shithub: puzzles

Download patch

ref: 2bd8e241a93165a99f5e2c4a2dd9c3b3b1e3c6f3
parent: c8c576f68949ecab29c8250222983c2b9d2931f7
author: Simon Tatham <[email protected]>
date: Tue Aug 9 13:14:25 EDT 2005

Implement error checking in Slant. Clue points are now highlighted
in red if it's impossible to fulfill them (either through too many
neighbours connecting to them, or too many not connecting to them),
and edges are highlighted in red if they form part of a loop.

In order to do this I've had to revamp the redraw function
considerably. Each square is now drawn including its top and left
grid edges, but _not_ its bottom or right ones - which means that I
need to draw an extra strip of empty squares outside the actual grid
in order to draw the few pixels which appear on the grid bottom and
right borders and also to red-highlight border clues.

[originally from svn r6174]

--- a/slant.c
+++ b/slant.c
@@ -37,6 +37,7 @@
     COL_INK,
     COL_SLANT1,
     COL_SLANT2,
+    COL_ERROR,
     NCOLOURS
 };
 
@@ -75,14 +76,18 @@
 typedef struct game_clues {
     int w, h;
     signed char *clues;
-    int *dsf;			       /* scratch space for completion check */
+    signed char *tmpsoln;
     int refcount;
 } game_clues;
 
+#define ERR_VERTEX 1
+#define ERR_SQUARE 2
+
 struct game_state {
     struct game_params p;
     game_clues *clues;
     signed char *soln;
+    unsigned char *errors;
     int completed;
     int used_solve;		       /* used to suppress completion flash */
 };
@@ -1109,6 +1114,8 @@
     state->soln = snewn(w*h, signed char);
     memset(state->soln, 0, w*h);
     state->completed = state->used_solve = FALSE;
+    state->errors = snewn(W*H, unsigned char);
+    memset(state->errors, 0, W*H);
 
     state->clues = snew(game_clues);
     state->clues->w = w;
@@ -1115,7 +1122,7 @@
     state->clues->h = h;
     state->clues->clues = snewn(W*H, signed char);
     state->clues->refcount = 1;
-    state->clues->dsf = snewn(W*H, int);
+    state->clues->tmpsoln = snewn(w*h, signed char);
     memset(state->clues->clues, -1, W*H);
     while (*desc) {
         int n = *desc++;
@@ -1133,7 +1140,7 @@
 
 static game_state *dup_game(game_state *state)
 {
-    int w = state->p.w, h = state->p.h;
+    int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
     game_state *ret = snew(game_state);
 
     ret->p = state->p;
@@ -1145,84 +1152,165 @@
     ret->soln = snewn(w*h, signed char);
     memcpy(ret->soln, state->soln, w*h);
 
+    ret->errors = snewn(W*H, unsigned char);
+    memcpy(ret->errors, state->errors, W*H);
+
     return ret;
 }
 
 static void free_game(game_state *state)
 {
+    sfree(state->errors);
     sfree(state->soln);
     assert(state->clues);
     if (--state->clues->refcount <= 0) {
         sfree(state->clues->clues);
-        sfree(state->clues->dsf);
+        sfree(state->clues->tmpsoln);
         sfree(state->clues);
     }
     sfree(state);
 }
 
+/*
+ * Utility function to return the current degree of a vertex. If
+ * `anti' is set, it returns the number of filled-in edges
+ * surrounding the point which _don't_ connect to it; thus 4 minus
+ * its anti-degree is the maximum degree it could have if all the
+ * empty spaces around it were filled in.
+ * 
+ * (Yes, _4_ minus its anti-degree even if it's a border vertex.)
+ * 
+ * If ret > 0, *sx and *sy are set to the coordinates of one of the
+ * squares that contributed to it.
+ */
+static int vertex_degree(int w, int h, signed char *soln, int x, int y,
+                         int anti, int *sx, int *sy)
+{
+    int ret = 0;
+
+    assert(x >= 0 && x <= w && y >= 0 && y <= h);
+    if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] - anti < 0) {
+        if (sx) *sx = x-1;
+        if (sy) *sy = y-1;
+        ret++;
+    }
+    if (x > 0 && y < h && soln[y*w+(x-1)] + anti > 0) {
+        if (sx) *sx = x-1;
+        if (sy) *sy = y;
+        ret++;
+    }
+    if (x < w && y > 0 && soln[(y-1)*w+x] + anti > 0) {
+        if (sx) *sx = x;
+        if (sy) *sy = y-1;
+        ret++;
+    }
+    if (x < w && y < h && soln[y*w+x] - anti < 0) {
+        if (sx) *sx = x;
+        if (sy) *sy = y;
+        ret++;
+    }
+
+    return anti ? 4 - ret : ret;
+}
+
 static int check_completion(game_state *state)
 {
     int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
-    int i, x, y;
+    int x, y, err = FALSE;
+    signed char *ts;
 
+    memset(state->errors, 0, W*H);
+
     /*
-     * Establish a disjoint set forest for tracking connectedness
-     * between grid points. Use the dsf scratch space in the shared
-     * clues structure, to avoid mallocing too often.
+     * An easy way to do loop checking would be by means of the
+     * same dsf technique we've used elsewhere (loop over all edges
+     * in the grid, joining vertices together into equivalence
+     * classes when connected by an edge, and raise the alarm when
+     * an edge joins two already-equivalent vertices). However, a
+     * better approach is to repeatedly remove the single edge
+     * connecting to any degree-1 vertex, and then see if there are
+     * any edges left over; if so, precisely those edges are part
+     * of loops, which means we can highlight them as errors for
+     * the user.
+     * 
+     * We use the `tmpsoln' scratch space in the shared clues
+     * structure, to avoid mallocing too often.
      */
-    for (i = 0; i < W*H; i++)
-	state->clues->dsf[i] = i;      /* initially all distinct */
+    ts = state->clues->tmpsoln;
+    memcpy(ts, state->soln, w*h);
+    for (y = 0; y < H; y++)
+	for (x = 0; x < W; x++) {
+            int vx = x, vy = y;
+            int sx, sy;
+            /*
+             * Every time we disconnect a vertex like this, there
+             * is precisely one other vertex which might have
+             * become degree 1; so we follow the trail as far as it
+             * leads. This ensures that we don't have to make more
+             * than one loop over the grid, because whenever a
+             * degree-1 vertex comes into existence somewhere we've
+             * already looked, we immediately remove it again.
+             * Hence one loop over the grid is adequate; and
+             * moreover, this algorithm visits every vertex at most
+             * twice (once in the loop and possibly once more as a
+             * result of following a trail) so it has linear time
+             * in the area of the grid.
+             */
+            while (vertex_degree(w, h, ts, vx, vy, FALSE, &sx, &sy) == 1) {
+                ts[sy*w+sx] = 0;
+                vx = vx + 1 + (sx - vx) * 2;
+                vy = vy + 1 + (sy - vy) * 2;
+            }
+        }
 
     /*
-     * Now go through the grid checking connectedness. While we're
-     * here, also check that everything is filled in.
+     * Now mark any remaining edges with ERR_SQUARE.
      */
     for (y = 0; y < h; y++)
-	for (x = 0; x < w; x++) {
-	    int i1, i2;
+	for (x = 0; x < w; x++)
+            if (ts[y*w+x]) {
+                state->errors[y*W+x] |= ERR_SQUARE;
+                err = TRUE;
+            }
 
-	    if (state->soln[y*w+x] == 0)
-		return FALSE;
-	    if (state->soln[y*w+x] < 0) {
-		i1 = y*W+x;
-		i2 = (y+1)*W+(x+1);
-	    } else {
-		i1 = (y+1)*W+x;
-		i2 = y*W+(x+1);
-	    }
-
-	    /*
-	     * Our edge connects i1 with i2. If they're already
-	     * connected, return failure. Otherwise, link them.
-	     */
-	    if (dsf_canonify(state->clues->dsf, i1) ==
-		dsf_canonify(state->clues->dsf, i2))
-		return FALSE;
-	    else
-		dsf_merge(state->clues->dsf, i1, i2);
-	}
-
     /*
-     * The grid is _a_ valid grid; let's see if it matches the
-     * clues.
+     * Now go through and check the degree of each clue vertex, and
+     * mark it with ERR_VERTEX if it cannot be fulfilled.
      */
     for (y = 0; y < H; y++)
-	for (x = 0; x < W; x++) {
-	    int v, c;
+        for (x = 0; x < W; x++) {
+            int c;
 
 	    if ((c = state->clues->clues[y*W+x]) < 0)
 		continue;
 
-	    v = 0;
+            /*
+             * Check to see if there are too many connections to
+             * this vertex _or_ too many non-connections. Either is
+             * grounds for marking the vertex as erroneous.
+             */
+            if (vertex_degree(w, h, state->soln, x, y,
+                              FALSE, NULL, NULL) > c ||
+                vertex_degree(w, h, state->soln, x, y,
+                              TRUE, NULL, NULL) > 4-c) {
+                state->errors[y*W+x] |= ERR_VERTEX;
+                err = TRUE;
+            }
+        }
 
-	    if (x > 0 && y > 0 && state->soln[(y-1)*w+(x-1)] == -1) v++;
-	    if (x > 0 && y < h && state->soln[y*w+(x-1)] == +1) v++;
-	    if (x < w && y > 0 && state->soln[(y-1)*w+x] == +1) v++;
-	    if (x < w && y < h && state->soln[y*w+x] == -1) v++;
+    /*
+     * Now our actual victory condition is that (a) none of the
+     * above code marked anything as erroneous, and (b) every
+     * square has an edge in it.
+     */
 
-	    if (c != v)
+    if (err)
+        return FALSE;
+
+    for (y = 0; y < h; y++)
+	for (x = 0; x < w; x++)
+	    if (state->soln[y*w+x] == 0)
 		return FALSE;
-	}
 
     return TRUE;
 }
@@ -1370,27 +1458,30 @@
 /*
  * Bit fields in the `grid' and `todraw' elements of the drawstate.
  */
-#define BACKSLASH 0x0001
-#define FORWSLASH 0x0002
-#define L_T       0x0004
-#define L_B       0x0008
-#define T_L       0x0010
-#define T_R       0x0020
-#define R_T       0x0040
-#define R_B       0x0080
-#define B_L       0x0100
-#define B_R       0x0200
-#define C_TL      0x0400
-#define C_TR      0x0800
-#define C_BL      0x1000
-#define C_BR      0x2000
-#define FLASH     0x4000
+#define BACKSLASH 0x00000001L
+#define FORWSLASH 0x00000002L
+#define L_T       0x00000004L
+#define ERR_L_T   0x00000008L
+#define L_B       0x00000010L
+#define ERR_L_B   0x00000020L
+#define T_L       0x00000040L
+#define ERR_T_L   0x00000080L
+#define T_R       0x00000100L
+#define ERR_T_R   0x00000200L
+#define C_TL      0x00000400L
+#define ERR_C_TL  0x00000800L
+#define FLASH     0x00001000L
+#define ERRSLASH  0x00002000L
+#define ERR_TL    0x00004000L
+#define ERR_TR    0x00008000L
+#define ERR_BL    0x00010000L
+#define ERR_BR    0x00020000L
 
 struct game_drawstate {
     int tilesize;
     int started;
-    int *grid;
-    int *todraw;
+    long *grid;
+    long *todraw;
 };
 
 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
@@ -1486,8 +1577,12 @@
         }
     }
 
-    if (!ret->completed)
-	ret->completed = check_completion(ret);
+    /*
+     * We never clear the `completed' flag, but we must always
+     * re-run the completion check because it also highlights
+     * errors in the grid.
+     */
+    ret->completed = check_completion(ret) || ret->completed;
 
     return ret;
 }
@@ -1534,6 +1629,10 @@
     ret[COL_SLANT2 * 3 + 1] = 0.0F;
     ret[COL_SLANT2 * 3 + 2] = 0.0F;
 
+    ret[COL_ERROR * 3 + 0] = 1.0F;
+    ret[COL_ERROR * 3 + 1] = 0.0F;
+    ret[COL_ERROR * 3 + 2] = 0.0F;
+
     *ncolours = NCOLOURS;
     return ret;
 }
@@ -1546,9 +1645,9 @@
 
     ds->tilesize = 0;
     ds->started = FALSE;
-    ds->grid = snewn(w*h, int);
-    ds->todraw = snewn(w*h, int);
-    for (i = 0; i < w*h; i++)
+    ds->grid = snewn((w+2)*(h+2), long);
+    ds->todraw = snewn((w+2)*(h+2), long);
+    for (i = 0; i < (w+2)*(h+2); i++)
 	ds->grid[i] = ds->todraw[i] = -1;
 
     return ds;
@@ -1562,10 +1661,11 @@
 }
 
 static void draw_clue(frontend *fe, game_drawstate *ds,
-		      int x, int y, int v)
+		      int x, int y, int v, int err)
 {
     char p[2];
-    int col = ((x ^ y) & 1) ? COL_SLANT1 : COL_SLANT2;
+    int ccol = ((x ^ y) & 1) ? COL_SLANT1 : COL_SLANT2;
+    int tcol = err ? COL_ERROR : COL_INK;
 
     if (v < 0)
 	return;
@@ -1572,22 +1672,20 @@
 
     p[0] = v + '0';
     p[1] = '\0';
-    draw_circle(fe, COORD(x), COORD(y), CLUE_RADIUS, COL_BACKGROUND, col);
+    draw_circle(fe, COORD(x), COORD(y), CLUE_RADIUS, COL_BACKGROUND, ccol);
     draw_text(fe, COORD(x), COORD(y), FONT_VARIABLE,
-	      CLUE_TEXTSIZE, ALIGN_VCENTRE|ALIGN_HCENTRE,
-	      COL_INK, p);
+	      CLUE_TEXTSIZE, ALIGN_VCENTRE|ALIGN_HCENTRE, tcol, p);
 }
 
 static void draw_tile(frontend *fe, game_drawstate *ds, game_clues *clues,
 		      int x, int y, int v)
 {
-    int w = clues->w /*, h = clues->h*/, W = w+1 /*, H = h+1 */;
-    int xx, yy;
+    int w = clues->w, h = clues->h, W = w+1 /*, H = h+1 */;
     int chesscolour = (x ^ y) & 1;
     int fscol = chesscolour ? COL_SLANT2 : COL_SLANT1;
     int bscol = chesscolour ? COL_SLANT1 : COL_SLANT2;
 
-    clip(fe, COORD(x), COORD(y), TILESIZE+1, TILESIZE+1);
+    clip(fe, COORD(x), COORD(y), TILESIZE, TILESIZE);
 
     draw_rect(fe, COORD(x), COORD(y), TILESIZE, TILESIZE,
 	      (v & FLASH) ? COL_GRID : COL_BACKGROUND);
@@ -1595,26 +1693,40 @@
     /*
      * Draw the grid lines.
      */
-    draw_line(fe, COORD(x), COORD(y), COORD(x+1), COORD(y), COL_GRID);
-    draw_line(fe, COORD(x), COORD(y+1), COORD(x+1), COORD(y+1), COL_GRID);
-    draw_line(fe, COORD(x), COORD(y), COORD(x), COORD(y+1), COL_GRID);
-    draw_line(fe, COORD(x+1), COORD(y), COORD(x+1), COORD(y+1), COL_GRID);
+    if (x >= 0 && x < w && y >= 0)
+        draw_rect(fe, COORD(x), COORD(y), TILESIZE+1, 1, COL_GRID);
+    if (x >= 0 && x < w && y < h)
+        draw_rect(fe, COORD(x), COORD(y+1), TILESIZE+1, 1, COL_GRID);
+    if (y >= 0 && y < h && x >= 0)
+        draw_rect(fe, COORD(x), COORD(y), 1, TILESIZE+1, COL_GRID);
+    if (y >= 0 && y < h && x < w)
+        draw_rect(fe, COORD(x+1), COORD(y), 1, TILESIZE+1, COL_GRID);
+    if (x == -1 && y == -1)
+        draw_rect(fe, COORD(x+1), COORD(y+1), 1, 1, COL_GRID);
+    if (x == -1 && y == h)
+        draw_rect(fe, COORD(x+1), COORD(y), 1, 1, COL_GRID);
+    if (x == w && y == -1)
+        draw_rect(fe, COORD(x), COORD(y+1), 1, 1, COL_GRID);
+    if (x == w && y == h)
+        draw_rect(fe, COORD(x), COORD(y), 1, 1, COL_GRID);
 
     /*
      * Draw the slash.
      */
     if (v & BACKSLASH) {
-	draw_line(fe, COORD(x), COORD(y), COORD(x+1), COORD(y+1), bscol);
+        int scol = (v & ERRSLASH) ? COL_ERROR : bscol;
+	draw_line(fe, COORD(x), COORD(y), COORD(x+1), COORD(y+1), scol);
 	draw_line(fe, COORD(x)+1, COORD(y), COORD(x+1), COORD(y+1)-1,
-		  bscol);
+		  scol);
 	draw_line(fe, COORD(x), COORD(y)+1, COORD(x+1)-1, COORD(y+1),
-		  bscol);
+		  scol);
     } else if (v & FORWSLASH) {
-	draw_line(fe, COORD(x+1), COORD(y), COORD(x), COORD(y+1), fscol);
+        int scol = (v & ERRSLASH) ? COL_ERROR : fscol;
+	draw_line(fe, COORD(x+1), COORD(y), COORD(x), COORD(y+1), scol);
 	draw_line(fe, COORD(x+1)-1, COORD(y), COORD(x), COORD(y+1)-1,
-		  fscol);
+		  scol);
 	draw_line(fe, COORD(x+1), COORD(y)+1, COORD(x)+1, COORD(y+1),
-		  fscol);
+		  scol);
     }
 
     /*
@@ -1621,40 +1733,36 @@
      * Draw dots on the grid corners that appear if a slash is in a
      * neighbouring cell.
      */
-    if (v & L_T)
-	draw_rect(fe, COORD(x), COORD(y)+1, 1, 1, bscol);
-    if (v & L_B)
-	draw_rect(fe, COORD(x), COORD(y+1)-1, 1, 1, fscol);
-    if (v & R_T)
-	draw_rect(fe, COORD(x+1), COORD(y)+1, 1, 1, fscol);
-    if (v & R_B)
-	draw_rect(fe, COORD(x+1), COORD(y+1)-1, 1, 1, bscol);
-    if (v & T_L)
-	draw_rect(fe, COORD(x)+1, COORD(y), 1, 1, bscol);
-    if (v & T_R)
-	draw_rect(fe, COORD(x+1)-1, COORD(y), 1, 1, fscol);
-    if (v & B_L)
-	draw_rect(fe, COORD(x)+1, COORD(y+1), 1, 1, fscol);
-    if (v & B_R)
-	draw_rect(fe, COORD(x+1)-1, COORD(y+1), 1, 1, bscol);
-    if (v & C_TL)
-	draw_rect(fe, COORD(x), COORD(y), 1, 1, bscol);
-    if (v & C_TR)
-	draw_rect(fe, COORD(x+1), COORD(y), 1, 1, fscol);
-    if (v & C_BL)
-	draw_rect(fe, COORD(x), COORD(y+1), 1, 1, fscol);
-    if (v & C_BR)
-	draw_rect(fe, COORD(x+1), COORD(y+1), 1, 1, bscol);
+    if (v & (L_T | BACKSLASH))
+	draw_rect(fe, COORD(x), COORD(y)+1, 1, 1,
+                  (v & (ERR_L_T | ERRSLASH) ? COL_ERROR : bscol));
+    if (v & (L_B | FORWSLASH))
+	draw_rect(fe, COORD(x), COORD(y+1)-1, 1, 1,
+                  (v & (ERR_L_B | ERRSLASH) ? COL_ERROR : fscol));
+    if (v & (T_L | BACKSLASH))
+	draw_rect(fe, COORD(x)+1, COORD(y), 1, 1,
+                  (v & (ERR_T_L | ERRSLASH) ? COL_ERROR : bscol));
+    if (v & (T_R | FORWSLASH))
+	draw_rect(fe, COORD(x+1)-1, COORD(y), 1, 1,
+                  (v & (ERR_T_R | ERRSLASH) ? COL_ERROR : fscol));
+    if (v & (C_TL | BACKSLASH))
+	draw_rect(fe, COORD(x), COORD(y), 1, 1,
+                  (v & (ERR_C_TL | ERRSLASH) ? COL_ERROR : bscol));
 
     /*
      * And finally the clues at the corners.
      */
-    for (xx = x; xx <= x+1; xx++)
-	for (yy = y; yy <= y+1; yy++)
-	    draw_clue(fe, ds, xx, yy, clues->clues[yy*W+xx]);
+    if (x >= 0 && y >= 0)
+        draw_clue(fe, ds, x, y, clues->clues[y*W+x], v & ERR_TL);
+    if (x < w && y >= 0)
+        draw_clue(fe, ds, x+1, y, clues->clues[y*W+(x+1)], v & ERR_TR);
+    if (x >= 0 && y < h)
+        draw_clue(fe, ds, x, y+1, clues->clues[(y+1)*W+x], v & ERR_BL);
+    if (x < w && y < h)
+        draw_clue(fe, ds, x+1, y+1, clues->clues[(y+1)*W+(x+1)], v & ERR_BR);
 
     unclip(fe);
-    draw_update(fe, COORD(x), COORD(y), TILESIZE+1, TILESIZE+1);
+    draw_update(fe, COORD(x), COORD(y), TILESIZE, TILESIZE);
 }
 
 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
@@ -1675,20 +1783,6 @@
 	game_compute_size(&state->p, TILESIZE, &ww, &wh);
 	draw_rect(fe, 0, 0, ww, wh, COL_BACKGROUND);
 	draw_update(fe, 0, 0, ww, wh);
-
-	/*
-	 * Draw any clues on the very edges (since normal tile
-	 * redraw won't draw the bits outside the grid boundary).
-	 */
-	for (y = 0; y < H; y++) {
-	    draw_clue(fe, ds, 0, y, state->clues->clues[y*W+0]);
-	    draw_clue(fe, ds, w, y, state->clues->clues[y*W+w]);
-	}
-	for (x = 0; x < W; x++) {
-	    draw_clue(fe, ds, x, 0, state->clues->clues[0*W+x]);
-	    draw_clue(fe, ds, x, h, state->clues->clues[h*W+x]);
-	}
-
 	ds->started = TRUE;
     }
 
@@ -1697,52 +1791,60 @@
      * We need to do this because a slash in one square affects the
      * drawing of the next one along.
      */
-    for (y = 0; y < h; y++)
-	for (x = 0; x < w; x++)
-	    ds->todraw[y*w+x] = flashing ? FLASH : 0;
+    for (y = -1; y <= h; y++)
+	for (x = -1; x <= w; x++) {
+            if (x >= 0 && x < w && y >= 0 && y < h)
+                ds->todraw[(y+1)*(w+2)+(x+1)] = flashing ? FLASH : 0;
+            else
+                ds->todraw[(y+1)*(w+2)+(x+1)] = 0;
+        }
 
     for (y = 0; y < h; y++) {
 	for (x = 0; x < w; x++) {
+            int err = state->errors[y*W+x] & ERR_SQUARE;
+
 	    if (state->soln[y*w+x] < 0) {
-		ds->todraw[y*w+x] |= BACKSLASH;
-		if (x > 0)
-		    ds->todraw[y*w+(x-1)] |= R_T | C_TR;
-		if (x+1 < w)
-		    ds->todraw[y*w+(x+1)] |= L_B | C_BL;
-		if (y > 0)
-		    ds->todraw[(y-1)*w+x] |= B_L | C_BL;
-		if (y+1 < h)
-		    ds->todraw[(y+1)*w+x] |= T_R | C_TR;
-		if (x > 0 && y > 0)
-		    ds->todraw[(y-1)*w+(x-1)] |= C_BR;
-		if (x+1 < w && y+1 < h)
-		    ds->todraw[(y+1)*w+(x+1)] |= C_TL;
+		ds->todraw[(y+1)*(w+2)+(x+1)] |= BACKSLASH;
+                ds->todraw[(y+2)*(w+2)+(x+1)] |= T_R;
+                ds->todraw[(y+1)*(w+2)+(x+2)] |= L_B;
+                ds->todraw[(y+2)*(w+2)+(x+2)] |= C_TL;
+                if (err) {
+                    ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH;
+                    ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_R;
+                    ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_B;
+                    ds->todraw[(y+2)*(w+2)+(x+2)] |= ERR_C_TL;
+                }
 	    } else if (state->soln[y*w+x] > 0) {
-		ds->todraw[y*w+x] |= FORWSLASH;
-		if (x > 0)
-		    ds->todraw[y*w+(x-1)] |= R_B | C_BR;
-		if (x+1 < w)
-		    ds->todraw[y*w+(x+1)] |= L_T | C_TL;
-		if (y > 0)
-		    ds->todraw[(y-1)*w+x] |= B_R | C_BR;
-		if (y+1 < h)
-		    ds->todraw[(y+1)*w+x] |= T_L | C_TL;
-		if (x > 0 && y+1 < h)
-		    ds->todraw[(y+1)*w+(x-1)] |= C_TR;
-		if (x+1 < w && y > 0)
-		    ds->todraw[(y-1)*w+(x+1)] |= C_BL;
+		ds->todraw[(y+1)*(w+2)+(x+1)] |= FORWSLASH;
+                ds->todraw[(y+1)*(w+2)+(x+2)] |= L_T | C_TL;
+                ds->todraw[(y+2)*(w+2)+(x+1)] |= T_L | C_TL;
+                if (err) {
+                    ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH;
+                    ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_T | ERR_C_TL;
+                    ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_L | ERR_C_TL;
+                }
 	    }
 	}
     }
 
+    for (y = 0; y < H; y++)
+        for (x = 0; x < W; x++)
+            if (state->errors[y*W+x] & ERR_VERTEX) {
+                ds->todraw[y*(w+2)+x] |= ERR_BR;
+                ds->todraw[y*(w+2)+(x+1)] |= ERR_BL;
+                ds->todraw[(y+1)*(w+2)+x] |= ERR_TR;
+                ds->todraw[(y+1)*(w+2)+(x+1)] |= ERR_TL;
+            }
+
     /*
      * Now go through and draw the grid squares.
      */
-    for (y = 0; y < h; y++) {
-	for (x = 0; x < w; x++) {
-	    if (ds->todraw[y*w+x] != ds->grid[y*w+x]) {
-		draw_tile(fe, ds, state->clues, x, y, ds->todraw[y*w+x]);
-		ds->grid[y*w+x] = ds->todraw[y*w+x];
+    for (y = -1; y <= h; y++) {
+	for (x = -1; x <= w; x++) {
+	    if (ds->todraw[(y+1)*(w+2)+(x+1)] != ds->grid[(y+1)*(w+2)+(x+1)]) {
+		draw_tile(fe, ds, state->clues, x, y,
+                          ds->todraw[(y+1)*(w+2)+(x+1)]);
+		ds->grid[(y+1)*(w+2)+(x+1)] = ds->todraw[(y+1)*(w+2)+(x+1)];
 	    }
 	}
     }