ref: b8c0e4deccffcd668f7d08ffc1fe16147e9e894a
dir: /code/bspc/leakfile.c/
/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "qbsp.h" /* ============================================================================== LEAF FILE GENERATION Save out name.line for qe3 to read ============================================================================== */ /* ============= LeakFile Finds the shortest possible chain of portals that leads from the outside leaf to a specifically occupied leaf ============= */ void LeakFile (tree_t *tree) { vec3_t mid; FILE *linefile; char filename[1024]; node_t *node; int count; if (!tree->outside_node.occupied) return; qprintf ("--- LeakFile ---\n"); // // write the points to the file // sprintf (filename, "%s.lin", source); qprintf ("%s\n", filename); linefile = fopen (filename, "w"); if (!linefile) Error ("Couldn't open %s\n", filename); count = 0; node = &tree->outside_node; while (node->occupied > 1) { int next; portal_t *p, *nextportal; node_t *nextnode; int s; // find the best portal exit next = node->occupied; for (p=node->portals ; p ; p = p->next[!s]) { s = (p->nodes[0] == node); if (p->nodes[s]->occupied && p->nodes[s]->occupied < next) { nextportal = p; nextnode = p->nodes[s]; next = nextnode->occupied; } } node = nextnode; WindingCenter (nextportal->winding, mid); fprintf (linefile, "%f %f %f\n", mid[0], mid[1], mid[2]); count++; } // add the occupant center GetVectorForKey (node->occupant, "origin", mid); fprintf (linefile, "%f %f %f\n", mid[0], mid[1], mid[2]); qprintf ("%5i point linefile\n", count+1); fclose (linefile); }