ref: 05c937e347bbfc1f2758261c15ae0e5a73ada669
parent: a806c098ae69c06691066449ae09fb129b19576a
author: qwx <[email protected]>
date: Tue Mar 1 18:36:47 EST 2022
decouple a∗, jps-b, movement and pathing state machines, pending rewrite
--- /dev/null
+++ b/a∗.c
@@ -1,0 +1,156 @@
+#include <u.h>
+#include <libc.h>
+#include <draw.h>
+#include "dat.h"
+#include "fns.h"
+
+static Pairheap *queue;
+static Node *nearest;
+
+static void
+clearpath(void)
+{
+ nukequeue(&queue);
+ memset(map, 0, mapwidth * mapheight * sizeof *map);
+ nearest = nil;
+}
+
+static Node *
+a∗nearestfree(Node*, Node*, Node *nearest)
+{
+ return nearest;
+}
+
+void
+a∗backtrack(Mobj *mo, Node *b, Node *a)
+{
+ Path *pp;
+
+ pp = &mo->path;
+ assert(b != a && b->step > 0);
+ pp->dist = b->len;
+ clearvec(&pp->moves);
+ for(; b!=a; b=b->from){
+ assert(b != nil);
+ dprint("%M a∗: backtracking: %#p %P dist %f from %#p\n",
+ mo, b, b->Point, b->h, b->from);
+ pushvec(&pp->moves, &b->Point);
+ }
+ pp->step = (Point *)pp->moves.p + pp->moves.n - 1;
+}
+
+static Node **
+successors(Mobj *mo, Node *n, Node*)
+{
+ static Node *dir[8+1];
+ static dtab[2*(nelem(dir)-1)]={
+ -1,-1, 0,-1, 1,-1,
+ -1,0, 1,0,
+ -1,1, 0,1, 1,1,
+ };
+ int i;
+ Node *s, **p;
+
+ memset(dir, 0, sizeof dir);
+ for(i=0, p=dir; i<nelem(dtab); i+=2){
+ s = n + dtab[i+1] * mapwidth + dtab[i];
+ if(s >= map && s < map + mapwidth * mapheight){
+ s->Point = addpt(n->Point, Pt(dtab[i], dtab[i+1]));
+ if(isblocked(s->Point, mo->o))
+ continue;
+ s->Δg = 1;
+ s->Δlen = dtab[i] != 0 && dtab[i+1] != 0 ? SQRT2 : 1;
+ // UGHHHHh
+ s->x = (s - map) % mapwidth;
+ s->y = (s - map) / mapwidth;
+ *p++ = s;
+ }
+ }
+ return dir;
+}
+
+Node *
+a∗(Mobj *mo, Node *a, Node *b, Node**(*successorsfn)(Mobj*,Node*,Node*))
+{
+ double g, Δg;
+ Node *x, *n, **dp;
+ Pairheap *pn;
+
+ if(a == b){
+ werrstr("a∗: moving in place");
+ return nil;
+ }
+ clearpath();
+ a->Point = mo->Point;
+ b->Point = Pt((b-map)%mapwidth, (b-map)/mapwidth);
+ x = a;
+ a->h = octdist(a->Point, b->Point);
+ pushqueue(a, &queue);
+ while((pn = popqueue(&queue)) != nil){
+ x = pn->n;
+ free(pn);
+ if(x == b)
+ break;
+ x->closed = 1;
+ dp = successorsfn(mo, x, b);
+ for(n=*dp++; n!=nil; n=*dp++){
+ if(n->closed)
+ continue;
+ if(isblocked(n->Point, mo->o))
+ continue;
+ g = x->g + n->Δg;
+ Δg = n->g - g;
+ if(!n->open){
+ n->from = x;
+ n->open = 1;
+ n->step = x->step + 1;
+ n->h = octdist(n->Point, b->Point);
+ n->len = x->len + n->Δlen;
+ n->g = g;
+ pushqueue(n, &queue);
+ }else if(Δg > 0){
+ n->from = x;
+ n->step = x->step + 1;
+ n->len = x->len + n->Δlen;
+ n->g -= Δg;
+ decreasekey(n->p, Δg, &queue);
+ assert(n->g >= 0);
+ }
+ if(nearest == nil || n->h < nearest->h){
+ nearest = n;
+ dprint("%M a∗: nearest node now %#p %P dist %f\n",
+ mo, n, n->Point, n->h);
+ }
+ }
+ }
+ return x;
+}
+
+Node *
+a∗findpath(Mobj *mo, Node *a, Node *b)
+{
+ Node *n, *m;
+
+ if(a∗(mo, a, b, jpsbsuccessors) == b){
+ dprint("%M a∗path: successfully found %#p at %P dist %f\n", mo, b, b->Point, b->h);
+ return b;
+ }
+ dprint("%M a∗findpath: goal unreachable\n", mo);
+ n = nearest;
+ if(n == a || n == nil){
+ werrstr("a∗findpath: can't move");
+ return nil;
+ }
+ dprint("%M findpath: nearest jump is %#p %P dist %f\n", mo, n, n->Point, n->h);
+ m = jpsbnearestnonjump(mo, n, b);
+ if(nearest == nil || nearest == n){
+ dprint("%M a∗findpath: failed to find nearer non-jump point\n", mo);
+ nearest = n;
+ }
+ if(m == b){
+ dprint("%M a∗findpath: jps pathfinding failed but plain a∗ found the goal\n", mo);
+ nearest = b;
+ }
+ m = a∗(mo, a, nearest, successors);
+ return m == b ? b : nearest;
+}
--- a/bmap.c
+++ b/bmap.c
@@ -15,6 +15,36 @@
static uchar ffstab[256];
int
+isblocked(Point p, Obj *o)
+{
+ u64int *row;
+
+ if(o->f & Fair)
+ return 0;
+ row = bload(p, Pt(o->w, o->h), ZP, 0, 0);
+ return (*row & 1ULL << 63) != 0;
+}
+
+void
+markmobj(Mobj *mo, int set)
+{
+ Point sz;
+
+ if(mo->o->f & Fair)
+ return;
+ sz = Pt(mo->o->w, mo->o->h);
+/*
+ if((mo->sub.x & Submask) != 0 && mo->x != ((mo->sub.x>>Pixelshift) + 1) / Nodesz)
+ sz.x++;
+ if((mo->sub.y & Submask) != 0 && mo->y != ((mo->sub.y>>Pixelshift) + 1) / Nodesz)
+ sz.y++;
+*/
+ sz.x += (mo->sub.x & Submask) != 0 && mo->x != mo->sub.x + (1<<Pixelshift) >> Subshift;
+ sz.y += (mo->sub.y & Submask) != 0 && mo->y != mo->sub.y + (1<<Pixelshift) >> Subshift;
+ bset(mo->Point, sz, set);
+}
+
+int
lsb(uvlong v)
{
int c;
--- a/dat.h
+++ b/dat.h
@@ -38,6 +38,8 @@
Pixelshift = 16 - 3,
};
+#define SQRT2 1.4142135623730951
+
struct Vector{
void *p;
ulong n;
--- a/drw.c
+++ b/drw.c
@@ -494,7 +494,7 @@
{
Drawlist *dl;
- if(initdraw(nil, nil, "path") < 0)
+ if(initdraw(nil, nil, progname) < 0)
sysfatal("initdraw: %r");
newvec(&vis, 32, sizeof(Mobj*));
for(dl=drawlist; dl<drawlist+DLend; dl++){
--- a/fns.h
+++ b/fns.h
@@ -53,6 +53,11 @@
int isblocked(Point, Obj*);
void markmobj(Mobj*, int);
int isnextto(Mobj*, Mobj*);
+Node** jpsbsuccessors(Mobj*, Node*, Node*);
+Node* jpsbnearestnonjump(Mobj*, Node*, Node*);
+void a∗backtrack(Mobj*, Node*, Node*);
+Node* a∗(Mobj*, Node*, Node*, Node**(*)(Mobj*,Node*,Node*));
+Node* a∗findpath(Mobj*, Node*, Node*);
int findpath(Mobj*, Point);
void drawnodemap(Rectangle, Mobj*);
Mobj* mapspawn(Obj*, Point);
--- /dev/null
+++ b/jpsb.c
@@ -1,0 +1,312 @@
+#include <u.h>
+#include <libc.h>
+#include <draw.h>
+#include "dat.h"
+#include "fns.h"
+
+/* jump point search with block-based symmetry breaking (JPS(B): 2014, harabor and
+ * grastien), using pairing heaps for priority queues and a bitmap representing the
+ * entire map.
+ * no preprocessing since we'd have to repair the database each time anything moves,
+ * which is a pain.
+ * no pruning of intermediate nodes (JPS(B+P)) as of yet, until other options are
+ * assessed.
+ * the pruning rules adhere to (2012, harabor and grastien) to disallow corner cutting
+ * in diagonal movement, and movement code elsewhere reflects that.
+ * if there is no path to the target, the unit still has to move to the nearest
+ * accessible node. if there is such a node, we first attempt to find a nearer
+ * non-jump point in a cardinal direction, and if successful, the point is added at
+ * the end of the path. unlike plain a∗, we cannot rely on the path backtracked from
+ * the nearest node, since it is no longer guaranteed to be optimal, and will in fact
+ * go all over the place. unless jump points can be connected to all other visible
+ * jump points so as to perform a search on this reduced graph without rediscovering
+ * the map, we're forced to re-do pathfinding to this nearest node. the search should
+ * be much quicker since this new node is accessible.
+ * pathfinding is not limited to an area, so entire map may be scanned, which is too
+ * slow. simple approaches don't seem to work well, it would perhaps be better to
+ * only consider a sub-grid of the map, but the data structures currently used do not
+ * allow it. since the pathfinding algorithm will probably change, the current
+ * implementation disregards the issue.
+ * pathfinding is limited by number of moves (the cost function). this prevents the
+ * search to look at the entire map, but also means potentially non-optimal paths and
+ * more pathfinding when crossing the boundaries.
+ * since units are bigger than the pathfinding grid, the grid is "compressed" when
+ * scanned by using a sliding window the size of the unit, so the rest of the algorithm
+ * still operates on 3x3 neighbor grids, with each bit checking as many nodes as needed
+ * for impassibility. such an approach has apparently not been discussed in regards
+ * to JPS(B), possibly since JPS(B) is a particular optimization of the original
+ * algorithm and this snag may rarely be hit in practice.
+ * map dimensions are assumed to be multiples of 16 tiles.
+ * the code is currently horrendously ugly, though short, and ultimately wrong.
+ * movement should occur at any angle (rather than in 8 directions) and unit sizes
+ * do not have a common denominator higher than 1 pixel. */
+
+enum{
+ θ∅ = 0,
+ θN,
+ θE,
+ θS,
+ θW,
+ θNE,
+ θSE,
+ θSW,
+ θNW,
+};
+
+/* FIXME: horrendous. use fucking tables you moron */
+static Node *
+jumpeast(int x, int y, int w, int h, Node *b, int *ofs, int left, int rot)
+{
+ int nbits, steps, stop, end, *u, *v, ss, Δu, Δug, Δug2, Δvg;
+ u64int bs, *row;
+ Node *n;
+
+ if(rot){
+ u = &y;
+ v = &x;
+ Δug = b->y - y;
+ Δvg = b->x - x;
+ }else{
+ u = &x;
+ v = &y;
+ Δug = b->x - x;
+ Δvg = b->y - y;
+ }
+ steps = 0;
+ nbits = 64 - w + 1;
+ ss = left ? -1 : 1;
+ (*v)--;
+ for(;;){
+ row = bload(Pt(x, y), Pt(w, h), Pt(0, 2), left, rot);
+ bs = row[1];
+ if(left){
+ bs |= row[0] << 1 & ~row[0];
+ bs |= row[2] << 1 & ~row[2];
+ }else{
+ bs |= row[0] >> 1 & ~row[0];
+ bs |= row[2] >> 1 & ~row[2];
+ }
+ if(bs)
+ break;
+ (*u) += ss * nbits;
+ steps += nbits;
+ }
+ if(left){
+ stop = lsb(bs);
+ Δu = stop;
+ }else{
+ stop = msb(bs);
+ Δu = 63 - stop;
+ }
+ end = (row[1] & 1ULL << stop) != 0;
+ (*u) += ss * Δu;
+ (*v)++;
+ steps += Δu;
+ Δug2 = rot ? b->y - y : b->x - x;
+ if(ofs != nil)
+ *ofs = steps;
+ if(end && Δug2 == 0)
+ return nil;
+ if(Δvg == 0 && (Δug == 0 || (Δug < 0) ^ (Δug2 < 0))){
+ b->Δg = steps - abs(Δug2);
+ b->Δlen = b->Δg;
+ return b;
+ }
+ if(end)
+ return nil;
+ assert(x < mapwidth && y < mapheight);
+ n = map + y * mapwidth + x;
+ n->x = x;
+ n->y = y;
+ n->Δg = steps;
+ n->Δlen = steps;
+ return n;
+}
+
+static Node *
+jumpdiag(int x, int y, int w, int h, Node *b, int dir)
+{
+ int left1, ofs1, left2, ofs2, Δx, Δy, steps;
+ Node *n;
+
+ steps = 0;
+ left1 = left2 = Δx = Δy = 0;
+ switch(dir){
+ case θNE: left1 = 1; left2 = 0; Δx = 1; Δy = -1; break;
+ case θSW: left1 = 0; left2 = 1; Δx = -1; Δy = 1; break;
+ case θNW: left1 = 1; left2 = 1; Δx = -1; Δy = -1; break;
+ case θSE: left1 = 0; left2 = 0; Δx = 1; Δy = 1; break;
+ }
+ for(;;){
+ steps++;
+ x += Δx;
+ y += Δy;
+ if(*bload(Pt(x, y), Pt(w, h), ZP, 0, 0) & 1ULL << 63)
+ return nil;
+ if(jumpeast(x, y, w, h, b, &ofs1, left1, 1) != nil
+ || jumpeast(x, y, w, h, b, &ofs2, left2, 0) != nil)
+ break;
+ if(ofs1 == 0 || ofs2 == 0)
+ return nil;
+ }
+ assert(x < mapwidth && y < mapheight);
+ n = map + y * mapwidth + x;
+ n->x = x;
+ n->y = y;
+ n->Δg = steps;
+ n->Δlen = steps * SQRT2;
+ return n;
+}
+
+static Node *
+jump(int x, int y, int w, int h, Node *b, int dir)
+{
+ Node *n;
+
+ switch(dir){
+ case θE: n = jumpeast(x, y, w, h, b, nil, 0, 0); break;
+ case θW: n = jumpeast(x, y, w, h, b, nil, 1, 0); break;
+ case θS: n = jumpeast(x, y, w, h, b, nil, 0, 1); break;
+ case θN: n = jumpeast(x, y, w, h, b, nil, 1, 1); break;
+ default: n = jumpdiag(x, y, w, h, b, dir); break;
+ }
+ return n;
+}
+
+/* 2012, harabor and grastien: disabling corner cutting implies that only moves in
+ * a cardinal direction may produce forced neighbors */
+static int
+forced(int n, int dir)
+{
+ int m;
+
+ m = 0;
+ switch(dir){
+ case θN:
+ if((n & (1<<8 | 1<<5)) == 1<<8) m |= 1<<5 | 1<<2;
+ if((n & (1<<6 | 1<<3)) == 1<<6) m |= 1<<3 | 1<<0;
+ break;
+ case θE:
+ if((n & (1<<2 | 1<<1)) == 1<<2) m |= 1<<1 | 1<<0;
+ if((n & (1<<8 | 1<<7)) == 1<<8) m |= 1<<7 | 1<<6;
+ break;
+ case θS:
+ if((n & (1<<2 | 1<<5)) == 1<<2) m |= 1<<5 | 1<<8;
+ if((n & (1<<0 | 1<<3)) == 1<<0) m |= 1<<3 | 1<<6;
+ break;
+ case θW:
+ if((n & (1<<0 | 1<<1)) == 1<<0) m |= 1<<1 | 1<<2;
+ if((n & (1<<6 | 1<<7)) == 1<<6) m |= 1<<7 | 1<<8;
+ break;
+ }
+ return m;
+}
+
+static int
+natural(int n, int dir)
+{
+ int m;
+
+ switch(dir){
+ /* disallow corner coasting on the very first move */
+ default:
+ if((n & (1<<1 | 1<<3)) != 0)
+ n |= 1<<0;
+ if((n & (1<<7 | 1<<3)) != 0)
+ n |= 1<<6;
+ if((n & (1<<7 | 1<<5)) != 0)
+ n |= 1<<8;
+ if((n & (1<<1 | 1<<5)) != 0)
+ n |= 1<<2;
+ return n;
+ case θN: return n | ~(1<<1);
+ case θE: return n | ~(1<<3);
+ case θS: return n | ~(1<<7);
+ case θW: return n | ~(1<<5);
+ case θNE: m = 1<<1 | 1<<3; return (n & m) == 0 ? n | ~(1<<0 | m) : n | 1<<0;
+ case θSE: m = 1<<7 | 1<<3; return (n & m) == 0 ? n | ~(1<<6 | m) : n | 1<<6;
+ case θSW: m = 1<<7 | 1<<5; return (n & m) == 0 ? n | ~(1<<8 | m) : n | 1<<8;
+ case θNW: m = 1<<1 | 1<<5; return (n & m) == 0 ? n | ~(1<<2 | m) : n | 1<<2;
+ }
+}
+
+static int
+prune(int n, int dir)
+{
+ return natural(n, dir) & ~forced(n, dir);
+}
+
+static int
+neighbors(int x, int y, int w, int h)
+{
+ u64int *row;
+
+ row = bload(Pt(x-1,y-1), Pt(w,h), Pt(2,2), 1, 0);
+ return (row[2] & 7) << 6 | (row[1] & 7) << 3 | row[0] & 7;
+}
+
+Node **
+jpsbsuccessors(Mobj *mo, Node *n, Node *goal)
+{
+ static Node *dir[8+1];
+ static dtab[2*(nelem(dir)-1)]={
+ 1<<1, θN, 1<<3, θE, 1<<7, θS, 1<<5, θW,
+ 1<<0, θNE, 1<<6, θSE, 1<<8, θSW, 1<<2, θNW
+ };
+ int i, ns;
+ Node *s, **p;
+
+ ns = neighbors(n->x, n->y, mo->o->w, mo->o->h);
+ ns = prune(ns, n->dir);
+ memset(dir, 0, sizeof dir);
+ for(i=0, p=dir; i<nelem(dtab); i+=2){
+ if(ns & dtab[i])
+ continue;
+ if((s = jump(n->x, n->y, mo->o->w, mo->o->h, goal, dtab[i+1])) != nil){
+ s->dir = dtab[i+1];
+ *p++ = s;
+ }
+ }
+ return dir;
+}
+
+/* FIXME: clean all this garbage out once map reimplemented */
+static Node *nearest;
+static Node **
+nearestsuccessors(Mobj *mo, Node *n, Node *goal)
+{
+ static Node *dir[8+1];
+ static dtab[2*(nelem(dir)-1)]={
+ -1,-1, 0,-1, 1,-1,
+ -1,0, 1,0,
+ -1,1, 0,1, 1,1,
+ };
+ int i;
+ double d;
+ Node *s, **p;
+
+ d = octdist(nearest->Point, goal->Point);
+ memset(dir, 0, sizeof dir);
+ for(i=0, p=dir; i<nelem(dtab); i+=2){
+ s = n + dtab[i+1] * mapwidth + dtab[i];
+ if(s >= map && s < map + mapwidth * mapheight){
+ s->Point = addpt(n->Point, Pt(dtab[i], dtab[i+1]));
+ if(octdist(s->Point, goal->Point) > d || isblocked(s->Point, mo->o))
+ continue;
+ s->Δg = 1;
+ s->Δlen = dtab[i] != 0 && dtab[i+1] != 0 ? SQRT2 : 1;
+ // UGHHHHh
+ s->x = (s - map) % mapwidth;
+ s->y = (s - map) / mapwidth;
+ *p++ = s;
+ }
+ }
+ return dir;
+}
+
+Node *
+jpsbnearestnonjump(Mobj *mo, Node *nearestjump, Node *goal)
+{
+ nearest = nearestjump;
+ return a∗(mo, nearestjump, goal, nearestsuccessors);
+}
--- a/map.c
+++ b/map.c
@@ -34,6 +34,45 @@
markmobj(mo, 1);
}
+int
+isnextto(Mobj *mo, Mobj *tgt)
+{
+ Rectangle r1, r2;
+
+ if(tgt == nil)
+ return 0;
+ r1.min = mo->Point;
+ r1.max = addpt(r1.min, Pt(mo->o->w, mo->o->h));
+ r2.min = tgt->Point;
+ r2.max = addpt(r2.min, Pt(tgt->o->w, tgt->o->h));
+ return rectXrect(insetrect(r1, -1), r2);
+}
+
+Mobj *
+unitat(Point p)
+{
+ Point mp;
+ Rectangle r, mr;
+ Tile *t;
+ Mobjl *ml;
+ Mobj *mo;
+
+ mp = divpt(p, Node2Tile);
+ r = Rpt(subpt(mp, Pt(4, 4)), mp);
+ for(; mp.y>=r.min.y; mp.y--){
+ mp.x = r.max.x;
+ t = tilemap + mp.y * tilemapwidth + mp.x;
+ for(; mp.x>=r.min.x; mp.x--, t--)
+ for(ml=t->ml.l; ml!=&t->ml; ml=ml->l){
+ mo = ml->mo;
+ mr = Rect(mo->x, mo->y, mo->x+mo->o->w, mo->y+mo->o->h);
+ if(ptinrect(p, mr))
+ return mo;
+ }
+ }
+ return nil;
+}
+
Tile *
tilepos(Point p)
{
--- a/mkfile
+++ b/mkfile
@@ -2,10 +2,12 @@
BIN=$home/bin/$objtype
TARG=sce
OFILES=\
+ a∗.$O\
bmap.$O\
com.$O\
drw.$O\
fs.$O\
+ jpsb.$O\
map.$O\
net.$O\
path.$O\
--- a/path.c
+++ b/path.c
@@ -4,60 +4,6 @@
#include "dat.h"
#include "fns.h"
-/* jump point search with block-based symmetry breaking (JPS(B): 2014, harabor and
- * grastien), using pairing heaps for priority queues and a bitmap representing the
- * entire map.
- * no preprocessing since we'd have to repair the database each time anything moves,
- * which is a pain.
- * no pruning of intermediate nodes (JPS(B+P)) as of yet, until other options are
- * assessed.
- * the pruning rules adhere to (2012, harabor and grastien) to disallow corner cutting
- * in diagonal movement, and movement code elsewhere reflects that.
- * if there is no path to the target, the unit still has to move to the nearest
- * accessible node. if there is such a node, we first attempt to find a nearer
- * non-jump point in a cardinal direction, and if successful, the point is added at
- * the end of the path. unlike plain a∗, we cannot rely on the path backtracked from
- * the nearest node, since it is no longer guaranteed to be optimal, and will in fact
- * go all over the place. unless jump points can be connected to all other visible
- * jump points so as to perform a search on this reduced graph without rediscovering
- * the map, we're forced to re-do pathfinding to this nearest node. the search should
- * be much quicker since this new node is accessible.
- * pathfinding is not limited to an area, so entire map may be scanned, which is too
- * slow. simple approaches don't seem to work well, it would perhaps be better to
- * only consider a sub-grid of the map, but the data structures currently used do not
- * allow it. since the pathfinding algorithm will probably change, the current
- * implementation disregards the issue.
- * pathfinding is limited by number of moves (the cost function). this prevents the
- * search to look at the entire map, but also means potentially non-optimal paths and
- * more pathfinding when crossing the boundaries.
- * since units are bigger than the pathfinding grid, the grid is "compressed" when
- * scanned by using a sliding window the size of the unit, so the rest of the algorithm
- * still operates on 3x3 neighbor grids, with each bit checking as many nodes as needed
- * for impassibility. such an approach has apparently not been discussed in regards
- * to JPS(B), possibly since JPS(B) is a particular optimization of the original
- * algorithm and this snag may rarely be hit in practice.
- * map dimensions are assumed to be multiples of 16 tiles.
- * the code is currently horrendously ugly, though short, and ultimately wrong.
- * movement should occur at any angle (rather than in 8 directions) and unit sizes
- * do not have a common denominator higher than 1 pixel. */
-
-enum{
- θ∅ = 0,
- θN,
- θE,
- θS,
- θW,
- θNE,
- θSE,
- θSW,
- θNW,
-};
-
-#define SQRT2 1.4142135623730951
-
-static Pairheap *queue;
-static Node *nearest;
-
void
drawnodemap(Rectangle r, Mobj *sel)
{
@@ -96,69 +42,6 @@
}
}
-static void
-clearpath(void)
-{
- nukequeue(&queue);
- memset(map, 0, mapwidth * mapheight * sizeof *map);
- nearest = nil;
-}
-
-int
-isblocked(Point p, Obj *o)
-{
- u64int *row;
-
- if(o->f & Fair)
- return 0;
- row = bload(p, Pt(o->w, o->h), ZP, 0, 0);
- return (*row & 1ULL << 63) != 0;
-}
-
-Mobj *
-unitat(Point p)
-{
- Point mp;
- Rectangle r, mr;
- Tile *t;
- Mobjl *ml;
- Mobj *mo;
-
- mp = divpt(p, Node2Tile);
- r = Rpt(subpt(mp, Pt(4, 4)), mp);
- for(; mp.y>=r.min.y; mp.y--){
- mp.x = r.max.x;
- t = tilemap + mp.y * tilemapwidth + mp.x;
- for(; mp.x>=r.min.x; mp.x--, t--)
- for(ml=t->ml.l; ml!=&t->ml; ml=ml->l){
- mo = ml->mo;
- mr = Rect(mo->x, mo->y, mo->x+mo->o->w, mo->y+mo->o->h);
- if(ptinrect(p, mr))
- return mo;
- }
- }
- return nil;
-}
-
-void
-markmobj(Mobj *mo, int set)
-{
- Point sz;
-
- if(mo->o->f & Fair)
- return;
- sz = Pt(mo->o->w, mo->o->h);
-/*
- if((mo->sub.x & Submask) != 0 && mo->x != ((mo->sub.x>>Pixelshift) + 1) / Nodesz)
- sz.x++;
- if((mo->sub.y & Submask) != 0 && mo->y != ((mo->sub.y>>Pixelshift) + 1) / Nodesz)
- sz.y++;
-*/
- sz.x += (mo->sub.x & Submask) != 0 && mo->x != mo->sub.x + (1<<Pixelshift) >> Subshift;
- sz.y += (mo->sub.y & Submask) != 0 && mo->y != mo->sub.y + (1<<Pixelshift) >> Subshift;
- bset(mo->Point, sz, set);
-}
-
double
eucdist(Point a, Point b)
{
@@ -179,299 +62,7 @@
return 1 * (dx + dy) + min(dx, dy) * (SQRT2 - 2 * 1);
}
-/* FIXME: horrendous. use fucking tables you moron */
-static Node *
-jumpeast(int x, int y, int w, int h, Node *b, int *ofs, int left, int rot)
-{
- int nbits, steps, stop, end, *u, *v, ss, Δu, Δug, Δug2, Δvg;
- u64int bs, *row;
- Node *n;
- if(rot){
- u = &y;
- v = &x;
- Δug = b->y - y;
- Δvg = b->x - x;
- }else{
- u = &x;
- v = &y;
- Δug = b->x - x;
- Δvg = b->y - y;
- }
- steps = 0;
- nbits = 64 - w + 1;
- ss = left ? -1 : 1;
- (*v)--;
- for(;;){
- row = bload(Pt(x, y), Pt(w, h), Pt(0, 2), left, rot);
- bs = row[1];
- if(left){
- bs |= row[0] << 1 & ~row[0];
- bs |= row[2] << 1 & ~row[2];
- }else{
- bs |= row[0] >> 1 & ~row[0];
- bs |= row[2] >> 1 & ~row[2];
- }
- if(bs)
- break;
- (*u) += ss * nbits;
- steps += nbits;
- }
- if(left){
- stop = lsb(bs);
- Δu = stop;
- }else{
- stop = msb(bs);
- Δu = 63 - stop;
- }
- end = (row[1] & 1ULL << stop) != 0;
- (*u) += ss * Δu;
- (*v)++;
- steps += Δu;
- Δug2 = rot ? b->y - y : b->x - x;
- if(ofs != nil)
- *ofs = steps;
- if(end && Δug2 == 0)
- return nil;
- if(Δvg == 0 && (Δug == 0 || (Δug < 0) ^ (Δug2 < 0))){
- b->Δg = steps - abs(Δug2);
- b->Δlen = b->Δg;
- return b;
- }
- if(end)
- return nil;
- assert(x < mapwidth && y < mapheight);
- n = map + y * mapwidth + x;
- n->x = x;
- n->y = y;
- n->Δg = steps;
- n->Δlen = steps;
- return n;
-}
-
-static Node *
-jumpdiag(int x, int y, int w, int h, Node *b, int dir)
-{
- int left1, ofs1, left2, ofs2, Δx, Δy, steps;
- Node *n;
-
- steps = 0;
- left1 = left2 = Δx = Δy = 0;
- switch(dir){
- case θNE: left1 = 1; left2 = 0; Δx = 1; Δy = -1; break;
- case θSW: left1 = 0; left2 = 1; Δx = -1; Δy = 1; break;
- case θNW: left1 = 1; left2 = 1; Δx = -1; Δy = -1; break;
- case θSE: left1 = 0; left2 = 0; Δx = 1; Δy = 1; break;
- }
- for(;;){
- steps++;
- x += Δx;
- y += Δy;
- if(*bload(Pt(x, y), Pt(w, h), ZP, 0, 0) & 1ULL << 63)
- return nil;
- if(jumpeast(x, y, w, h, b, &ofs1, left1, 1) != nil
- || jumpeast(x, y, w, h, b, &ofs2, left2, 0) != nil)
- break;
- if(ofs1 == 0 || ofs2 == 0)
- return nil;
- }
- assert(x < mapwidth && y < mapheight);
- n = map + y * mapwidth + x;
- n->x = x;
- n->y = y;
- n->Δg = steps;
- n->Δlen = steps * SQRT2;
- return n;
-}
-
-static Node *
-jump(int x, int y, int w, int h, Node *b, int dir)
-{
- Node *n;
-
- switch(dir){
- case θE: n = jumpeast(x, y, w, h, b, nil, 0, 0); break;
- case θW: n = jumpeast(x, y, w, h, b, nil, 1, 0); break;
- case θS: n = jumpeast(x, y, w, h, b, nil, 0, 1); break;
- case θN: n = jumpeast(x, y, w, h, b, nil, 1, 1); break;
- default: n = jumpdiag(x, y, w, h, b, dir); break;
- }
- return n;
-}
-
-/* 2012, harabor and grastien: disabling corner cutting implies that only moves in
- * a cardinal direction may produce forced neighbors */
-static int
-forced(int n, int dir)
-{
- int m;
-
- m = 0;
- switch(dir){
- case θN:
- if((n & (1<<8 | 1<<5)) == 1<<8) m |= 1<<5 | 1<<2;
- if((n & (1<<6 | 1<<3)) == 1<<6) m |= 1<<3 | 1<<0;
- break;
- case θE:
- if((n & (1<<2 | 1<<1)) == 1<<2) m |= 1<<1 | 1<<0;
- if((n & (1<<8 | 1<<7)) == 1<<8) m |= 1<<7 | 1<<6;
- break;
- case θS:
- if((n & (1<<2 | 1<<5)) == 1<<2) m |= 1<<5 | 1<<8;
- if((n & (1<<0 | 1<<3)) == 1<<0) m |= 1<<3 | 1<<6;
- break;
- case θW:
- if((n & (1<<0 | 1<<1)) == 1<<0) m |= 1<<1 | 1<<2;
- if((n & (1<<6 | 1<<7)) == 1<<6) m |= 1<<7 | 1<<8;
- break;
- }
- return m;
-}
-
-static int
-natural(int n, int dir)
-{
- int m;
-
- switch(dir){
- /* disallow corner coasting on the very first move */
- default:
- if((n & (1<<1 | 1<<3)) != 0)
- n |= 1<<0;
- if((n & (1<<7 | 1<<3)) != 0)
- n |= 1<<6;
- if((n & (1<<7 | 1<<5)) != 0)
- n |= 1<<8;
- if((n & (1<<1 | 1<<5)) != 0)
- n |= 1<<2;
- return n;
- case θN: return n | ~(1<<1);
- case θE: return n | ~(1<<3);
- case θS: return n | ~(1<<7);
- case θW: return n | ~(1<<5);
- case θNE: m = 1<<1 | 1<<3; return (n & m) == 0 ? n | ~(1<<0 | m) : n | 1<<0;
- case θSE: m = 1<<7 | 1<<3; return (n & m) == 0 ? n | ~(1<<6 | m) : n | 1<<6;
- case θSW: m = 1<<7 | 1<<5; return (n & m) == 0 ? n | ~(1<<8 | m) : n | 1<<8;
- case θNW: m = 1<<1 | 1<<5; return (n & m) == 0 ? n | ~(1<<2 | m) : n | 1<<2;
- }
-}
-
-static int
-prune(int n, int dir)
-{
- return natural(n, dir) & ~forced(n, dir);
-}
-
-static int
-neighbors(int x, int y, int w, int h)
-{
- u64int *row;
-
- row = bload(Pt(x-1,y-1), Pt(w,h), Pt(2,2), 1, 0);
- return (row[2] & 7) << 6 | (row[1] & 7) << 3 | row[0] & 7;
-}
-
-static Node **
-jpssuccessors(Node *n, Size sz, Node *b)
-{
- static Node *dir[8+1];
- static dtab[2*(nelem(dir)-1)]={
- 1<<1, θN, 1<<3, θE, 1<<7, θS, 1<<5, θW,
- 1<<0, θNE, 1<<6, θSE, 1<<8, θSW, 1<<2, θNW
- };
- int i, ns;
- Node *s, **p;
-
- ns = neighbors(n->x, n->y, sz.w, sz.h);
- ns = prune(ns, n->dir);
- memset(dir, 0, sizeof dir);
- for(i=0, p=dir; i<nelem(dtab); i+=2){
- if(ns & dtab[i])
- continue;
- if((s = jump(n->x, n->y, sz.w, sz.h, b, dtab[i+1])) != nil){
- s->dir = dtab[i+1];
- *p++ = s;
- }
- }
- return dir;
-}
-
-static Node **
-successors(Node *n, Size, Node *)
-{
- static Node *dir[8+1];
- static dtab[2*(nelem(dir)-1)]={
- -1,-1, 0,-1, 1,-1,
- -1,0, 1,0,
- -1,1, 0,1, 1,1,
- };
- int i;
- Node *s, **p;
-
- memset(dir, 0, sizeof dir);
- for(i=0, p=dir; i<nelem(dtab); i+=2){
- s = n + dtab[i+1] * mapwidth + dtab[i];
- if(s >= map && s < map + mapwidth * mapheight){
- s->Point = addpt(n->Point, Pt(dtab[i], dtab[i+1]));
- s->Δg = 1;
- s->Δlen = dtab[i] != 0 && dtab[i+1] != 0 ? SQRT2 : 1;
- *p++ = s;
- }
- }
- return dir;
-}
-
-static Node *
-a∗(Mobj *mo, Node *a, Node *b)
-{
- double g, Δg;
- Node *x, *n, **dp;
- Pairheap *pn;
-
- if(a == b){
- werrstr("a∗: moving in place");
- return nil;
- }
- x = a;
- a->h = octdist(a->Point, b->Point);
- pushqueue(a, &queue);
- while((pn = popqueue(&queue)) != nil){
- x = pn->n;
- free(pn);
- if(x == b)
- break;
- x->closed = 1;
- dp = successors(x, mo->o->Size, b);
- for(n=*dp++; n!=nil; n=*dp++){
- if(n->closed)
- continue;
- if(isblocked(n->Point, mo->o))
- continue;
- g = x->g + n->Δg;
- Δg = n->g - g;
- if(!n->open){
- n->from = x;
- n->open = 1;
- n->step = x->step + 1;
- n->h = octdist(n->Point, b->Point);
- n->len = x->len + n->Δlen;
- n->g = g;
- pushqueue(n, &queue);
- }else if(Δg > 0){
- n->from = x;
- n->step = x->step + 1;
- n->len = x->len + n->Δlen;
- n->g -= Δg;
- decreasekey(n->p, Δg, &queue);
- assert(n->g >= 0);
- }
- if(nearest == nil || n->h < nearest->h)
- nearest = n;
- }
- }
- return x;
-}
-
static void
directpath(Mobj *mo, Node *a, Node *g)
{
@@ -484,70 +75,10 @@
pp->step = (Point *)pp->moves.p + pp->moves.n - 1;
}
-static void
-backtrack(Mobj *mo, Node *n, Node *a)
-{
- Path *pp;
-
- pp = &mo->path;
- assert(n != a && n->step > 0);
- pp->dist = n->len;
- clearvec(&pp->moves);
- for(; n!=a; n=n->from)
- pushvec(&pp->moves, &n->Point);
- pp->step = (Point *)pp->moves.p + pp->moves.n - 1;
-}
-
-int
-isnextto(Mobj *mo, Mobj *tgt)
-{
- Rectangle r1, r2;
-
- if(tgt == nil)
- return 0;
- r1.min = mo->Point;
- r1.max = addpt(r1.min, Pt(mo->o->w, mo->o->h));
- r2.min = tgt->Point;
- r2.max = addpt(r2.min, Pt(tgt->o->w, tgt->o->h));
- return rectXrect(insetrect(r1, -1), r2);
-}
-
+/* FIXME: use center of mobj if any instead of upper left corner
+ * no need for any of this crap: if target is a mobj, set goal to
+ * its center, done */
/* FIXME: completely broken */
-static Node *
-nearestnonjump(Mobj *mo, Node *n, Node *b)
-{
- static Point dirtab[] = {
- {0,-1},
- {1,0},
- {0,1},
- {-1,0},
- };
- int i;
- Point p;
- Node *m, *min;
-
- min = n;
- for(i=0; i<nelem(dirtab); i++){
- p = addpt(n->Point, dirtab[i]);
- while(!isblocked(p, mo->o)){
- m = map + p.y * mapwidth + p.x;
- m->Point = p;
- m->h = octdist(m->Point, b->Point);
- if(min->h < m->h)
- break;
- min = m;
- p = addpt(p, dirtab[i]);
- }
- }
- if(min != n){
- min->from = n;
- min->open = 1;
- min->step = n->step + 1;
- }
- return min;
-}
-
-/* FIXME: completely broken */
void
setgoal(Mobj *mo, Point *gp, Mobj *block)
{
@@ -604,6 +135,7 @@
*gp = g;
}
+/* FIXME: fmt for Nodes or w/e */
int
findpath(Mobj *mo, Point p)
{
@@ -613,50 +145,24 @@
werrstr("not moving to itself");
return -1;
}
- clearpath();
a = map + mo->y * mapwidth + mo->x;
a->Point = mo->Point;
b = map + p.y * mapwidth + p.x;
b->Point = p;
- dprint("%M findpath from %P to %P dist %f\n", mo, a->Point, b->Point, octdist(a->Point, b->Point));
+ dprint("%M findpath from %P to %P dist %f\n",
+ mo, a->Point, b->Point, octdist(a->Point, b->Point));
if(mo->o->f & Fair){
directpath(mo, a, b);
return 0;
}
markmobj(mo, 0);
- n = a∗(mo, a, b);
- if(n != b){
- dprint("%M findpath: goal unreachable\n", mo);
- if((n = nearest) == a || n == nil || a->h < n->h){
- werrstr("a∗: can't move");
- markmobj(mo, 1);
- return -1;
- }
- dprint("%M findpath: nearest is %#p %P dist %f\n", mo, n, n->Point, n->h);
- n = nearest;
- if(n == a){
- werrstr("a∗: really can't move");
- markmobj(mo, 1);
- return -1;
- }
- /*
- b = nearestnonjump(mo, n, b);
- if(b == a){
- werrstr("a∗: really can't move");
- markmobj(mo, 1);
- return -1;
- }
- clearpath();
- a->Point = mo->Point;
- b->Point = Pt((b - map) % mapwidth, (b - map) / mapwidth);
- if((n = a∗(mo, a, b)) != b){
- werrstr("bug: failed to find path to nearest non-jump point");
- return -1;
- }
- */
- }
- dprint("%M found %#p at %P dist %f\n", mo, n, n->Point, n->h);
+ n = a∗findpath(mo, a, b);
markmobj(mo, 1);
- backtrack(mo, n, a);
+ if(n == nil){
+ dprint("%M findpath: failed\n", mo);
+ return -1;
+ }
+ dprint("%M findpath: setting path to goal %P dist %f\n", mo, n->Point, n->h);
+ a∗backtrack(mo, n, a);
return 0;
}