }
+                if (ok)
+                    rows++;
+            }
+
+            /*
+             * We expect never to be able to get _more_ than
+             * n-count suitable rows: this would imply that (for
+             * example) there are four numbers which between them
+             * have at most three possible positions, and hence it
+             * indicates a faulty deduction before this point or
+             * even a bogus clue.
+             */
+            if (rows > n - count) {
+#ifdef STANDALONE_SOLVER
+		if (solver_show_working) {
+		    va_list ap;
+		    printf("%*s", solver_recurse_depth*4,
+			   "");
+		    va_start(ap, fmt);
+		    vprintf(fmt, ap);
+		    va_end(ap);
+		    printf(":\n%*s  contradiction reached\n",
+			   solver_recurse_depth*4, "");
+		}
+#endif
+		return -1;
+	    }
+
+            if (rows >= n - count) {
+                int progress = FALSE;
+
+                /*
+                 * We've got one! Now, for each row which _doesn't_
+                 * satisfy the criterion, eliminate all its set
+                 * bits in the positions _not_ listed in `set'.
+                 * Return +1 (meaning progress has been made) if we
+                 * successfully eliminated anything at all.
+                 *
+                 * This involves referring back through
+                 * rowidx/colidx in order to work out which actual
+                 * positions in the cube to meddle with.
+                 */
+                for (i = 0; i < n; i++) {
+                    int ok = TRUE;
+                    for (j = 0; j < n; j++)
+                        if (set[j] && grid[i*o+j]) {
+                            ok = FALSE;
+                            break;
+                        }
+                    if (!ok) {
+                        for (j = 0; j < n; j++)
+                            if (!set[j] && grid[i*o+j]) {
+                                int fpos = (start+rowidx[i]*step1+
+                                            colidx[j]*step2);
+#ifdef STANDALONE_SOLVER
+                                if (solver_show_working) {
+                                    int px, py, pn;
+
+                                    if (!progress) {
+                                        va_list ap;
+					printf("%*s", solver_recurse_depth*4,
+					       "");
+                                        va_start(ap, fmt);
+                                        vprintf(fmt, ap);
+                                        va_end(ap);
+                                        printf(":\n");
+                                    }
+
+                                    pn = 1 + fpos % o;
+                                    py = fpos / o;
+                                    px = py / o;
+                                    py %= o;
+
+                                    printf("%*s  ruling out %d at (%d,%d)\n",
+					   solver_recurse_depth*4, "",
+                                           pn, px, YUNTRANS(py));
+                                }
+#endif
+                                progress = TRUE;
+                                solver->cube[fpos] = FALSE;
+                            }
+                    }
+                }
+
+                if (progress) {
+                    return +1;
+                }
+            }
+        }
+
+        /*
+         * Binary increment: change the rightmost 0 to a 1, and
+         * change all 1s to the right of it to 0s.
+         */
+        i = n;
+        while (i > 0 && set[i-1])
+            set[--i] = 0, count--;
+        if (i > 0)
+            set[--i] = 1, count++;
+        else
+            break;                     /* done */
+    }
+
+    return 0;
+}
+
+/*
+ * Look for forcing chains. A forcing chain is a path of
+ * pairwise-exclusive squares (i.e. each pair of adjacent squares
+ * in the path are in the same row, column or block) with the
+ * following properties:
+ *
+ *  (a) Each square on the path has precisely two possible numbers.
+ *
+ *  (b) Each pair of squares which are adjacent on the path share
+ *      at least one possible number in common.
+ *
+ *  (c) Each square in the middle of the path shares _both_ of its
+ *      numbers with at least one of its neighbours (not the same
+ *      one with both neighbours).
+ *
+ * These together imply that at least one of the possible number
+ * choices at one end of the path forces _all_ the rest of the
+ * numbers along the path. In order to make real use of this, we
+ * need further properties:
+ *
+ *  (c) Ruling out some number N from the square at one end
+ *      of the path forces the square at the other end to
+ *      take number N.
+ *
+ *  (d) The two end squares are both in line with some third
+ *      square.
+ *
+ *  (e) That third square currently has N as a possibility.
+ *
+ * If we can find all of that lot, we can deduce that at least one
+ * of the two ends of the forcing chain has number N, and that
+ * therefore the mutually adjacent third square does not.
+ *
+ * To find forcing chains, we're going to start a bfs at each
+ * suitable square, once for each of its two possible numbers.
+ */
+int latin_solver_forcing(struct latin_solver *solver,
+                         struct latin_solver_scratch *scratch)
+{
+    int o = solver->o;
+    int *bfsqueue = scratch->bfsqueue;
+#ifdef STANDALONE_SOLVER
+    int *bfsprev = scratch->bfsprev;
+#endif
+    unsigned char *number = scratch->grid;
+    int *neighbours = scratch->neighbours;
+    int x, y;
+
+    for (y = 0; y < o; y++)
+        for (x = 0; x < o; x++) {
+            int count, t, n;
+
+            /*
+             * If this square doesn't have exactly two candidate
+             * numbers, don't try it.
+             *
+             * In this loop we also sum the candidate numbers,
+             * which is a nasty hack to allow us to quickly find
+             * `the other one' (since we will shortly know there
+             * are exactly two).
+             */
+            for (count = t = 0, n = 1; n <= o; n++)
+                if (cube(x, y, n))
+                    count++, t += n;
+            if (count != 2)
+                continue;
+
+            /*
+             * Now attempt a bfs for each candidate.
+             */
+            for (n = 1; n <= o; n++)
+                if (cube(x, y, n)) {
+                    int orign, currn, head, tail;
+
+                    /*
+                     * Begin a bfs.
+                     */
+                    orign = n;
+
+                    memset(number, o+1, o*o);
+                    head = tail = 0;
+                    bfsqueue[tail++] = y*o+x;
+#ifdef STANDALONE_SOLVER
+                    bfsprev[y*o+x] = -1;
+#endif
+                    number[y*o+x] = t - n;
+
+                    while (head < tail) {
+                        int xx, yy, nneighbours, xt, yt, i;
+
+                        xx = bfsqueue[head++];
+                        yy = xx / o;
+                        xx %= o;
+
+                        currn = number[yy*o+xx];
+
+                        /*
+                         * Find neighbours of yy,xx.
+                         */
+                        nneighbours = 0;
+                        for (yt = 0; yt < o; yt++)
+                            neighbours[nneighbours++] = yt*o+xx;
+                        for (xt = 0; xt < o; xt++)
+                            neighbours[nneighbours++] = yy*o+xt;
+
+                        /*
+                         * Try visiting each of those neighbours.
+                         */
+                        for (i = 0; i < nneighbours; i++) {
+                            int cc, tt, nn;
+
+                            xt = neighbours[i] % o;
+                            yt = neighbours[i] / o;
+
+                            /*
+                             * We need this square to not be
+                             * already visited, and to include
+                             * currn as a possible number.
+                             */
+                            if (number[yt*o+xt] <= o)
+                                continue;
+                            if (!cube(xt, yt, currn))
+                                continue;
+
+                            /*
+                             * Don't visit _this_ square a second
+                             * time!
+                             */
+                            if (xt == xx && yt == yy)
+                                continue;
+
+                            /*
+                             * To continue with the bfs, we need
+                             * this square to have exactly two
+                             * possible numbers.
+                             */
+                            for (cc = tt = 0, nn = 1; nn <= o; nn++)
+                                if (cube(xt, yt, nn))
+                                    cc++, tt += nn;
+                            if (cc == 2) {
+                                bfsqueue[tail++] = yt*o+xt;
+#ifdef STANDALONE_SOLVER
+                                bfsprev[yt*o+xt] = yy*o+xx;
+#endif
+                                number[yt*o+xt] = tt - currn;
+                            }
+
+                            /*
+                             * One other possibility is that this
+                             * might be the square in which we can
+                             * make a real deduction: if it's
+                             * adjacent to x,y, and currn is equal
+                             * to the original number we ruled out.
+                             */
+                            if (currn == orign &&
+                                (xt == x || yt == y)) {
+#ifdef STANDALONE_SOLVER
+                                if (solver_show_working) {
+                                    char *sep = "";
+                                    int xl, yl;
+                                    printf("%*sforcing chain, %d at ends of ",
+                                           solver_recurse_depth*4, "", orign);
+                                    xl = xx;
+                                    yl = yy;
+                                    while (1) {
+                                        printf("%s(%d,%d)", sep, xl,
+                                               YUNTRANS(yl));
+                                        xl = bfsprev[yl*o+xl];
+                                        if (xl < 0)
+                                            break;
+                                        yl = xl / o;
+                                        xl %= o;
+                                        sep = "-";
+                                    }
+                                    printf("\n%*s  ruling out %d at (%d,%d)\n",
+                                           solver_recurse_depth*4, "",
+                                           orign, xt, YUNTRANS(yt));
+                                }
+#endif
+                                cube(xt, yt, orign) = FALSE;
+                                return 1;
+                            }
+                        }
+                    }
+                }
+        }
+
+    return 0;
+}
+
+struct latin_solver_scratch *latin_solver_new_scratch(struct latin_solver *solver)
+{
+    struct latin_solver_scratch *scratch = snew(struct latin_solver_scratch);
+    int o = solver->o;
+    scratch->grid = snewn(o*o, unsigned char);
+    scratch->rowidx = snewn(o, unsigned char);
+    scratch->colidx = snewn(o, unsigned char);
+    scratch->set = snewn(o, unsigned char);
+    scratch->neighbours = snewn(3*o, int);
+    scratch->bfsqueue = snewn(o*o, int);
+#ifdef STANDALONE_SOLVER
+    scratch->bfsprev = snewn(o*o, int);
+#endif
+    return scratch;
+}
+
+void latin_solver_free_scratch(struct latin_solver_scratch *scratch)
+{
+#ifdef STANDALONE_SOLVER
+    sfree(scratch->bfsprev);
+#endif
+    sfree(scratch->bfsqueue);
+    sfree(scratch->neighbours);
+    sfree(scratch->set);
+    sfree(scratch->colidx);
+    sfree(scratch->rowidx);
+    sfree(scratch->grid);
+    sfree(scratch);
+}
+
+void latin_solver_alloc(struct latin_solver *solver, digit *grid, int o)
+{
+    int x, y;
+
+    solver->o = o;
+    solver->cube = snewn(o*o*o, unsigned char);
+    solver->grid = grid;		/* write straight back to the input */
+    memset(solver->cube, TRUE, o*o*o);
+
+    solver->row = snewn(o*o, unsigned char);
+    solver->col = snewn(o*o, unsigned char);
+    memset(solver->row, FALSE, o*o);
+    memset(solver->col, FALSE, o*o);
+
+    for (x = 0; x < o; x++)
+	for (y = 0; y < o; y++)
+	    if (grid[y*o+x])
+		latin_solver_place(solver, x, YTRANS(y), grid[y*o+x]);
+}
+
+void latin_solver_free(struct latin_solver *solver)
+{
+    sfree(solver->cube);
+    sfree(solver->row);
+    sfree(solver->col);
+}
+
+int latin_solver_diff_simple(struct latin_solver *solver)
+{
+    int x, y, n, ret, o = solver->o;
+    /*
+     * Row-wise positional elimination.
+     */
+    for (y = 0; y < o; y++)
+        for (n = 1; n <= o; n++)
+            if (!solver->row[y*o+n-1]) {
+                ret = latin_solver_elim(solver, cubepos(0,y,n), o*o
+#ifdef STANDALONE_SOLVER
+					, "positional elimination,"
+					" %d in row %d", n, YUNTRANS(y)
+#endif
+					);
+                if (ret != 0) return ret;
+            }
+    /*
+     * Column-wise positional elimination.
+     */
+    for (x = 0; x < o; x++)
+        for (n = 1; n <= o; n++)
+            if (!solver->col[x*o+n-1]) {
+                ret = latin_solver_elim(solver, cubepos(x,0,n), o
+#ifdef STANDALONE_SOLVER
+					, "positional elimination,"
+					" %d in column %d", n, x
+#endif
+					);
+                if (ret != 0) return ret;
+            }
+
+    /*
+     * Numeric elimination.
+     */
+    for (x = 0; x < o; x++)
+        for (y = 0; y < o; y++)
+            if (!solver->grid[YUNTRANS(y)*o+x]) {
+                ret = latin_solver_elim(solver, cubepos(x,y,1), 1
+#ifdef STANDALONE_SOLVER
+					, "numeric elimination at (%d,%d)", x,
+					YUNTRANS(y)
+#endif
+					);
+                if (ret != 0) return ret;
+            }
+    return 0;
+}
+
+int latin_solver_diff_set(struct latin_solver *solver,
+                          struct latin_solver_scratch *scratch,
+                          int *extreme)
+{
+    int x, y, n, ret, o = solver->o;
+    /*
+     * Row-wise set elimination.
+     */
+    for (y = 0; y < o; y++) {
+        ret = latin_solver_set(solver, scratch, cubepos(0,y,1), o*o, 1
+#ifdef STANDALONE_SOLVER
+			       , "set elimination, row %d", YUNTRANS(y)
+#endif
+			       );
+        if (ret > 0) *extreme = 0;
+        if (ret != 0) return ret;
+    }
+
+    /*
+     * Column-wise set elimination.
+     */
+    for (x = 0; x < o; x++) {
+        ret = latin_solver_set(solver, scratch, cubepos(x,0,1), o, 1
+#ifdef STANDALONE_SOLVER
+			       , "set elimination, column %d", x
+#endif
+			       );
+        if (ret > 0) *extreme = 0;
+        if (ret != 0) return ret;
+    }
+
+    /*
+     * Row-vs-column set elimination on a single number.
+     */
+    for (n = 1; n <= o; n++) {
+        ret = latin_solver_set(solver, scratch, cubepos(0,0,n), o*o, o
+#ifdef STANDALONE_SOLVER
+			       , "positional set elimination, number %d", n
+#endif
+			       );
+        if (ret > 0) *extreme = 1;
+        if (ret != 0) return ret;
+    }
+    return 0;
+}
+
+/* This uses our own diff_* internally, but doesn't require callers
+ * to; this is so it can be used by games that want to rewrite
+ * the solver so as to use a different set of difficulties.
+ *
+ * It returns:
+ * 0 for 'didn't do anything' implying it was already solved.
+ * -1 for 'impossible' (no solution)
+ * 1 for 'single solution'
+ * >1 for 'multiple solutions' (you don't get to know how many, and
+ *     the first such solution found will be set.
+ *
+ * and this function may well assert if given an impossible board.
+ */
+int latin_solver_recurse(struct latin_solver *solver, int recdiff,
+                         latin_solver_callback cb, void *ctx)
+{
+    int best, bestcount;
+    int o = solver->o, x, y, n;
+
+    best = -1;
+    bestcount = o+1;
+
+    for (y = 0; y < o; y++)
+        for (x = 0; x < o; x++)
+            if (!solver->grid[y*o+x]) {
+                int count;
+
+                /*
+                 * An unfilled square. Count the number of
+                 * possible digits in it.
+                 */
+                count = 0;
+                for (n = 1; n <= o; n++)
+                    if (cube(x,YTRANS(y),n))
+                        count++;
+
+                /*
+                 * We should have found any impossibilities
+                 * already, so this can safely be an assert.
+                 */
+                assert(count > 1);
+
+                if (count < bestcount) {
+                    bestcount = count;
+                    best = y*o+x;
+                }
+            }
+
+    if (best == -1)
+        /* we were complete already. */
+        return 0;
+    else {
+        int i, j;
+        digit *list, *ingrid, *outgrid;
+        int diff = diff_impossible;    /* no solution found yet */
+
+        /*
+         * Attempt recursion.
+         */
+        y = best / o;
+        x = best % o;
+
+        list = snewn(o, digit);
+        ingrid = snewn(o*o, digit);
+        outgrid = snewn(o*o, digit);
+        memcpy(ingrid, solver->grid, o*o);
+
+        /* Make a list of the possible digits. */
+        for (j = 0, n = 1; n <= o; n++)
+            if (cube(x,YTRANS(y),n))
+                list[j++] = n;
+
+#ifdef STANDALONE_SOLVER
+        if (solver_show_working) {
+            char *sep = "";
+            printf("%*srecursing on (%d,%d) [",
+                   solver_recurse_depth*4, "", x, y);
+            for (i = 0; i < j; i++) {
+                printf("%s%d", sep, list[i]);
+                sep = " or ";
+            }
+            printf("]\n");
+        }
+#endif
+
+        /*
+         * And step along the list, recursing back into the
+         * main solver at every stage.
+         */
+        for (i = 0; i < j; i++) {
+            int ret;
+
+            memcpy(outgrid, ingrid, o*o);
+            outgrid[y*o+x] = list[i];
+
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working)
+                printf("%*sguessing %d at (%d,%d)\n",
+                       solver_recurse_depth*4, "", list[i], x, y);
+            solver_recurse_depth++;
+#endif
+
+            ret = cb(outgrid, o, recdiff, ctx);
+
+#ifdef STANDALONE_SOLVER
+            solver_recurse_depth--;
+            if (solver_show_working) {
+                printf("%*sretracting %d at (%d,%d)\n",
+                       solver_recurse_depth*4, "", list[i], x, y);
+            }
+#endif
+            /* we recurse as deep as we can, so we should never find
+             * find ourselves giving up on a puzzle without declaring it
+             * impossible.  */
+            assert(ret != diff_unfinished);
+
+            /*
+             * If we have our first solution, copy it into the
+             * grid we will return.
+             */
+            if (diff == diff_impossible && ret != diff_impossible)
+                memcpy(solver->grid, outgrid, o*o);
+
+            if (ret == diff_ambiguous)
+                diff = diff_ambiguous;
+            else if (ret == diff_impossible)
+                /* do not change our return value */;
+            else {
+                /* the recursion turned up exactly one solution */
+                if (diff == diff_impossible)
+                    diff = recdiff;
+                else
+                    diff = diff_ambiguous;
+            }
+
+            /*
+             * As soon as we've found more than one solution,
+             * give up immediately.
+             */
+            if (diff == diff_ambiguous)
+                break;
+        }
+
+        sfree(outgrid);
+        sfree(ingrid);
+        sfree(list);
+
+        if (diff == diff_impossible)
+            return -1;
+        else if (diff == diff_ambiguous)
+            return 2;
+        else {
+            assert(diff == recdiff);
+            return 1;
+        }
+    }
+}
+
+enum { diff_simple = 1, diff_set, diff_extreme, diff_recursive };
+
+static int latin_solver_sub(struct latin_solver *solver, int maxdiff, void *ctx)
+{
+    struct latin_solver_scratch *scratch = latin_solver_new_scratch(solver);
+    int ret, diff = diff_simple, extreme;
+
+    assert(maxdiff <= diff_recursive);
+    /*
+     * Now loop over the grid repeatedly trying all permitted modes
+     * of reasoning. The loop terminates if we complete an
+     * iteration without making any progress; we then return
+     * failure or success depending on whether the grid is full or
+     * not.
+     */
+    while (1) {
+        /*
+         * I'd like to write `continue;' inside each of the
+         * following loops, so that the solver returns here after
+         * making some progress. However, I can't specify that I
+         * want to continue an outer loop rather than the innermost
+         * one, so I'm apologetically resorting to a goto.
+         */
+	cont:
+        latin_solver_debug(solver->cube, solver->o);
+
+        ret = latin_solver_diff_simple(solver);
+        if (ret < 0) {
+            diff = diff_impossible;
+            goto got_result;
+        } else if (ret > 0) {
+            diff = max(diff, diff_simple);
+            goto cont;
+        }
+
+        if (maxdiff <= diff_simple)
+            break;
+
+        ret = latin_solver_diff_set(solver, scratch, &extreme);
+        if (ret < 0) {
+            diff = diff_impossible;
+            goto got_result;
+        } else if (ret > 0) {
+            diff = max(diff, extreme ? diff_extreme : diff_set);
+            goto cont;
+        }
+
+        if (maxdiff <= diff_set)
+            break;
+
+        /*
+         * Forcing chains.
+         */
+        if (latin_solver_forcing(solver, scratch)) {
+            diff = max(diff, diff_extreme);
+            goto cont;
+        }
+
+        /*
+         * If we reach here, we have made no deductions in this
+         * iteration, so the algorithm terminates.
+         */
+        break;
+    }
+
+    /*
+     * Last chance: if we haven't fully solved the puzzle yet, try
+     * recursing based on guesses for a particular square. We pick
+     * one of the most constrained empty squares we can find, which
+     * has the effect of pruning the search tree as much as
+     * possible.
+     */
+    if (maxdiff == diff_recursive) {
+        int nsol = latin_solver_recurse(solver, diff_recursive, latin_solver, ctx);
+        if (nsol < 0) diff = diff_impossible;
+        else if (nsol == 1) diff = diff_recursive;
+        else if (nsol > 1) diff = diff_ambiguous;
+        /* if nsol == 0 then we were complete anyway
+         * (and thus don't need to change diff) */
+    } else {
+        /*
+         * We're forbidden to use recursion, so we just see whether
+         * our grid is fully solved, and return diff_unfinished
+         * otherwise.
+         */
+        int x, y, o = solver->o;
+
+        for (y = 0; y < o; y++)
+            for (x = 0; x < o; x++)
+                if (!solver->grid[y*o+x])
+                    diff = diff_unfinished;
+    }
+
+    got_result:
+
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working)
+        printf("%*s%s found\n",
+               solver_recurse_depth*4, "",
+               diff == diff_impossible ? "no solution (impossible)" :
+               diff == diff_unfinished ? "no solution (unfinished)" :
+               diff == diff_ambiguous ? "multiple solutions" :
+               "one solution");
+#endif
+
+    latin_solver_free_scratch(scratch);
+
+    return diff;
+}
+
+int latin_solver(digit *grid, int o, int maxdiff, void *ctx)
+{
+    struct latin_solver solver;
+    int diff;
+
+    latin_solver_alloc(&solver, grid, o);
+    diff = latin_solver_sub(&solver, maxdiff, ctx);
+    latin_solver_free(&solver);
+    return diff;
+}
+
+void latin_solver_debug(unsigned char *cube, int o)
+{
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working) {
+        struct latin_solver ls, *solver = &ls;
+        char *dbg;
+        int x, y, i, c = 0;
+
+        ls.cube = cube; ls.o = o; /* for cube() to work */
+
+        dbg = snewn(3*o*o*o, unsigned char);
+        for (y = 0; y < o; y++) {
+            for (x = 0; x < o; x++) {
+                for (i = 1; i <= o; i++) {
+                    if (cube(x,y,i))
+                        dbg[c++] = i + '0';
+                    else
+                        dbg[c++] = '.';
+                }
+                dbg[c++] = ' ';
+            }
+            dbg[c++] = '\n';
+        }
+        dbg[c++] = '\n';
+        dbg[c++] = '\0';
+
+        printf("%s", dbg);
+        sfree(dbg);
+    }
+#endif
+}
+
+void latin_debug(digit *sq, int o)
+{
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working) {
+        int x, y;
+
+        for (y = 0; y < o; y++) {
+            for (x = 0; x < o; x++) {
+                printf("%2d ", sq[y*o+x]);
+            }
+            printf("\n");
+        }
+        printf("\n");
+    }
+#endif
+}
+
+/* --------------------------------------------------------
+ * Generation.
+ */
+
+digit *latin_generate(int o, random_state *rs)
+{
+    digit *sq;
+    int *edges, *backedges, *capacity, *flow;
+    void *scratch;
+    int ne, scratchsize;
+    int i, j, k;
+    digit *row, *col, *numinv, *num;
+
+    /*
+     * To efficiently generate a latin square in such a way that
+     * all possible squares are possible outputs from the function,
+     * we make use of a theorem which states that any r x n latin
+     * rectangle, with r < n, can be extended into an (r+1) x n
+     * latin rectangle. In other words, we can reliably generate a
+     * latin square row by row, by at every stage writing down any
+     * row at all which doesn't conflict with previous rows, and
+     * the theorem guarantees that we will never have to backtrack.
+     *
+     * To find a viable row at each stage, we can make use of the
+     * support functions in maxflow.c.
+     */
+
+    sq = snewn(o*o, digit);
+
+    /*
+     * In case this method of generation introduces a really subtle
+     * top-to-bottom directional bias, we'll generate the rows in
+     * random order.
+     */
+    row = snewn(o, digit);
+    col = snewn(o, digit);
+    numinv = snewn(o, digit);
+    num = snewn(o, digit);
+    for (i = 0; i < o; i++)
+	row[i] = i;
+    shuffle(row, i, sizeof(*row), rs);
+
+    /*
+     * Set up the infrastructure for the maxflow algorithm.
+     */
+    scratchsize = maxflow_scratch_size(o * 2 + 2);
+    scratch = smalloc(scratchsize);
+    backedges = snewn(o*o + 2*o, int);
+    edges = snewn((o*o + 2*o) * 2, int);
+    capacity = snewn(o*o + 2*o, int);
+    flow = snewn(o*o + 2*o, int);
+    /* Set up the edge array, and the initial capacities. */
+    ne = 0;
+    for (i = 0; i < o; i++) {
+	/* Each LHS vertex is connected to all RHS vertices. */
+	for (j = 0; j < o; j++) {
+	    edges[ne*2] = i;
+	    edges[ne*2+1] = j+o;
+	    /* capacity for this edge is set later on */
+	    ne++;
+	}
+    }
+    for (i = 0; i < o; i++) {
+	/* Each RHS vertex is connected to the distinguished sink vertex. */
+	edges[ne*2] = i+o;
+	edges[ne*2+1] = o*2+1;
+	capacity[ne] = 1;
+	ne++;
+    }
+    for (i = 0; i < o; i++) {
+	/* And the distinguished source vertex connects to each LHS vertex. */
+	edges[ne*2] = o*2;
+	edges[ne*2+1] = i;
+	capacity[ne] = 1;
+	ne++;
+    }
+    assert(ne == o*o + 2*o);
+    /* Now set up backedges. */
+    maxflow_setup_backedges(ne, edges, backedges);
+    
+    /*
+     * Now generate each row of the latin square.
+     */
+    for (i = 0; i < o; i++) {
+	/*
+	 * To prevent maxflow from behaving deterministically, we
+	 * separately permute the columns and the digits for the
+	 * purposes of the algorithm, differently for every row.
+	 */
+	for (j = 0; j < o; j++)
+	    col[j] = num[j] = j;
+	shuffle(col, j, sizeof(*col), rs);
+	/* We need the num permutation in both forward and inverse forms. */
+	for (j = 0; j < o; j++)
+	    numinv[num[j]] = j;
+
+	/*
+	 * Set up the capacities for the maxflow run, by examining
+	 * the existing latin square.
+	 */
+	for (j = 0; j < o*o; j++)
+	    capacity[j] = 1;
+	for (j = 0; j < i; j++)
+	    for (k = 0; k < o; k++) {
+		int n = num[sq[row[j]*o + col[k]] - 1];
+		capacity[k*o+n] = 0;
+	    }
+
+	/*
+	 * Run maxflow.
+	 */
+	j = maxflow_with_scratch(scratch, o*2+2, 2*o, 2*o+1, ne,
+				 edges, backedges, capacity, flow, NULL);
+	assert(j == o);   /* by the above theorem, this must have succeeded */
+
+	/*
+	 * And examine the flow array to pick out the new row of
+	 * the latin square.
+	 */
+	for (j = 0; j < o; j++) {
+	    for (k = 0; k < o; k++) {
+		if (flow[j*o+k])
+		    break;
+	    }
+	    assert(k < o);
+	    sq[row[i]*o + col[j]] = numinv[k] + 1;
+	}
+    }
+
+    /*
+     * Done. Free our internal workspaces...
+     */
+    sfree(flow);
+    sfree(capacity);
+    sfree(edges);
+    sfree(backedges);
+    sfree(scratch);
+    sfree(numinv);
+    sfree(num);
+    sfree(col);
+    sfree(row);
+
+    /*
+     * ... and return our completed latin square.
+     */
+    return sq;
+}
+
+/* --------------------------------------------------------
+ * Checking.
+ */
+
+typedef struct lcparams {
+    digit elt;
+    int count;
+} lcparams;
+
+static int latin_check_cmp(void *v1, void *v2)
+{
+    lcparams *lc1 = (lcparams *)v1;
+    lcparams *lc2 = (lcparams *)v2;
+
+    if (lc1->elt < lc2->elt) return -1;
+    if (lc1->elt > lc2->elt) return 1;
+    return 0;
+}
+
+#define ELT(sq,x,y) (sq[((y)*order)+(x)])
+
+/* returns non-zero if sq is not a latin square. */
+int latin_check(digit *sq, int order)
+{
+    tree234 *dict = newtree234(latin_check_cmp);
+    int c, r;
+    int ret = 0;
+    lcparams *lcp, lc;
+
+    /* Use a tree234 as a simple hash table, go through the square
+     * adding elements as we go or incrementing their counts. */
+    for (c = 0; c < order; c++) {
+	for (r = 0; r < order; r++) {
+	    lc.elt = ELT(sq, c, r); lc.count = 0;
+	    lcp = find234(dict, &lc, NULL);
+	    if (!lcp) {
+		lcp = snew(lcparams);
+		lcp->elt = ELT(sq, c, r);
+		lcp->count = 1;
+		assert(add234(dict, lcp) == lcp);
+	    } else {
+		lcp->count++;
+	    }
+	}
+    }
+
+    /* There should be precisely 'order' letters in the alphabet,
+     * each occurring 'order' times (making the OxO tree) */
+    if (count234(dict) != order) ret = 1;
+    else {
+	for (c = 0; (lcp = index234(dict, c)) != NULL; c++) {
+	    if (lcp->count != order) ret = 1;
+	}
+    }
+    for (c = 0; (lcp = index234(dict, c)) != NULL; c++)
+	sfree(lcp);
+    freetree234(dict);
+
+    return ret;
+}
+
+
+/* --------------------------------------------------------
+ * Testing (and printing).
+ */
+
+#ifdef STANDALONE_LATIN_TEST
+
+#include <stdio.h>
+#include <time.h>
+
+const char *quis;
+
+static void latin_print(digit *sq, int order)
+{
+    int x, y;
+
+    for (y = 0; y < order; y++) {
+	for (x = 0; x < order; x++) {
+	    printf("%2u ", ELT(sq, x, y));
+	}
+	printf("\n");
+    }
+    printf("\n");
+}
+
+static void gen(int order, random_state *rs, int debug)
+{
+    digit *sq;
+
+    solver_show_working = debug;
+
+    sq = latin_generate(order, rs);
+    latin_print(sq, order);
+    if (latin_check(sq, order)) {
+	fprintf(stderr, "Square is not a latin square!");
+	exit(1);
+    }
+
+    sfree(sq);
+}
+
+void test_soak(int order, random_state *rs)
+{
+    digit *sq;
+    int n = 0;
+    time_t tt_start, tt_now, tt_last;
+
+    solver_show_working = 0;
+    tt_now = tt_start = time(NULL);
+
+    while(1) {
+        sq = latin_generate(order, rs);
+        sfree(sq);
+        n++;
+
+        tt_last = time(NULL);
+        if (tt_last > tt_now) {
+            tt_now = tt_last;
+            printf("%d total, %3.1f/s\n", n,
+                   (double)n / (double)(tt_now - tt_start));
+        }
+    }
+}
+
+void usage_exit(const char *msg)
+{
+    if (msg)
+        fprintf(stderr, "%s: %s\n", quis, msg);
+    fprintf(stderr, "Usage: %s [--seed SEED] --soak <params> | [game_id [game_id ...]]\n", quis);
+    exit(1);
+}
+
+int main(int argc, char *argv[])
+{
+    int i, soak = 0;
+    random_state *rs;
+    time_t seed = time(NULL);
+
+    quis = argv[0];
+    while (--argc > 0) {
+	const char *p = *++argv;
+	if (!strcmp(p, "--soak"))
+	    soak = 1;
+	else if (!strcmp(p, "--seed")) {
+	    if (argc == 0)
+		usage_exit("--seed needs an argument");
+	    seed = (time_t)atoi(*++argv);
+	    argc--;
+	} else if (*p == '-')
+		usage_exit("unrecognised option");
+	else
+	    break; /* finished options */
+    }
+
+    rs = random_new((void*)&seed, sizeof(time_t));
+
+    if (soak == 1) {
+	if (argc != 1) usage_exit("only one argument for --soak");
+	test_soak(atoi(*argv), rs);
+    } else {
+	if (argc > 0) {
+	    for (i = 0; i < argc; i++) {
+		gen(atoi(*argv++), rs, 1);
+	    }
+	} else {
+	    while (1) {
+		i = random_upto(rs, 20) + 1;
+		gen(i, rs, 0);
+	    }
+	}
+    }
+    random_free(rs);
+    return 0;
+}
+
+#endif
+
+/* vim: set shiftwidth=4 tabstop=8: */
--- /dev/null
+++ b/latin.h
@@ -1,0 +1,114 @@
+#ifndef LATIN_H
+#define LATIN_H
+
+#include "puzzles.h"
+
+typedef unsigned char digit;
+
+/* --- Solver structures, definitions --- */
+
+#ifdef STANDALONE_SOLVER
+int solver_show_working, solver_recurse_depth;
+#endif
+
+struct latin_solver {
+  int o;                /* order of latin square */
+  unsigned char *cube;  /* o^3, indexed by x, y, and digit:
+                           TRUE in that position indicates a possibility */
+  digit *grid;          /* o^2, indexed by x and y: for final deductions */
+
+  unsigned char *row;   /* o^2: row[y*cr+n-1] TRUE if n is in row y */
+  unsigned char *col;   /* o^2: col[x*cr+n-1] TRUE if n is in col x */
+};
+#define cubepos(x,y,n) (((x)*solver->o+(y))*solver->o+(n)-1)
+#define cube(x,y,n) (solver->cube[cubepos(x,y,n)])
+
+#define gridpos(x,y) ((y)*solver->o+(x))
+#define grid(x,y) (solver->grid[gridpos(x,y)])
+
+/* A solo solver using this code would need these defined. See solo.c. */
+#ifndef YTRANS
+#define YTRANS(y) (y)
+#endif
+#ifndef YUNTRANS
+#define YUNTRANS(y) (y)
+#endif
+
+
+/* --- Solver individual strategies --- */
+
+/* Place a value at a specific location. */
+void latin_solver_place(struct latin_solver *solver, int x, int y, int n);
+
+/* Positional elimination. */
+int latin_solver_elim(struct latin_solver *solver, int start, int step
+#ifdef STANDALONE_SOLVER
+                      , char *fmt, ...
+#endif
+                      );
+
+struct latin_solver_scratch; /* private to latin.c */
+/* Set elimination */
+int latin_solver_set(struct latin_solver *solver,
+                     struct latin_solver_scratch *scratch,
+                     int start, int step1, int step2
+#ifdef STANDALONE_SOLVER
+                     , char *fmt, ...
+#endif
+                     );
+
+/* Forcing chains */
+int latin_solver_forcing(struct latin_solver *solver,
+                         struct latin_solver_scratch *scratch);
+
+
+/* --- Solver allocation --- */
+
+/* Fills in (and allocates members for) a latin_solver struct.
+ * Will allocate members of snew, but not snew itself
+ * (allowing 'struct latin_solver' to be the first element in a larger
+ * struct, for example). */
+void latin_solver_alloc(struct latin_solver *solver, digit *grid, int o);
+void latin_solver_free(struct latin_solver *solver);
+
+/* Allocates scratch space (for _set and _forcing) */
+struct latin_solver_scratch *
+  latin_solver_new_scratch(struct latin_solver *solver);
+void latin_solver_free_scratch(struct latin_solver_scratch *scratch);
+
+
+/* --- Solver guts --- */
+
+/* Looped positional elimination */
+int latin_solver_diff_simple(struct latin_solver *solver);
+
+/* Looped set elimination; *extreme is set if it used
+ * the more difficult single-number elimination. */
+int latin_solver_diff_set(struct latin_solver *solver,
+                          struct latin_solver_scratch *scratch,
+                          int *extreme);
+
+typedef int (latin_solver_callback)(digit *, int, int, void*);
+/* Use to provide a standard way of dealing with solvers which can recurse;
+ * pass in your enumeration for 'recursive diff' and your solver
+ * callback. Returns #solutions (0 == already solved). */
+int latin_solver_recurse(struct latin_solver *solver, int recdiff,
+                         latin_solver_callback cb, void *ctx);
+
+/* Individual puzzles should use their enumerations for their
+ * own difficulty levels, ensuring they don't clash with these. */
+enum { diff_impossible = 10, diff_ambiguous, diff_unfinished };
+int latin_solver(digit *grid, int order, int maxdiff, void *unused);
+
+void latin_solver_debug(unsigned char *cube, int o);
+
+/* --- Generation and checking --- */
+
+digit *latin_generate_quick(int o, random_state *rs);
+digit *latin_generate(int o, random_state *rs);
+
+int latin_check(digit *sq, int order); /* !0 => not a latin square */
+
+void latin_debug(digit *sq, int order);
+
+#endif
--- a/puzzles.but
+++ b/puzzles.but
@@ -2073,6 +2073,75 @@
 tightly-packed islands.
 
 
+\C{unequal} \i{Unequal}
+
+\cfg{winhelp-topic}{games.unequal}
+
+You have a square grid; each square may contain a digit from 1 to
+the size of the grid, and some squares have greater-signs between
+them. Your aim is to fully populate the grid with numbers such that:
+
+\b Each row contains only one occurrence of each digit
+
+\b Each column contains only one occurrence of each digit
+
+\b All the greater-than signs are satisfied. 
+
+In 'Trivial' mode, there are no greater-than signs; the puzzle is
+to solve the latin square only.
+
+At the time of writing, this puzzle is appearing in the Guardian
+weekly under the name 'Futoshiki'.
+
+Unequal was contributed to this collection by James Harvey.
+
+\H{unequal-controls} \i{Unequal controls}
+
+\IM{Unequal controls} controls, for Unequal
+
+Unequal shares much of its control system with Solo.
+
+To play Unequal, simply click the mouse in any empty square and then
+type a digit or letter on the keyboard to fill that square. If you
+make a mistake, click the mouse in the incorrect square and press
+Space to clear it again (or use the Undo feature).
+
+If you \e{right}-click in a square and then type a number, that
+number will be entered in the square as a \q{pencil mark}. You can
+have pencil marks for multiple numbers in the same square.
+
+The game pays no attention to pencil marks, so exactly what you use
+them for is up to you: you can use them as reminders that a
+particular square needs to be re-examined once you know more about a
+particular number, or you can use them as lists of the possible
+numbers in a given square, or anything else you feel like.
+
+To erase a single pencil mark, right-click in the square and type
+the same number again.
+
+All pencil marks in a square are erased when you left-click and type
+a number, or when you left-click and press space. Right-clicking and
+pressing space will also erase pencil marks.
+
+(All the actions described in \k{common-actions} are also available.)
+
+\H{unequal-parameters} \I{parameters, for Unequal}Unequal parameters
+
+These parameters are available from the \q{Custom...} option on the
+\q{Type} menu.
+
+\dt \e{Size (s*s)}
+
+\dd Size of grid.
+
+\dt \e{Difficulty}
+
+\dd Controls the difficulty of the generated puzzle. At Trivial level,
+there are no greater-than signs (the puzzle is to solve the latin
+square only); at Tricky level, some recursion may be required (but the
+solutions should always be unique).
+
+
 \A{licence} \I{MIT licence}\ii{Licence}
 
 This software is \i{copyright} 2004-2007 Simon Tatham.
--- /dev/null
+++ b/unequal.R
@@ -1,0 +1,23 @@
+# -*- makefile -*-
+
+UNEQUAL  = unequal latin tree234 maxflow
+
+unequal  : [X] GTK COMMON UNEQUAL
+
+unequal  : [G] WINDOWS COMMON UNEQUAL
+
+unequalsolver : [U] unequal[STANDALONE_SOLVER] latin[STANDALONE_SOLVER] tree234 maxflow STANDALONE
+unequalsolver : [C] unequal[STANDALONE_SOLVER] latin[STANDALONE_SOLVER] tree234 maxflow STANDALONE
+
+latincheck : [U] latin[STANDALONE_LATIN_TEST] tree234 maxflow STANDALONE
+latincheck : [C] latin[STANDALONE_LATIN_TEST] tree234 maxflow STANDALONE
+
+ALL += UNEQUAL
+
+!begin gtk
+GAMES += unequal
+!end
+
+!begin >list.c
+    A(unequal) \
+!end
--- /dev/null
+++ b/unequal.c
@@ -1,0 +1,1967 @@
+/*
+ * unequal.c
+ *
+ * Implementation of 'Futoshiki', a puzzle featured in the Guardian.
+ *
+ * TTD:
+   * add multiple-links-on-same-col/row solver nous
+   * Optimise set solver to use bit operations instead
+ *
+ * Guardian puzzles of note:
+   * #1: 5:0,0L,0L,0,0,0R,0,0L,0D,0L,0R,0,2,0D,0,0,0,0,0,0,0U,0,0,0,0U,
+   * #2: 5:0,0,0,4L,0L,0,2LU,0L,0U,0,0,0U,0,0,0,0,0D,0,3LRUD,0,0R,3,0L,0,0,
+   * #3: (reprint of #2)
+   * #4: 
+   * #5: 5:0,0,0,0,0,0,2,0U,3U,0U,0,0,3,0,0,0,3,0D,4,0,0,0L,0R,0,0,
+   * #6: 5:0D,0L,0,0R,0,0,0D,0,3,0D,0,0R,0,0R,0D,0U,0L,0,1,2,0,0,0U,0,0L,
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+#include "latin.h" /* contains typedef for digit */
+
+/* ----------------------------------------------------------
+ * Constant and structure definitions
+ */
+
+#define FLASH_TIME 0.4F
+
+#define PREFERRED_TILE_SIZE 32
+
+#define TILE_SIZE (ds->tilesize)
+#define GAP_SIZE  (TILE_SIZE/2)
+#define SQUARE_SIZE (TILE_SIZE + GAP_SIZE)
+
+#define BORDER    (TILE_SIZE / 2)
+
+#define COORD(x)  ( (x) * SQUARE_SIZE + BORDER )
+#define FROMCOORD(x)  ( ((x) - BORDER + SQUARE_SIZE) / SQUARE_SIZE - 1 )
+
+#define GRID(p,w,x,y) ((p)->w[((y)*(p)->order)+(x)])
+#define GRID3(p,w,x,y,z) ((p)->w[ (((x)*(p)->order+(y))*(p)->order+(z)) ])
+#define HINT(p,x,y,n) GRID3(p, hints, x, y, n)
+
+enum {
+    COL_BACKGROUND,
+    COL_GRID,
+    COL_TEXT, COL_GUESS, COL_ERROR, COL_PENCIL,
+    COL_HIGHLIGHT, COL_LOWLIGHT,
+    NCOLOURS
+};
+
+struct game_params {
+    int order, diff;
+};
+
+#define F_IMMUTABLE     1       /* passed in as game description */
+#define F_GT_UP         2
+#define F_GT_RIGHT      4
+#define F_GT_DOWN       8
+#define F_GT_LEFT       16
+#define F_ERROR         32
+#define F_ERROR_UP      64
+#define F_ERROR_RIGHT   128
+#define F_ERROR_DOWN    256
+#define F_ERROR_LEFT    512
+
+#define F_ERROR_MASK (F_ERROR|F_ERROR_UP|F_ERROR_RIGHT|F_ERROR_DOWN|F_ERROR_LEFT)
+
+struct game_state {
+    int order, completed, cheated;
+    digit *nums;                 /* actual numbers (size order^2) */
+    unsigned char *hints;        /* remaining possiblities (size order^3) */
+    unsigned int *flags;         /* flags (size order^2) */
+};
+
+/* ----------------------------------------------------------
+ * Game parameters and presets
+ */
+
+/* Steal the method from map.c for difficulty levels. */
+#define DIFFLIST(A)             \
+    A(LATIN,Trivial,t)          \
+    A(EASY,Easy,e)              \
+    A(SET,Tricky,k)             \
+    A(EXTREME,Extreme,x)        \
+    A(RECURSIVE,Recursive,r)
+
+#define ENUM(upper,title,lower) DIFF_ ## upper,
+#define TITLE(upper,title,lower) #title,
+#define ENCODE(upper,title,lower) #lower
+#define CONFIG(upper,title,lower) ":" #title
+enum { DIFFLIST(ENUM) DIFF_IMPOSSIBLE = diff_impossible, DIFF_AMBIGUOUS = diff_ambiguous, DIFF_UNFINISHED = diff_unfinished };
+static char const *const unequal_diffnames[] = { DIFFLIST(TITLE) };
+static char const unequal_diffchars[] = DIFFLIST(ENCODE);
+#define DIFFCOUNT lenof(unequal_diffchars)
+#define DIFFCONFIG DIFFLIST(CONFIG)
+
+#define DEFAULT_PRESET 0
+
+const static struct game_params unequal_presets[] = {
+    {  4, DIFF_EASY     },
+    {  5, DIFF_EASY     },
+    {  5, DIFF_SET      },
+    {  5, DIFF_EXTREME  },
+    {  6, DIFF_EASY     },
+    {  6, DIFF_SET      },
+    {  6, DIFF_EXTREME  },
+    {  7, DIFF_SET      },
+    {  7, DIFF_EXTREME  },
+};
+
+static int game_fetch_preset(int i, char **name, game_params **params)
+{
+    game_params *ret;
+    char buf[80];
+
+    if (i < 0 || i >= lenof(unequal_presets))
+        return FALSE;
+
+    ret = snew(game_params);
+    *ret = unequal_presets[i]; /* structure copy */
+
+    sprintf(buf, "%dx%d %s", ret->order, ret->order,
+            unequal_diffnames[ret->diff]);
+
+    *name = dupstr(buf);
+    *params = ret;
+    return TRUE;
+}
+
+static game_params *default_params(void)
+{
+    game_params *ret;
+    char *name;
+
+    if (!game_fetch_preset(DEFAULT_PRESET, &name, &ret)) return NULL;
+    sfree(name);
+    return ret;
+}
+
+static void free_params(game_params *params)
+{
+    sfree(params);
+}
+
+static game_params *dup_params(game_params *params)
+{
+    game_params *ret = snew(game_params);
+    *ret = *params;       /* structure copy */
+    return ret;
+}
+
+static void decode_params(game_params *ret, char const *string)
+{
+    char const *p = string;
+
+    ret->order = atoi(p);
+    while (*p && isdigit((unsigned char)*p)) p++;
+
+    if (*p == 'd') {
+        int i;
+        p++;
+        ret->diff = DIFFCOUNT+1; /* ...which is invalid */
+        if (*p) {
+            for (i = 0; i < DIFFCOUNT; i++) {
+                if (*p == unequal_diffchars[i])
+                    ret->diff = i;
+            }
+            p++;
+        }
+    }
+}
+
+static char *encode_params(game_params *params, int full)
+{
+    char ret[80];
+
+    sprintf(ret, "%d", params->order);
+    if (full)
+        sprintf(ret + strlen(ret), "d%c", unequal_diffchars[params->diff]);
+
+    return dupstr(ret);
+}
+
+static config_item *game_configure(game_params *params)
+{
+    config_item *ret;
+    char buf[80];
+
+    ret = snewn(3, config_item);
+
+    ret[0].name = "Size (s*s)";
+    ret[0].type = C_STRING;
+    sprintf(buf, "%d", params->order);
+    ret[0].sval = dupstr(buf);
+    ret[0].ival = 0;
+
+    ret[1].name = "Difficulty";
+    ret[1].type = C_CHOICES;
+    ret[1].sval = DIFFCONFIG;
+    ret[1].ival = params->diff;
+
+    ret[2].name = NULL;
+    ret[2].type = C_END;
+    ret[2].sval = NULL;
+    ret[2].ival = 0;
+
+    return ret;
+}
+
+static game_params *custom_params(config_item *cfg)
+{
+    game_params *ret = snew(game_params);
+
+    ret->order = atoi(cfg[0].sval);
+    ret->diff = cfg[1].ival;
+
+    return ret;
+}
+
+static char *validate_params(game_params *params, int full)
+{
+    if (params->order < 3 || params->order > 32)
+        return "Order must be between 3 and 32";
+    if (params->diff >= DIFFCOUNT)
+        return "Unknown difficulty rating.";
+    return NULL;
+}
+
+/* ----------------------------------------------------------
+ * Various utility functions
+ */
+
+static const struct { unsigned int f, fo, fe; int dx, dy; char c; } gtthan[] = {
+    { F_GT_UP,    F_GT_DOWN,  F_ERROR_UP,     0, -1, '^' },
+    { F_GT_RIGHT, F_GT_LEFT,  F_ERROR_RIGHT,  1,  0, '>' },
+    { F_GT_DOWN,  F_GT_UP,    F_ERROR_DOWN,   0,  1, 'v' },
+    { F_GT_LEFT,  F_GT_RIGHT, F_ERROR_LEFT,  -1,  0, '<' }
+};
+
+static game_state *blank_game(int order)
+{
+    game_state *state = snew(game_state);
+    int o2 = order*order, o3 = o2*order;
+
+    state->order = order;
+    state->completed = state->cheated = 0;
+
+    state->nums = snewn(o2, digit);
+    state->hints = snewn(o3, unsigned char);
+    state->flags = snewn(o2, unsigned int);
+
+    memset(state->nums, 0, o2 * sizeof(digit));
+    memset(state->hints, 0, o3);
+    memset(state->flags, 0, o2 * sizeof(unsigned int));
+
+    return state;
+}
+
+static game_state *dup_game(game_state *state)
+{
+    game_state *ret = blank_game(state->order);
+    int o2 = state->order*state->order, o3 = o2*state->order;
+
+    memcpy(ret->nums, state->nums, o2 * sizeof(digit));
+    memcpy(ret->hints, state->hints, o3);
+    memcpy(ret->flags, state->flags, o2 * sizeof(unsigned int));
+
+    return ret;
+}
+
+static void free_game(game_state *state)
+{
+    sfree(state->nums);
+    sfree(state->hints);
+    sfree(state->flags);
+    sfree(state);
+}
+
+#define CHECKG(x,y) grid[(y)*o+(x)]
+
+/* Returns 0 if it finds an error, 1 otherwise. */
+static int check_gt(digit *grid, game_state *state,
+                    int x, int y, int dx, int dy)
+{
+    int o = state->order;
+    int n = CHECKG(x,y), dn = CHECKG(x+dx, y+dy);
+
+    assert(n != 0);
+    if (dn == 0) return 1;
+
+    if (n <= dn) {
+        debug(("check_gt error (%d,%d) (%d,%d)", x, y, x+dx, y+dy));
+        return 0;
+    }
+    return 1;
+}
+
+/* Returns 0 if it finds an error, 1 otherwise. */
+static int check_num_gt(digit *grid, game_state *state,
+                        int x, int y, int me)
+{
+    unsigned int f = GRID(state, flags, x, y);
+    int ret = 1, i;
+
+    for (i = 0; i < 4; i++) {
+        if ((f & gtthan[i].f) &&
+            !check_gt(grid, state, x, y, gtthan[i].dx, gtthan[i].dy)) {
+            if (me) GRID(state, flags, x, y) |= gtthan[i].fe;
+            ret = 0;
+        }
+    }
+    return ret;
+}
+
+/* Returns 0 if it finds an error, 1 otherwise. */
+static int check_num_error(digit *grid, game_state *state,
+                           int x, int y, int mark_errors)
+{
+    int o = state->order;
+    int xx, yy, val = CHECKG(x,y), ret = 1;
+
+    assert(val != 0);
+
+    /* check for dups in same column. */
+    for (yy = 0; yy < state->order; yy++) {
+        if (yy == y) continue;
+        if (CHECKG(x,yy) == val) ret = 0;
+    }
+
+    /* check for dups in same row. */
+    for (xx = 0; xx < state->order; xx++) {
+        if (xx == x) continue;
+        if (CHECKG(xx,y) == val) ret = 0;
+    }
+
+    if (!ret) {
+        debug(("check_num_error (%d,%d) duplicate %d", x, y, val));
+        if (mark_errors) GRID(state, flags, x, y) |= F_ERROR;
+    }
+    return ret;
+}
+
+/* Returns:     -1 for 'wrong'
+ *               0 for 'incomplete'
+ *               1 for 'complete and correct'
+ */
+static int check_complete(digit *grid, game_state *state, int mark_errors)
+{
+    int x, y, ret = 1, o = state->order;
+
+    if (mark_errors)
+        assert(grid == state->nums);
+
+    for (x = 0; x < state->order; x++) {
+        for (y = 0; y < state->order; y++) {
+            if (mark_errors)
+                GRID(state, flags, x, y) &= ~F_ERROR_MASK;
+            if (grid[y*o+x] == 0) {
+                ret = 0;
+            } else {
+                if (!check_num_error(grid, state, x, y, mark_errors)) ret = -1;
+                if (!check_num_gt(grid, state, x, y, mark_errors)) ret = -1;
+            }
+        }
+    }
+    if (ret == 1 && latin_check(grid, o))
+        ret = -1;
+    return ret;
+}
+
+static char n2c(digit n, int order) {
+    if (n == 0)         return ' ';
+    if (order < 10) {
+        if (n < 10)     return '0' + n;
+    } else {
+        if (n < 11)     return '0' + n-1;
+        n -= 11;
+        if (n <= 26)    return 'A' + n;
+    }
+    return '?';
+}
+
+/* should be 'digit', but includes -1 for 'not a digit'.
+ * Includes keypresses (0 especially) for interpret_move. */
+static int c2n(int c, int order) {
+    if (c < 0 || c > 0xff)
+        return -1;
+    if (c == ' ' || c == '\010' || c == '\177')
+        return 0;
+    if (order < 10) {
+        if (c >= '1' && c <= '9')
+            return (int)(c - '0');
+    } else {
+        if (c >= '0' && c <= '9')
+            return (int)(c - '0' + 1);
+        if (c >= 'A' && c <= 'Z')
+            return (int)(c - 'A' + 11);
+        if (c >= 'a' && c <= 'z')
+            return (int)(c - 'a' + 11);
+    }
+    return -1;
+}
+
+static char *game_text_format(game_state *state)
+{
+    int x, y, len, n;
+    char *ret, *p;
+
+    len = (state->order*2) * (state->order*2-1) + 1;
+    ret = snewn(len, char);
+    p = ret;
+
+    for (y = 0; y < state->order; y++) {
+        for (x = 0; x < state->order; x++) {
+            n = GRID(state, nums, x, y);
+            *p++ = n > 0 ? n2c(n, state->order) : '.';
+
+            if (x < (state->order-1)) {
+                if (GRID(state, flags, x, y) & F_GT_RIGHT)
+                    *p++ = '>';
+                else if (GRID(state, flags, x+1, y) & F_GT_LEFT)
+                    *p++ = '<';
+                else
+                    *p++ = ' ';
+            }
+        }
+        *p++ = '\n';
+
+        if (y < (state->order-1)) {
+            for (x = 0; x < state->order; x++) {
+                if (GRID(state, flags, x, y) & F_GT_DOWN)
+                    *p++ = 'v';
+                else if (GRID(state, flags, x, y+1) & F_GT_UP)
+                    *p++ = '^';
+                else
+                    *p++ = ' ';
+
+                if (x < state->order-1)
+                  *p++ = ' ';
+            }
+            *p++ = '\n';
+        }
+    }
+    *p++ = '\0';
+
+    assert(p - ret == len);
+    return ret;
+}
+
+#ifdef STANDALONE_SOLVER
+static void game_debug(game_state *state)
+{
+    char *dbg = game_text_format(state);
+    printf("%s", dbg);
+    sfree(dbg);
+}
+#endif
+
+/* ----------------------------------------------------------
+ * Solver.
+ */
+
+struct solver_link {
+    int len, gx, gy, lx, ly;
+};
+
+typedef struct game_solver {
+    struct latin_solver latin; /* keep first in struct! */
+
+    game_state *state;
+
+    int nlinks, alinks;
+    struct solver_link *links;
+} game_solver;
+
+#if 0
+static void solver_debug(game_solver *solver, int wide)
+{
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working) {
+        if (!wide)
+            game_debug(solver->state);
+        else
+            latin_solver_debug(solver->latin.cube, solver->latin.o);
+    }
+#endif
+}
+#endif
+
+static void solver_add_link(game_solver *solver,
+                            int gx, int gy, int lx, int ly, int len)
+{
+    if (solver->alinks < solver->nlinks+1) {
+        solver->alinks = solver->alinks*2 + 1;
+        /*debug(("resizing solver->links, new size %d", solver->alinks));*/
+        solver->links = sresize(solver->links, solver->alinks, struct solver_link);
+    }
+    solver->links[solver->nlinks].gx = gx;
+    solver->links[solver->nlinks].gy = gy;
+    solver->links[solver->nlinks].lx = lx;
+    solver->links[solver->nlinks].ly = ly;
+    solver->links[solver->nlinks].len = len;
+    solver->nlinks++;
+    /*debug(("Adding new link: len %d (%d,%d) < (%d,%d), nlinks now %d",
+           len, lx, ly, gx, gy, solver->nlinks));*/
+}
+
+static game_solver *new_solver(digit *grid, game_state *state)
+{
+    game_solver *solver = snew(game_solver);
+    int o = state->order;
+    int i, x, y;
+    unsigned int f;
+
+    latin_solver_alloc(&solver->latin, grid, o);
+
+    solver->nlinks = solver->alinks = 0;
+    solver->links = NULL;
+
+    for (x = 0; x < o; x++) {
+        for (y = 0; y < o; y++) {
+            f = GRID(state, flags, x, y);
+            for (i = 0; i < 4; i++) {
+                if (f & gtthan[i].f)
+                    solver_add_link(solver, x, y, x+gtthan[i].dx, y+gtthan[i].dy, 1);
+            }
+        }
+    }
+
+    return solver;
+}
+
+static void free_solver(game_solver *solver)
+{
+    if (solver->links) sfree(solver->links);
+    latin_solver_free(&solver->latin);
+    sfree(solver);
+}
+
+static void solver_nminmax(game_solver *usolver,
+                           int x, int y, int *min_r, int *max_r,
+                           unsigned char **ns_r)
+{
+    struct latin_solver *solver = &usolver->latin;
+    int o = usolver->latin.o, min = o, max = 0, n;
+    unsigned char *ns;
+
+    assert(x >= 0 && y >= 0 && x < o && y < o);
+
+    ns = solver->cube + cubepos(x,y,1);
+
+    if (grid(x,y) > 0) {
+        min = max = grid(x,y)-1;
+    } else {
+        for (n = 0; n < o; n++) {
+            if (ns[n]) {
+                if (n > max) max = n;
+                if (n < min) min = n;
+            }
+        }
+    }
+    if (min_r) *min_r = min;
+    if (max_r) *max_r = max;
+    if (ns_r) *ns_r = ns;
+}
+
+static int solver_links(game_solver *usolver)
+{
+    int i, j, lmin, gmax, nchanged = 0;
+    unsigned char *gns, *lns;
+    struct solver_link *link;
+    struct latin_solver *solver = &usolver->latin;
+
+    for (i = 0; i < usolver->nlinks; i++) {
+        link = &usolver->links[i];
+        solver_nminmax(usolver, link->gx, link->gy, NULL, &gmax, &gns);
+        solver_nminmax(usolver, link->lx, link->ly, &lmin, NULL, &lns);
+
+        for (j = 0; j < solver->o; j++) {
+            /* For the 'greater' end of the link, discount all numbers
+             * too small to satisfy the inequality. */
+            if (gns[j]) {
+                if (j < (lmin+link->len)) {
+#ifdef STANDALONE_SOLVER
+                    if (solver_show_working) {
+                        printf("%*slink elimination, (%d,%d) > (%d,%d):\n",
+                               solver_recurse_depth*4, "",
+                               link->gx, link->gy, link->lx, link->ly);
+                        printf("%*s  ruling out %d at (%d,%d)\n",
+                               solver_recurse_depth*4, "",
+                               j+1, link->gx, link->gy);
+                    }
+#endif
+                    cube(link->gx, link->gy, j+1) = FALSE;
+                    nchanged++;
+                }
+            }
+            /* For the 'lesser' end of the link, discount all numbers
+             * too large to satisfy inequality. */
+            if (lns[j]) {
+                if (j > (gmax-link->len)) {
+#ifdef STANDALONE_SOLVER
+                    if (solver_show_working) {
+                        printf("%*slink elimination, (%d,%d) > (%d,%d):\n",
+                               solver_recurse_depth*4, "",
+                               link->gx, link->gy, link->lx, link->ly);
+                        printf("%*s  ruling out %d at (%d,%d)\n",
+                               solver_recurse_depth*4, "",
+                               j+1, link->lx, link->ly);
+                    }
+#endif
+                    cube(link->lx, link->ly, j+1) = FALSE;
+                    nchanged++;
+                }
+            }
+        }
+    }
+    return nchanged;
+}
+
+static int solver_grid(digit *grid, int o, int maxdiff, void *ctx)
+{
+    game_state *state = (game_state *)ctx;
+    game_solver *solver;
+    struct latin_solver *lsolver;
+    struct latin_solver_scratch *scratch;
+    int ret, diff = DIFF_LATIN, extreme;
+
+    assert(maxdiff <= DIFF_RECURSIVE);
+
+    assert(state->order == o);
+    solver = new_solver(grid, state);
+
+    lsolver = &solver->latin;
+    scratch = latin_solver_new_scratch(lsolver);
+
+    while (1) {
+cont:
+        ret = latin_solver_diff_simple(lsolver);
+        if (ret < 0) {
+            diff = DIFF_IMPOSSIBLE;
+            goto got_result;
+        } else if (ret > 0) {
+            diff = max(diff, DIFF_LATIN);
+            goto cont;
+        }
+
+        if (maxdiff <= DIFF_LATIN)
+            break;
+
+        /* This bit is unequal-specific */
+        ret = solver_links(solver);
+        if (ret < 0) {
+            diff = DIFF_IMPOSSIBLE;
+            goto got_result;
+        } else if (ret > 0) {
+            diff = max(diff, DIFF_EASY);
+            goto cont;
+        }
+
+        if (maxdiff <= DIFF_EASY)
+            break;
+
+        ret = latin_solver_diff_set(lsolver, scratch, &extreme);
+        if (ret < 0) {
+            diff = DIFF_IMPOSSIBLE;
+            goto got_result;
+        } else if (ret > 0) {
+            diff = max(diff, extreme ? DIFF_EXTREME : DIFF_SET);
+            goto cont;
+        }
+
+        if (maxdiff <= DIFF_SET)
+            break;
+
+        /*
+         * Forcing chains.
+         */
+        if (latin_solver_forcing(lsolver, scratch)) {
+            diff = max(diff, DIFF_EXTREME);
+            goto cont;
+        }
+
+        /*
+         * If we reach here, we have made no deductions in this
+         * iteration, so the algorithm terminates.
+         */
+        break;
+    }
+    /*
+     * Last chance: if we haven't fully solved the puzzle yet, try
+     * recursing based on guesses for a particular square. We pick
+     * one of the most constrained empty squares we can find, which
+     * has the effect of pruning the search tree as much as
+     * possible.
+     */
+    if (maxdiff == DIFF_RECURSIVE) {
+        int nsol = latin_solver_recurse(lsolver, DIFF_RECURSIVE, solver_grid, ctx);
+        if (nsol < 0) diff = DIFF_IMPOSSIBLE;
+        else if (nsol == 1) diff = DIFF_RECURSIVE;
+        else if (nsol > 1) diff = DIFF_AMBIGUOUS;
+        /* if nsol == 0 then we were complete anyway
+         * (and thus don't need to change diff) */
+    } else {
+        int cc = check_complete(grid, state, 0);
+        if (cc == -1) diff = DIFF_IMPOSSIBLE;
+        if (cc == 0) diff = DIFF_UNFINISHED;
+    }
+
+got_result:
+
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working)
+        printf("%*s%s found\n",
+               solver_recurse_depth*4, "",
+               diff == DIFF_IMPOSSIBLE ? "no solution (impossible)" :
+               diff == DIFF_UNFINISHED ? "no solution (unfinished)" :
+               diff == DIFF_AMBIGUOUS ? "multiple solutions" :
+               "one solution");
+#endif
+
+    latin_solver_free_scratch(scratch);
+    memcpy(state->hints, solver->latin.cube, o*o*o);
+    free_solver(solver);
+
+    return diff;
+}
+
+static int solver_state(game_state *state, int maxdiff)
+{
+    int diff = solver_grid(state->nums, state->order, maxdiff, (void*)state);
+
+    if (diff == DIFF_IMPOSSIBLE)
+        return -1;
+    if (diff == DIFF_UNFINISHED)
+        return 0;
+    if (diff == DIFF_AMBIGUOUS)
+        return 2;
+    return 1;
+}
+
+static game_state *solver_hint(game_state *state, int *diff_r, int mindiff, int maxdiff)
+{
+    game_state *ret = dup_game(state);
+    int diff, r = 0;
+
+    for (diff = mindiff; diff <= maxdiff; diff++) {
+        r = solver_state(ret, diff);
+        debug(("solver_state after %s %d", unequal_diffnames[diff], r));
+        if (r != 0) goto done;
+    }
+
+done:
+    if (diff_r) *diff_r = (r > 0) ? diff : -1;
+    return ret;
+}
+
+/* ----------------------------------------------------------
+ * Game generation.
+ */
+
+static char *latin_desc(digit *sq, size_t order)
+{
+    int o2 = order*order, i;
+    char *soln = snewn(o2+2, char);
+
+    soln[0] = 'S';
+    for (i = 0; i < o2; i++)
+        soln[i+1] = n2c(sq[i], order);
+    soln[o2+1] = '\0';
+
+    return soln;
+}
+
+/* returns non-zero if it placed (or could have placed) clue. */
+static int gg_place_clue(game_state *state, int ccode, digit *latin, int checkonly)
+{
+    int loc = ccode / 5, which = ccode % 5;
+    int x = loc % state->order, y = loc / state->order;
+
+    assert(loc < state->order*state->order);
+
+    if (which == 4) {           /* add number */
+        if (state->nums[loc] != 0) {
+#ifdef STANDALONE_SOLVER
+            if (state->nums[loc] != latin[loc]) {
+                printf("inconsistency for (%d,%d): state %d latin %d\n",
+                       x, y, state->nums[loc], latin[loc]);
+            }
+#endif
+            assert(state->nums[loc] == latin[loc]);
+            return 0;
+        }
+        if (!checkonly) {
+            state->nums[loc] = latin[loc];
+        }
+    } else {                    /* add flag */
+        int lx, ly, lloc;
+
+        if (state->flags[loc] & gtthan[which].f)
+            return 0; /* already has flag. */
+
+        lx = x + gtthan[which].dx;
+        ly = y + gtthan[which].dy;
+        if (lx < 0 || ly < 0 || lx >= state->order || ly >= state->order)
+            return 0; /* flag compares to off grid */
+
+        lloc = loc + gtthan[which].dx + gtthan[which].dy*state->order;
+        if (latin[loc] <= latin[lloc])
+            return 0; /* flag would be incorrect */
+
+        if (!checkonly) {
+            state->flags[loc] |= gtthan[which].f;
+        }
+    }
+    return 1;
+}
+
+/* returns non-zero if it removed (or could have removed) the clue. */
+static int gg_remove_clue(game_state *state, int ccode, int checkonly)
+{
+    int loc = ccode / 5, which = ccode % 5;
+#ifdef STANDALONE_SOLVER
+    int x = loc % state->order, y = loc / state->order;
+#endif
+
+    assert(loc < state->order*state->order);
+
+    if (which == 4) {           /* remove number. */
+        if (state->nums[loc] == 0) return 0;
+        if (!checkonly) {
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working)
+                printf("gg_remove_clue: removing %d at (%d,%d)",
+                       state->nums[loc], x, y);
+#endif
+            state->nums[loc] = 0;
+        }
+    } else {                    /* remove flag */
+        if (!(state->flags[loc] & gtthan[which].f)) return 0;
+        if (!checkonly) {
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working)
+               printf("gg_remove_clue: removing %c at (%d,%d)",
+                       gtthan[which].c, x, y);
+#endif
+            state->flags[loc] &= ~gtthan[which].f;
+        }
+    }
+    return 1;
+}
+
+static int gg_best_clue(game_state *state, int *scratch, digit *latin)
+{
+    int ls = state->order * state->order * 5;
+    int maxposs = 0, minclues = 5, best = -1, i, j;
+    int nposs, nclues, loc, x, y;
+
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working) {
+        game_debug(state);
+        latin_solver_debug(state->hints, state->order);
+    }
+#endif
+
+    for (i = 0; i < ls; i++) {
+        if (!gg_place_clue(state, scratch[i], latin, 1)) continue;
+
+        loc = scratch[i] / 5;
+        x = loc % state->order; y = loc / state->order;
+        for (j = nposs = 0; j < state->order; j++) {
+            if (state->hints[loc*state->order + j]) nposs++;
+        }
+        for (j = nclues = 0; j < 4; j++) {
+            if (state->flags[loc] & gtthan[j].f) nclues++;
+        }
+        if ((nposs > maxposs) ||
+            (nposs == maxposs && nclues < minclues)) {
+            best = i; maxposs = nposs; minclues = nclues;
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working)
+                printf("gg_best_clue: b%d (%d,%d) new best [%d poss, %d clues].",
+                       best, x, y, nposs, nclues);
+#endif
+        }
+    }
+    /* if we didn't solve, we must have 1 clue to place! */
+    assert(best != -1);
+    return best;
+}
+
+#ifdef STANDALONE_SOLVER
+int maxtries;
+#define MAXTRIES maxtries
+#else
+#define MAXTRIES 50
+#endif
+int gg_solved;
+
+static int game_assemble(game_state *new, int *scratch, digit *latin,
+                         int difficulty)
+{
+    game_state *copy = dup_game(new);
+    int best;
+
+    if (difficulty >= DIFF_RECURSIVE) {
+        /* We mustn't use any solver that might guess answers;
+         * if it guesses wrongly but solves, gg_place_clue will
+         * get mighty confused. We will always trim clues down
+         * (making it more difficult) in game_strip, which doesn't
+         * have this problem. */
+        difficulty = DIFF_RECURSIVE-1;
+    }
+
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working) {
+        game_debug(new);
+        latin_solver_debug(new->hints, new->order);
+    }
+#endif
+
+    while(1) {
+        gg_solved++;
+        if (solver_state(copy, difficulty) == 1) break;
+
+        best = gg_best_clue(copy, scratch, latin);
+        gg_place_clue(new, scratch[best], latin, 0);
+        gg_place_clue(copy, scratch[best], latin, 0);
+    }
+    free_game(copy);
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working) {
+        char *dbg = game_text_format(new);
+        printf("game_assemble: done, %d solver iterations:\n%s\n", gg_solved, dbg);
+        sfree(dbg);
+    }
+#endif
+    return 0;
+}
+
+static void game_strip(game_state *new, int *scratch, digit *latin,
+                       int difficulty)
+{
+    int o = new->order, o2 = o*o, lscratch = o2*5, i;
+    game_state *copy = blank_game(new->order);
+
+    /* For each symbol (if it exists in new), try and remove it and
+     * solve again; if we couldn't solve without it put it back. */
+    for (i = 0; i < lscratch; i++) {
+        if (!gg_remove_clue(new, scratch[i], 0)) continue;
+
+        memcpy(copy->nums,  new->nums,  o2 * sizeof(digit));
+        memcpy(copy->flags, new->flags, o2 * sizeof(unsigned int));
+        gg_solved++;
+        if (solver_state(copy, difficulty) != 1) {
+            /* put clue back, we can't solve without it. */
+            assert(gg_place_clue(new, scratch[i], latin, 0) == 1);
+        } else {
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working)
+                printf("game_strip: clue was redundant.");
+#endif
+        }
+    }
+    free_game(copy);
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working) {
+        char *dbg = game_text_format(new);
+        debug(("game_strip: done, %d solver iterations.", gg_solved));
+        debug(("%s", dbg));
+        sfree(dbg);
+    }
+#endif
+}
+
+static char *new_game_desc(game_params *params, random_state *rs,
+			   char **aux, int interactive)
+{
+    digit *sq = NULL;
+    int i, x, y, retlen, k, nsol;
+    int o2 = params->order * params->order, ntries = 0;
+    int *scratch, lscratch = o2*5;
+    char *ret, buf[80];
+    game_state *state = blank_game(params->order);
+
+    /* Generate a list of 'things to strip' (randomised later) */
+    scratch = snewn(lscratch, int);
+    for (i = 0; i < lscratch; i++) scratch[i] = i;
+
+generate:
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working)
+        printf("new_game_desc: generating %s puzzle, ntries so far %d",
+               unequal_diffnames[params->diff], ntries);
+#endif
+    if (sq) sfree(sq);
+    sq = latin_generate(params->order, rs);
+    latin_debug(sq, params->order);
+    shuffle(scratch, lscratch, sizeof(int), rs);
+
+    memset(state->nums, 0, o2 * sizeof(digit));
+    memset(state->flags, 0, o2 * sizeof(unsigned int));
+
+    gg_solved = 0;
+    if (game_assemble(state, scratch, sq, params->diff) < 0)
+        goto generate;
+    game_strip(state, scratch, sq, params->diff);
+
+    if (params->diff > 0) {
+        game_state *copy = dup_game(state);
+        nsol = solver_state(copy, params->diff-1);
+        free_game(copy);
+        if (nsol > 0) {
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working)
+                printf("game_assemble: puzzle as generated is too easy.");
+#endif
+            if (ntries < MAXTRIES) {
+                ntries++;
+                goto generate;
+            }
+#ifdef STANDALONE_SOLVER
+            if (solver_show_working)
+                printf("Unable to generate %s %dx%d after %d attempts.",
+                       unequal_diffnames[params->diff],
+                       params->order, params->order, MAXTRIES);
+#endif
+            params->diff--;
+        }
+    }
+#ifdef STANDALONE_SOLVER
+    if (solver_show_working)
+        printf("new_game_desc: generated %s puzzle; %d attempts (%d solver).",
+               unequal_diffnames[params->diff], ntries, gg_solved);
+#endif
+
+    ret = NULL; retlen = 0;
+    for (y = 0; y < params->order; y++) {
+        for (x = 0; x < params->order; x++) {
+            unsigned int f = GRID(state, flags, x, y);
+            k = sprintf(buf, "%d%s%s%s%s,",
+                        GRID(state, nums, x, y),
+                        (f & F_GT_UP)    ? "U" : "",
+                        (f & F_GT_RIGHT) ? "R" : "",
+                        (f & F_GT_DOWN)  ? "D" : "",
+                        (f & F_GT_LEFT)  ? "L" : "");
+
+            ret = sresize(ret, retlen + k + 1, char);
+            strcpy(ret + retlen, buf);
+            retlen += k;
+        }
+    }
+    *aux = latin_desc(sq, params->order);
+
+    free_game(state);
+    sfree(sq);
+    sfree(scratch);
+
+    return ret;
+}
+
+static game_state *load_game(game_params *params, char *desc,
+                             char **why_r)
+{
+    game_state *state = blank_game(params->order);
+    char *p = desc;
+    int i = 0, n, o = params->order, x, y;
+    char *why = NULL;
+
+    while (*p) {
+        while (*p >= 'a' && *p <= 'z') {
+            i += *p - 'a' + 1;
+            p++;
+        }
+        if (i >= o*o) {
+            why = "Too much data to fill grid"; goto fail;
+        }
+
+        if (*p < '0' && *p > '9') {
+            why = "Expecting number in game description"; goto fail;
+        }
+        n = atoi(p);
+        if (n < 0 || n > o) {
+            why = "Out-of-range number in game description"; goto fail;
+        }
+        state->nums[i] = (digit)n;
+        while (*p >= '0' && *p <= '9') p++; /* skip number */
+
+        if (state->nums[i] != 0)
+            state->flags[i] |= F_IMMUTABLE; /* === number set by game description */
+
+        while (*p == 'U' || *p == 'R' || *p == 'D' || *p == 'L') {
+            switch (*p) {
+            case 'U': state->flags[i] |= F_GT_UP;    break;
+            case 'R': state->flags[i] |= F_GT_RIGHT; break;
+            case 'D': state->flags[i] |= F_GT_DOWN;  break;
+            case 'L': state->flags[i] |= F_GT_LEFT;  break;
+            default: why = "Expecting flag URDL in game description"; goto fail;
+            }
+            p++;
+        }
+        i++;
+        if (i < o*o && *p != ',') {
+            why = "Missing separator"; goto fail;
+        }
+        if (*p == ',') p++;
+    }
+    if (i < o*o) {
+        why = "Not enough data to fill grid"; goto fail;
+    }
+    i = 0;
+    for (y = 0; y < o; y++) {
+        for (x = 0; x < o; x++) {
+            for (n = 0; n < 4; n++) {
+                if (GRID(state, flags, x, y) & gtthan[n].f) {
+                    int nx = x + gtthan[n].dx;
+                    int ny = y + gtthan[n].dy;
+                    /* a flag must not point us off the grid. */
+                    if (nx < 0 || ny < 0 || nx >= o || ny >= o) {
+                        why = "Flags go off grid"; goto fail;
+                    }
+                    /* if one cell is GT another, the other must not also
+                     * be GT the first. */
+                    if (GRID(state, flags, nx, ny) & gtthan[n].fo) {
+                        why = "Flags contradicting each other"; goto fail;
+                    }
+                }
+            }
+        }
+    }
+
+    return state;
+
+fail:
+    free_game(state);
+    if (why_r) *why_r = why;
+    return NULL;
+}
+
+static game_state *new_game(midend *me, game_params *params, char *desc)
+{
+    game_state *state = load_game(params, desc, NULL);
+    if (!state) {
+        assert("Unable to load ?validated game.");
+        return NULL;
+    }
+    return state;
+}
+
+static char *validate_desc(game_params *params, char *desc)
+{
+    char *why = NULL;
+    game_state *dummy = load_game(params, desc, &why);
+    if (dummy) {
+        free_game(dummy);
+        assert(!why);
+    } else
+        assert(why);
+    return why;
+}
+
+static char *solve_game(game_state *state, game_state *currstate,
+			char *aux, char **error)
+{
+    game_state *solved;
+    int r;
+    char *ret = NULL;
+
+    if (aux) return dupstr(aux);
+
+    solved = dup_game(state);
+    for (r = 0; r < state->order*state->order; r++) {
+        if (!(solved->flags[r] & F_IMMUTABLE))
+            solved->nums[r] = 0;
+    }
+    r = solver_state(solved, DIFFCOUNT);
+    if (r > 0) ret = latin_desc(solved->nums, solved->order);
+    free_game(solved);
+    return ret;
+}
+
+/* ----------------------------------------------------------
+ * Game UI input processing.
+ */
+
+struct game_ui {
+    int hx, hy, hpencil;        /* as for solo.c, highlight pos and type */
+    int cx, cy;                 /* cursor position (-1,-1 for none) */
+};
+
+static game_ui *new_ui(game_state *state)
+{
+    game_ui *ui = snew(game_ui);
+
+    ui->hx = ui->hy = -1;
+    ui->hpencil = 0;
+
+    ui->cx = ui->cy = -1;
+
+    return ui;
+}
+
+static void free_ui(game_ui *ui)
+{
+    sfree(ui);
+}
+
+static char *encode_ui(game_ui *ui)
+{
+    return NULL;
+}
+
+static void decode_ui(game_ui *ui, char *encoding)
+{
+}
+
+static void game_changed_state(game_ui *ui, game_state *oldstate,
+                               game_state *newstate)
+{
+    /* See solo.c; if we were pencil-mode highlighting and
+     * somehow a square has just been properly filled, cancel
+     * pencil mode. */
+    if (ui->hx >= 0 && ui->hy >= 0 && ui->hpencil &&
+        GRID(newstate, nums, ui->hx, ui->hy) != 0) {
+        ui->hx = ui->hy = -1;
+    }
+}
+
+struct game_drawstate {
+    int tilesize, order, started;
+    digit *nums;                  /* copy of nums, o^2 */
+    unsigned char *hints;                 /* copy of hints, o^3 */
+    unsigned int *flags;        /* o^2 */
+
+    int hx, hy, hpencil;
+    int cx, cy;
+    int hflash;
+};
+
+static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
+			    int ox, int oy, int button)
+{
+    int x = FROMCOORD(ox), y = FROMCOORD(oy), n;
+    char buf[80];
+
+    button &= ~MOD_MASK;
+
+    if (x >= 0 && x < ds->order && y >= 0 && y < ds->order) {
+        if (button == LEFT_BUTTON) {
+            /* normal highlighting for non-immutable squares */
+            if (GRID(state, flags, x, y) & F_IMMUTABLE)
+                ui->hx = ui->hy = -1;
+            else if (x == ui->hx && y == ui->hy && ui->hpencil == 0)
+                ui->hx = ui->hy = -1;
+            else {
+                ui->hx = x; ui->hy = y; ui->hpencil = 0;
+            }
+            return "";
+        }
+        if (button == RIGHT_BUTTON) {
+            /* pencil highlighting for non-filled squares */
+            if (GRID(state, nums, x, y) != 0)
+                ui->hx = ui->hy = -1;
+            else if (x == ui->hx && y == ui->hy && ui->hpencil)
+                ui->hx = ui->hy = -1;
+            else {
+                ui->hx = x; ui->hy = y; ui->hpencil = 1;
+            }
+            return "";
+        }
+    }
+    if (button == 'H' || button == 'h')
+        return dupstr("H");
+
+    if (ui->hx != -1 && ui->hy != -1) {
+        debug(("button %d, cbutton %d", button, (int)((char)button)));
+        n = c2n(button, state->order);
+
+        debug(("n %d, h (%d,%d) p %d flags 0x%x nums %d",
+               n, ui->hx, ui->hy, ui->hpencil,
+               GRID(state, flags, ui->hx, ui->hy),
+               GRID(state, nums, ui->hx, ui->hy)));
+
+        if (n < 0 || n > ds->order)
+            return NULL;        /* out of range */
+        if (GRID(state, flags, ui->hx, ui->hy) & F_IMMUTABLE)
+            return NULL;        /* can't edit immutable square (!) */
+        if (ui->hpencil && GRID(state, nums, ui->hx, ui->hy) > 0)
+            return NULL;        /* can't change hints on filled square (!) */
+
+
+        sprintf(buf, "%c%d,%d,%d",
+                (char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
+
+        ui->hx = ui->hy = -1;
+
+        return dupstr(buf);
+    }
+    return NULL;
+}
+
+static game_state *execute_move(game_state *state, char *move)
+{
+    game_state *ret = NULL;
+    int x, y, n, i;
+
+    debug(("execute_move: %s", move));
+
+    if ((move[0] == 'P' || move[0] == 'R') &&
+        sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
+        x >= 0 && x < state->order && y >= 0 && y < state->order &&
+        n >= 0 && n <= state->order) {
+        ret = dup_game(state);
+        if (move[0] == 'P' && n > 0)
+            HINT(ret, x, y, n-1) = !HINT(ret, x, y, n-1);
+        else {
+            GRID(ret, nums, x, y) = n;
+            for (i = 0; i < state->order; i++)
+                HINT(ret, x, y, i) = 0;
+
+            /* real change to grid; check for completion */
+            if (!ret->completed && check_complete(ret->nums, ret, 1) > 0)
+                ret->completed = TRUE;
+        }
+        return ret;
+    } else if (move[0] == 'S') {
+        char *p;
+
+        ret = dup_game(state);
+        ret->completed = ret->cheated = TRUE;
+
+        p = move+1;
+        for (i = 0; i < state->order*state->order; i++) {
+            n = c2n((int)*p, state->order);
+            if (!*p || n <= 0 || n > state->order)
+                goto badmove;
+            ret->nums[i] = n;
+            p++;
+        }
+        if (*p) goto badmove;
+        assert(check_complete(ret->nums, ret, 1) > 0);
+        return ret;
+    } else if (move[0] == 'H') {
+        return solver_hint(state, NULL, DIFF_EASY, DIFF_EASY);
+    }
+
+badmove:
+    if (ret) free_game(ret);
+    return NULL;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing/printing routines.
+ */
+
+#define DRAW_SIZE (TILE_SIZE*ds->order + GAP_SIZE*(ds->order-1) + BORDER*2)
+
+static void game_compute_size(game_params *params, int tilesize,
+			      int *x, int *y)
+{
+    /* Ick: fake up `ds->tilesize' for macro expansion purposes */
+    struct { int tilesize, order; } ads, *ds = &ads;
+    ads.tilesize = tilesize;
+    ads.order = params->order;
+
+    *x = *y = DRAW_SIZE;
+}
+
+static void game_set_size(drawing *dr, game_drawstate *ds,
+			  game_params *params, int tilesize)
+{
+    ds->tilesize = tilesize;
+}
+
+static float *game_colours(frontend *fe, int *ncolours)
+{
+    float *ret = snewn(3 * NCOLOURS, float);
+    int i;
+
+    game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
+
+    for (i = 0; i < 3; i++) {
+        ret[COL_TEXT * 3 + i] = 0.0F;
+        ret[COL_GRID * 3 + i] = 0.5F;
+    }
+
+    /* Lots of these were taken from solo.c. */
+    ret[COL_GUESS * 3 + 0] = 0.0F;
+    ret[COL_GUESS * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_GUESS * 3 + 2] = 0.0F;
+
+    ret[COL_ERROR * 3 + 0] = 1.0F;
+    ret[COL_ERROR * 3 + 1] = 0.0F;
+    ret[COL_ERROR * 3 + 2] = 0.0F;
+
+    ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
+
+    *ncolours = NCOLOURS;
+    return ret;
+}
+
+static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
+{
+    struct game_drawstate *ds = snew(struct game_drawstate);
+    int o2 = state->order*state->order, o3 = o2*state->order;
+
+    ds->tilesize = 0;
+    ds->order = state->order;
+
+    ds->nums = snewn(o2, digit);
+    ds->hints = snewn(o3, unsigned char);
+    ds->flags = snewn(o2, unsigned int);
+    memset(ds->nums, 0, o2*sizeof(digit));
+    memset(ds->hints, 0, o3);
+    memset(ds->flags, 0, o2*sizeof(unsigned int));
+
+    ds->hx = ds->hy = ds->cx = ds->cy = -1;
+    ds->started = ds->hpencil = ds->hflash = 0;
+
+    return ds;
+}
+
+static void game_free_drawstate(drawing *dr, game_drawstate *ds)
+{
+    sfree(ds->nums);
+    sfree(ds->hints);
+    sfree(ds->flags);
+    sfree(ds);
+}
+
+static void draw_gt(drawing *dr, int ox, int oy,
+                    int dx1, int dy1, int dx2, int dy2, int col)
+{
+    draw_line(dr, ox, oy, ox+dx1, oy+dy1, col);
+    draw_line(dr, ox+dx1, oy+dy1, ox+dx1+dx2, oy+dy1+dy2, col);
+}
+
+static void draw_gts(drawing *dr, game_drawstate *ds, int ox, int oy,
+                     unsigned int f, int col, int needsupdate)
+{
+    int g = GAP_SIZE, g2 = (g+1)/2, g4 = (g+1)/4;
+
+    if (f & F_GT_UP) {
+        draw_gt(dr, ox+g2, oy-g4, g2, -g2, g2, g2,
+               (f & F_ERROR_UP) ? COL_ERROR : col);
+        if (needsupdate) draw_update(dr, ox, oy-g, TILE_SIZE, g);
+    }
+    if (f & F_GT_RIGHT) {
+        draw_gt(dr, ox+TILE_SIZE+g4, oy+g2, g2, g2, -g2, g2,
+                (f & F_ERROR_RIGHT) ? COL_ERROR : col);
+        if (needsupdate) draw_update(dr, ox+TILE_SIZE, oy, g, TILE_SIZE);
+    }
+    if (f & F_GT_DOWN) {
+        draw_gt(dr, ox+g2, oy+TILE_SIZE+g4, g2, g2, g2, -g2,
+               (f & F_ERROR_DOWN) ? COL_ERROR : col);
+        if (needsupdate) draw_update(dr, ox, oy+TILE_SIZE, TILE_SIZE, g);
+    }
+    if (f & F_GT_LEFT) {
+        draw_gt(dr, ox-g4, oy+g2, -g2, g2, g2, g2,
+                (f & F_ERROR_LEFT) ? COL_ERROR : col);
+        if (needsupdate) draw_update(dr, ox-g, oy, g, TILE_SIZE);
+    }
+}
+
+static void draw_furniture(drawing *dr, game_drawstate *ds, game_state *state,
+                           game_ui *ui, int x, int y, int hflash)
+{
+    int ox = COORD(x), oy = COORD(y), bg, hon, con;
+    unsigned int f = GRID(state, flags, x, y);
+
+    bg = hflash ? COL_HIGHLIGHT : COL_BACKGROUND;
+
+    hon = (x == ui->hx && y == ui->hy);
+    con = (x == ui->cx && y == ui->cy);
+
+    /* Clear square. */
+    draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE,
+              (hon && !ui->hpencil) ? COL_HIGHLIGHT : bg);
+
+    /* Draw the highlight (pencil or full), if we're the highlight */
+    if (hon && ui->hpencil) {
+        int coords[6];
+        coords[0] = ox;
+        coords[1] = oy;
+        coords[2] = ox + TILE_SIZE/2;
+        coords[3] = oy;
+        coords[4] = ox;
+        coords[5] = oy + TILE_SIZE/2;
+        draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
+    }
+
+    /* Draw the square outline (which is the cursor, if we're the cursor). */
+    draw_rect_outline(dr, ox, oy, TILE_SIZE, TILE_SIZE,
+                      con ? COL_GUESS : COL_GRID);
+
+    draw_update(dr, ox, oy, TILE_SIZE, TILE_SIZE);
+
+    /* Draw the GT signs. */
+    draw_gts(dr, ds, ox, oy, f, COL_TEXT, 1);
+}
+
+static void draw_num(drawing *dr, game_drawstate *ds, int x, int y)
+{
+    int ox = COORD(x), oy = COORD(y);
+    unsigned int f = GRID(ds,flags,x,y);
+    char str[2];
+
+    /* (can assume square has just been cleared) */
+
+    /* Draw number, choosing appropriate colour */
+    str[0] = n2c(GRID(ds, nums, x, y), ds->order);
+    str[1] = '\0';
+    draw_text(dr, ox + TILE_SIZE/2, oy + TILE_SIZE/2,
+              FONT_VARIABLE, 3*TILE_SIZE/4, ALIGN_VCENTRE | ALIGN_HCENTRE,
+              (f & F_IMMUTABLE) ? COL_TEXT : (f & F_ERROR) ? COL_ERROR : COL_GUESS, str);
+}
+
+static void draw_hints(drawing *dr, game_drawstate *ds, int x, int y)
+{
+    int ox = COORD(x), oy = COORD(y);
+    int nhints, i, j, hw, hh, hmax, fontsz;
+    char str[2];
+
+    /* (can assume square has just been cleared) */
+
+    /* Draw hints; steal ingenious algorithm (basically)
+     * from solo.c:draw_number() */
+    for (i = nhints = 0; i < ds->order; i++) {
+        if (HINT(ds, x, y, i)) nhints++;
+    }
+
+    for (hw = 1; hw * hw < nhints; hw++);
+    if (hw < 3) hw = 3;
+    hh = (nhints + hw - 1) / hw;
+    if (hh < 2) hh = 2;
+    hmax = max(hw, hh);
+    fontsz = TILE_SIZE/(hmax*(11-hmax)/8);
+
+    for (i = j = 0; i < ds->order; i++) {
+        if (HINT(ds,x,y,i)) {
+            int hx = j % hw, hy = j / hw;
+
+            str[0] = n2c(i+1, ds->order);
+            str[1] = '\0';
+            draw_text(dr,
+                      ox + (4*hx+3) * TILE_SIZE / (4*hw+2),
+                      oy + (4*hy+3) * TILE_SIZE / (4*hh+2),
+                      FONT_VARIABLE, fontsz,
+                      ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
+            j++;
+        }
+    }
+}
+
+static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
+			game_state *state, int dir, game_ui *ui,
+			float animtime, float flashtime)
+{
+    int x, y, i, hchanged = 0, cchanged = 0, stale, hflash = 0;
+
+    debug(("highlight old (%d,%d), new (%d,%d)", ds->hx, ds->hy, ui->hx, ui->hy));
+
+    if (flashtime > 0 &&
+        (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3))
+         hflash = 1;
+
+    if (!ds->started) {
+        draw_rect(dr, 0, 0, DRAW_SIZE, DRAW_SIZE, COL_BACKGROUND);
+        draw_update(dr, 0, 0, DRAW_SIZE, DRAW_SIZE);
+    }
+    if (ds->hx != ui->hx || ds->hy != ui->hy || ds->hpencil != ui->hpencil)
+        hchanged = 1;
+    if (ds->cx != ui->cx || ds->cy != ui->cy)
+        cchanged = 1;
+
+    for (x = 0; x < ds->order; x++) {
+        for (y = 0; y < ds->order; y++) {
+            if (!ds->started)
+                stale = 1;
+            else if (hflash != ds->hflash)
+                stale = 1;
+            else
+                stale = 0;
+
+            if (hchanged) {
+                if ((x == ui->hx && y == ui->hy) ||
+                    (x == ds->hx && y == ds->hy))
+                    stale = 1;
+            }
+            if (cchanged) {
+                if ((x == ui->cx && y == ui->cy) ||
+                    (x == ds->cx && y == ds->cy))
+                    stale = 1;
+            }
+
+            if (GRID(state, nums, x, y) != GRID(ds, nums, x, y)) {
+                GRID(ds, nums, x, y) = GRID(state, nums, x, y);
+                stale = 1;
+            }
+            if (GRID(state, flags, x, y) != GRID(ds, flags, x, y)) {
+                GRID(ds, flags, x, y) = GRID(state, flags, x, y);
+                stale = 1;
+            }
+            if (GRID(ds, nums, x, y) == 0) {
+                /* We're not a number square (therefore we might
+                 * display hints); do we need to update? */
+                for (i = 0; i < ds->order; i++) {
+                    if (HINT(state, x, y, i) != HINT(ds, x, y, i)) {
+                        HINT(ds, x, y, i) = HINT(state, x, y, i);
+                        stale = 1;
+                    }
+                }
+            }
+            if (stale) {
+                draw_furniture(dr, ds, state, ui, x, y, hflash);
+                if (GRID(ds, nums, x, y) > 0)
+                    draw_num(dr, ds, x, y);
+                else
+                    draw_hints(dr, ds, x, y);
+            }
+        }
+    }
+    ds->hx = ui->hx; ds->hy = ui->hy; ds->hpencil = ui->hpencil;
+    ds->cx = ui->cx; ds->cy = ui->cy;
+    ds->started = 1;
+    ds->hflash = hflash;
+}
+
+static float game_anim_length(game_state *oldstate, game_state *newstate,
+			      int dir, game_ui *ui)
+{
+    return 0.0F;
+}
+
+static float game_flash_length(game_state *oldstate, game_state *newstate,
+			       int dir, game_ui *ui)
+{
+    if (!oldstate->completed && newstate->completed &&
+        !oldstate->cheated && !newstate->cheated)
+        return FLASH_TIME;
+    return 0.0F;
+}
+
+static int game_timing_state(game_state *state, game_ui *ui)
+{
+    return TRUE;
+}
+
+static void game_print_size(game_params *params, float *x, float *y)
+{
+    int pw, ph;
+
+    /* 10mm squares by default, roughly the same as Grauniad. */
+    game_compute_size(params, 1000, &pw, &ph);
+    *x = pw / 100.0F;
+    *y = ph / 100.0F;
+}
+
+static void game_print(drawing *dr, game_state *state, int tilesize)
+{
+    int ink = print_mono_colour(dr, 0);
+    int x, y, o = state->order, ox, oy, n;
+    char str[2];
+
+    /* Ick: fake up `ds->tilesize' for macro expansion purposes */
+    game_drawstate ads, *ds = &ads;
+    game_set_size(dr, ds, NULL, tilesize);
+
+    print_line_width(dr, 2 * TILE_SIZE / 40);
+
+    /* Squares, numbers, gt signs */
+    for (y = 0; y < o; y++) {
+        for (x = 0; x < o; x++) {
+            ox = COORD(x); oy = COORD(y);
+            n = GRID(state, nums, x, y);
+
+            draw_rect_outline(dr, ox, oy, TILE_SIZE, TILE_SIZE, ink);
+
+            str[0] = n ? n2c(n, state->order) : ' ';
+            str[1] = '\0';
+            draw_text(dr, ox + TILE_SIZE/2, oy + TILE_SIZE/2,
+                      FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
+                      ink, str);
+
+            draw_gts(dr, ds, ox, oy, GRID(state, flags, x, y), ink, 1);
+        }
+    }
+}
+
+/* ----------------------------------------------------------------------
+ * Housekeeping.
+ */
+
+#ifdef COMBINED
+#define thegame unequal
+#endif
+
+const struct game thegame = {
+    "Unequal", "games.unequal", "unequal",
+    default_params,
+    game_fetch_preset,
+    decode_params,
+    encode_params,
+    free_params,
+    dup_params,
+    TRUE, game_configure, custom_params,
+    validate_params,
+    new_game_desc,
+    validate_desc,
+    new_game,
+    dup_game,
+    free_game,
+    TRUE, solve_game,
+    TRUE, game_text_format,
+    new_ui,
+    free_ui,
+    encode_ui,
+    decode_ui,
+    game_changed_state,
+    interpret_move,
+    execute_move,
+    PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
+    game_colours,
+    game_new_drawstate,
+    game_free_drawstate,
+    game_redraw,
+    game_anim_length,
+    game_flash_length,
+    TRUE, FALSE, game_print_size, game_print,
+    FALSE,			       /* wants_statusbar */
+    FALSE, game_timing_state,
+    0,				       /* flags */
+};
+
+/* ----------------------------------------------------------------------
+ * Standalone solver.
+ */
+
+#ifdef STANDALONE_SOLVER
+
+#include <time.h>
+#include <stdarg.h>
+
+const char *quis = NULL;
+
+#if 0 /* currently unused */
+
+static void debug_printf(char *fmt, ...)
+{
+    char buf[4096];
+    va_list ap;
+
+    va_start(ap, fmt);
+    vsprintf(buf, fmt, ap);
+    puts(buf);
+    va_end(ap);
+}
+
+static void game_printf(game_state *state)
+{
+    char *dbg = game_text_format(state);
+    printf("%s", dbg);
+    sfree(dbg);
+}
+
+static void game_printf_wide(game_state *state)
+{
+    int x, y, i, n;
+
+    for (y = 0; y < state->order; y++) {
+        for (x = 0; x < state->order; x++) {
+            n = GRID(state, nums, x, y);
+            for (i = 0; i < state->order; i++) {
+                if (n > 0)
+                    printf("%c", n2c(n, state->order));
+                else if (HINT(state, x, y, i))
+                    printf("%c", n2c(i+1, state->order));
+                else
+                    printf(".");
+            }
+            printf(" ");
+        }
+        printf("\n");
+    }
+    printf("\n");
+}
+
+#endif
+
+static void pdiff(int diff)
+{
+    if (diff == DIFF_IMPOSSIBLE)
+        printf("Game is impossible.\n");
+    else if (diff == DIFF_UNFINISHED)
+        printf("Game has incomplete.\n");
+    else if (diff == DIFF_AMBIGUOUS)
+        printf("Game has multiple solutions.\n");
+    else
+        printf("Game has difficulty %s.\n", unequal_diffnames[diff]);
+}
+
+static int solve(game_params *p, char *desc, int debug)
+{
+    game_state *st = new_game(NULL, p, desc);
+    int diff;
+
+    solver_show_working = debug;
+    game_debug(st);
+
+    diff = solver_grid(st->nums, st->order, DIFF_RECURSIVE, (void*)st);
+    if (debug) pdiff(diff);
+
+    game_debug(st);
+    free_game(st);
+    return diff;
+}
+
+static void check(game_params *p)
+{
+    char *msg = validate_params(p, 1);
+    if (msg) {
+        fprintf(stderr, "%s: %s", quis, msg);
+        exit(1);
+    }
+}
+
+static int gen(game_params *p, random_state *rs, int debug)
+{
+    char *desc, *aux;
+    int diff;
+
+    check(p);
+
+    solver_show_working = debug;
+    desc = new_game_desc(p, rs, &aux, 0);
+    diff = solve(p, desc, debug);
+    sfree(aux);
+    sfree(desc);
+
+    return diff;
+}
+
+static void soak(game_params *p, random_state *rs)
+{
+    time_t tt_start, tt_now, tt_last;
+    char *aux, *desc;
+    game_state *st;
+    int n = 0, neasy = 0, realdiff = p->diff;
+
+    check(p);
+
+    solver_show_working = 0;
+    maxtries = 1;
+
+    tt_start = tt_now = time(NULL);
+
+    printf("Soak-generating a %dx%d grid, difficulty %s.\n",
+           p->order, p->order, unequal_diffnames[p->diff]);
+
+    while (1) {
+        p->diff = realdiff;
+        desc = new_game_desc(p, rs, &aux, 0);
+        st = new_game(NULL, p, desc);
+        solver_state(st, DIFF_RECURSIVE);
+        free_game(st);
+        sfree(aux);
+        sfree(desc);
+
+        n++;
+        if (realdiff != p->diff) neasy++;
+
+        tt_last = time(NULL);
+        if (tt_last > tt_now) {
+            tt_now = tt_last;
+            printf("%d total, %3.1f/s; %d/%2.1f%% easy, %3.1f/s good.\n",
+                   n, (double)n / ((double)tt_now - tt_start),
+                   neasy, (double)neasy*100.0/(double)n,
+                   (double)(n - neasy) / ((double)tt_now - tt_start));
+        }
+    }
+}
+
+static void usage_exit(const char *msg)
+{
+    if (msg)
+        fprintf(stderr, "%s: %s\n", quis, msg);
+    fprintf(stderr, "Usage: %s [--seed SEED] --soak <params> | [game_id [game_id ...]]\n", quis);
+    exit(1);
+}
+
+int main(int argc, const char *argv[])
+{
+    random_state *rs;
+    time_t seed = time(NULL);
+    int do_soak = 0, diff;
+
+    game_params *p;
+
+    maxtries = 50;
+
+    quis = argv[0];
+    while (--argc > 0) {
+        const char *p = *++argv;
+        if (!strcmp(p, "--soak"))
+            do_soak = 1;
+        else if (!strcmp(p, "--seed")) {
+            if (argc == 0)
+                usage_exit("--seed needs an argument");
+            seed = (time_t)atoi(*++argv);
+            argc--;
+        } else if (*p == '-')
+            usage_exit("unrecognised option");
+        else
+            break;
+    }
+    rs = random_new((void*)&seed, sizeof(time_t));
+
+    if (do_soak == 1) {
+        if (argc != 1) usage_exit("only one argument for --soak");
+        p = default_params();
+        decode_params(p, *argv);
+        soak(p, rs);
+    } else if (argc > 0) {
+        int i;
+        for (i = 0; i < argc; i++) {
+            const char *id = *argv++;
+            char *desc = strchr(id, ':'), *err;
+            p = default_params();
+            if (desc) {
+                *desc++ = '\0';
+                decode_params(p, id);
+                err = validate_desc(p, desc);
+                if (err) {
+                    fprintf(stderr, "%s: %s\n", quis, err);
+                    exit(1);
+                }
+                solve(p, desc, 1);
+            } else {
+                decode_params(p, id);
+                diff = gen(p, rs, 1);
+            }
+        }
+    } else {
+        while(1) {
+            p = default_params();
+            p->order = random_upto(rs, 7) + 3;
+            p->diff = random_upto(rs, 4);
+            diff = gen(p, rs, 0);
+            pdiff(diff);
+        }
+    }
+
+    return 0;
+}
+
+#endif
+
+/* vim: set shiftwidth=4 tabstop=8: */