ref: ed9e4236c1135f0a20a4d836b6e3a65fba14ae6a
parent: f675adce5141bbc2fbe6d2005c82122aad3e4e3f
author: Jean-Marc Valin <[email protected]>
date: Thu Feb 28 07:22:22 EST 2008
fixed-point: second check-point in the conversion of alg_quant()
--- a/libcelt/vq.c
+++ b/libcelt/vq.c
@@ -121,7 +121,6 @@
void alg_quant(celt_norm_t *X, celt_mask_t *W, int N, int K, celt_norm_t *P, celt_word16_t alpha, ec_enc *enc)
{
int L = 3;
- VARDECL(float *x);
VARDECL(float *p);
VARDECL(float *_y);
VARDECL(float *_ny);
@@ -133,9 +132,9 @@
VARDECL(int **iny);
int i, j, k, m;
int pulsesLeft;
- VARDECL(float *xy);
- VARDECL(float *yy);
- VARDECL(float *yp);
+ VARDECL(celt_word32_t *xy);
+ VARDECL(celt_word32_t *yy);
+ VARDECL(celt_word32_t *yp);
VARDECL(struct NBest *_nbest);
VARDECL(struct NBest **nbest);
celt_word32_t Rpp=0, Rxp=0;
@@ -145,7 +144,6 @@
int yshift = 14-EC_ILOG(K);
#endif
- ALLOC(x, N, float);
ALLOC(p, N, float);
ALLOC(_y, L*N, float);
ALLOC(_ny, L*N, float);
@@ -156,15 +154,14 @@
ALLOC(iy, L*N, int*);
ALLOC(iny, L*N, int*);
- ALLOC(xy, L, float);
- ALLOC(yy, L, float);
- ALLOC(yp, L, float);
+ ALLOC(xy, L, celt_word32_t);
+ ALLOC(yy, L, celt_word32_t);
+ ALLOC(yp, L, celt_word32_t);
ALLOC(_nbest, L, struct NBest);
ALLOC(nbest, L, struct NBest *);
for (j=0;j<N;j++)
{
- x[j] = X[j]*NORM_SCALING_1;
p[j] = P[j]*NORM_SCALING_1;
}
@@ -229,7 +226,7 @@
for (sign=-1;sign<=1;sign+=2)
{
/*fprintf (stderr, "%d/%d %d/%d %d/%d\n", i, K, m, L2, j, N);*/
- float tmp_xy, tmp_yy, tmp_yp;
+ celt_word32_t tmp_xy, tmp_yy, tmp_yp;
float score;
float g;
float s = SHL16(sign*pulsesAtOnce, yshift);
@@ -240,11 +237,11 @@
/* Updating the sums of the new pulse(s) */
tmp_xy = xy[m] + s*X[j] - _alpha*s*P[j]*Rxp*NORM_SCALING_1;
- tmp_yy = yy[m] + 2.f*s*y[m][j] + s*s +s*s*_alpha*_alpha*p[j]*p[j]*Rpp*NORM_SCALING_1 - 2.f*_alpha*s*p[j]*yp[m] - 2.f*s*s*_alpha*p[j]*p[j];
- tmp_yp = yp[m] + s*p[j] *(1.f-_alpha*Rpp*NORM_SCALING_1);
+ tmp_yy = yy[m] + 2.f*s*y[m][j] + s*s +s*s*_alpha*_alpha*p[j]*p[j]*Rpp*NORM_SCALING_1 - 2.f*_alpha*s*p[j]*yp[m]*NORM_SCALING_1 - 2.f*s*s*_alpha*p[j]*p[j];
+ tmp_yp = yp[m] + s*P[j] *(1.f-_alpha*Rpp*NORM_SCALING_1);
/* Compute the gain such that ||p + g*y|| = 1 */
- g = (approx_sqrt(tmp_yp*tmp_yp + tmp_yy - tmp_yy*Rpp*NORM_SCALING_1) - tmp_yp)*approx_inv(tmp_yy);
+ g = (approx_sqrt(NORM_SCALING_1*NORM_SCALING_1*tmp_yp*tmp_yp + tmp_yy - NORM_SCALING_1*tmp_yy*Rpp) - tmp_yp*NORM_SCALING_1)*approx_inv(tmp_yy);
/* Knowing that gain, what the error: (x-g*y)^2
(result is negated and we discard x^2 because it's constant) */
score = 2.f*g*tmp_xy*NORM_SCALING_1 - g*g*tmp_yy;