ref: 6669ea8ed594d206d16171b7034125deeca6b806
parent: 909d29b906e31a14522bcd843743e742ef7a388a
author: Sigrid Solveig Haflínudóttir <[email protected]>
date: Thu Oct 24 15:42:00 EDT 2024
treewalk.c: Morris traversal using threading (pre-, in- and post-order)
--- a/README.md
+++ b/README.md
@@ -12,6 +12,7 @@
* `msr.c` MSR reading tool
* `nanosec.c` nanosec(), a replacement for (way more expensive) nsec()
* `qt.[ch]` [QP tries](https://dotat.at/prog/qp/README.html)
+* `treewalk.c` Morris traversal using threading (pre-, in- and post-order)
* `xml.[ch]` XML parser, works as a streaming parser as well
* `clear` removes all program output from the terminal, leaving only commands used
--- /dev/null
+++ b/treewalk.c
@@ -1,0 +1,189 @@
+/*
+ * Demonstrates how simple recursive traversing a non-balanced tree can
+ * eat your stack (fast). Demonstrates an iterative O(N) complexity +
+ * O(1) space traversal to be used instead if your tree may look like a
+ * very long stick.
+ *
+ * Read the code.
+ *
+ * 7c -FTVw treewalk.c && 7l treewalk.7 && ./7.out [options]
+ */
+#include <u.h>
+#include <libc.h>
+#include <thread.h>
+#include <bio.h>
+
+typedef struct Tree Tree;
+
+struct Tree {
+ int v;
+ Tree *left;
+ Tree *right;
+};
+
+enum {
+ PreOrder,
+ InOrder,
+ PostOrder,
+};
+
+static Biobuf *b;
+static int simple;
+static int mode = PreOrder;
+
+/*
+ * A tree that is on https://en.wikipedia.org/wiki/Tree_traversal#Depth-first_search
+ * (as of 2024/10/24). It's to verify the correctness with.
+ */
+static Tree stC = {'C'}, stE = {'E'}, stH = {'H'};
+static Tree stA = {'A'}, stD = {'D', &stC, &stE}, stI = {'I', &stH};
+static Tree stB = {'B', &stA, &stD}, stG = {'G', nil, &stI};
+static Tree st = {'F', &stB, &stG};
+
+static void
+visit(Tree *t)
+{
+ Bprint(b, simple ? "%c " : "%d\n", t->v);
+}
+
+/* nothing special here */
+static void
+walkrecursive(Tree *t)
+{
+ if(mode == PreOrder)
+ visit(t);
+ if(t->left)
+ walkrecursive(t->left);
+ if(mode == InOrder)
+ visit(t);
+ if(t->right)
+ walkrecursive(t->right);
+ if(mode == PostOrder)
+ visit(t);
+}
+
+/*
+* To morris-traverse in post-order we have to visit nodes in reverse
+* upon discovering an earlier created thread. This function flips the
+* subtree in-place, then visits each node while flipping the subtree
+* back to what it was. It still does not allocate any extra space.
+*/
+static void
+postwalk(Tree *a, Tree *b)
+{
+ Tree *v, *vr, *vr2;
+
+ if(a != b){
+ for(v = a, vr = v->right; vr != b; v = vr, vr = vr2){
+ vr2 = vr->right;
+ vr->right = v;
+ }
+ vr->right = v;
+ for(v = b, vr = v->right; vr != a; v = vr, vr = vr2){
+ visit(v);
+ vr2 = vr->right;
+ vr->right = v;
+ }
+ visit(v);
+ vr->right = v;
+ }
+ visit(a);
+}
+
+/* this one is more interesting */
+static void
+walkmorris(Tree *t)
+{
+ Tree *p, t0;
+
+ if(mode == PostOrder){
+ /* in post-order we need to have a fake root to return to */
+ t0.v = 'X';
+ t0.left = t;
+ t0.right = nil;
+ t = &t0;
+ }
+
+ for(; t ;){
+ if(t->left){
+ for(p = t->left; p->right && p->right != t; p = p->right);
+ if(p->right){
+ if(mode == InOrder)
+ visit(t);
+ else if(mode == PostOrder)
+ postwalk(t->left, p);
+ p->right = nil;
+ t = t->right;
+ }else{
+ if(mode == PreOrder)
+ visit(t);
+ p->right = t;
+ t = t->left;
+ }
+ }else{
+ if(mode != PostOrder)
+ visit(t);
+ t = t->right;
+ }
+ }
+}
+
+void
+threadmain(int argc, char **argv)
+{
+ Tree *t;
+ int n, i, num = 1<<16;
+ int nol, nor, morris;
+
+ nol = nor = simple = morris = 0;
+ ARGBEGIN{
+ case 'l': /* no left nodes will be set */
+ nol++;
+ break;
+ case 'r': /* no right nodes will be set */
+ nor++;
+ break;
+ case 'm': /* use iterative traversal */
+ morris++;
+ break;
+ case 'i':
+ mode = InOrder;
+ break;
+ case 'p':
+ mode = PostOrder;
+ break;
+ case 's': /* use a small and simple tree */
+ simple++;
+ break;
+ default:
+ fprint(2, "usage: %s [-i | -p] [-l | -r] [-m] [-s]\n", argv0);
+ threadexitsall("usage");
+ }ARGEND
+
+ if(nol && nor)
+ sysfatal("it wouldn't even be a list, dumbass");
+
+ b = Bfdopen(1, OWRITE);
+ if(simple){
+ t = &st;
+ }else{
+ t = calloc(num, sizeof(*t));
+ for(i = 0, n = 1; i < num; i++){
+ if(!nol && n < num)
+ t[i].left = &t[n++];
+ if(!nor && n < num)
+ t[i].right = &t[n++];
+ t[i].v = i;
+ }
+ }
+
+ if(morris)
+ walkmorris(t);
+ else
+ walkrecursive(t);
+ if(simple)
+ Bprint(b, "\n");
+
+ Bterm(b);
+ threadexitsall(nil);
+}