ref: ddb2c97242f80e9e468001d174025d6f76d01d10
dir: /training/rnn_train.py/
#!/usr/bin/python3 from __future__ import print_function from keras.models import Sequential from keras.models import Model from keras.layers import Input from keras.layers import Dense from keras.layers import LSTM from keras.layers import GRU from keras.layers import CuDNNGRU from keras.layers import SimpleRNN from keras.layers import Dropout from keras import losses import h5py from keras.optimizers import Adam from keras.constraints import Constraint from keras import backend as K import numpy as np import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.44 set_session(tf.Session(config=config)) def binary_crossentrop2(y_true, y_pred): return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_true, y_pred), axis=-1) def binary_accuracy2(y_true, y_pred): return K.mean(K.cast(K.equal(y_true, K.round(y_pred)), 'float32') + K.cast(K.equal(y_true, 0.5), 'float32'), axis=-1) def quant_model(model): weights = model.get_weights() for k in range(len(weights)): weights[k] = np.maximum(-128, np.minimum(127, np.round(128*weights[k])*0.0078125)) model.set_weights(weights) class WeightClip(Constraint): '''Clips the weights incident to each hidden unit to be inside a range ''' def __init__(self, c=2): self.c = c def __call__(self, p): return K.clip(p, -self.c, self.c) def get_config(self): return {'name': self.__class__.__name__, 'c': self.c} reg = 0.000001 constraint = WeightClip(.998) print('Build model...') main_input = Input(shape=(None, 25), name='main_input') x = Dense(32, activation='tanh', kernel_constraint=constraint, bias_constraint=constraint)(main_input) #x = CuDNNGRU(24, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(x) x = GRU(24, recurrent_activation='sigmoid', activation='tanh', return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(x) x = Dense(2, activation='sigmoid', kernel_constraint=constraint, bias_constraint=constraint)(x) model = Model(inputs=main_input, outputs=x) batch_size = 2048 print('Loading data...') with h5py.File('features10b.h5', 'r') as hf: all_data = hf['data'][:] print('done.') window_size = 1500 nb_sequences = len(all_data)//window_size print(nb_sequences, ' sequences') x_train = all_data[:nb_sequences*window_size, :-2] x_train = np.reshape(x_train, (nb_sequences, window_size, 25)) y_train = np.copy(all_data[:nb_sequences*window_size, -2:]) y_train = np.reshape(y_train, (nb_sequences, window_size, 2)) print("Marking ignores") for s in y_train: for e in s: if (e[1] >= 1): break e[0] = 0.5 all_data = 0; x_train = x_train.astype('float32') y_train = y_train.astype('float32') print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape) model.load_weights('newweights10a1b_ep206.hdf5') #weights = model.get_weights() #for k in range(len(weights)): # weights[k] = np.round(128*weights[k])*0.0078125 #model.set_weights(weights) # try using different optimizers and different optimizer configs model.compile(loss=binary_crossentrop2, optimizer=Adam(0.0001), metrics=[binary_accuracy2]) print('Train...') quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=10, validation_data=(x_train, y_train)) model.save("newweights10a1c_ep10.hdf5") quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=50, initial_epoch=10) model.save("newweights10a1c_ep50.hdf5") model.compile(loss=binary_crossentrop2, optimizer=Adam(0.0001), metrics=[binary_accuracy2]) quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=100, initial_epoch=50) model.save("newweights10a1c_ep100.hdf5") quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=150, initial_epoch=100) model.save("newweights10a1c_ep150.hdf5") quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=200, initial_epoch=150) model.save("newweights10a1c_ep200.hdf5") quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=201, initial_epoch=200) model.save("newweights10a1c_ep201.hdf5") quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=202, initial_epoch=201, validation_data=(x_train, y_train)) model.save("newweights10a1c_ep202.hdf5") quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=203, initial_epoch=202, validation_data=(x_train, y_train)) model.save("newweights10a1c_ep203.hdf5") quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=204, initial_epoch=203, validation_data=(x_train, y_train)) model.save("newweights10a1c_ep204.hdf5") quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=205, initial_epoch=204, validation_data=(x_train, y_train)) model.save("newweights10a1c_ep205.hdf5") quant_model(model) model.fit(x_train, y_train, batch_size=batch_size, epochs=206, initial_epoch=205, validation_data=(x_train, y_train)) model.save("newweights10a1c_ep206.hdf5")