ref: d98d8ae087844c616c1f187265ae9d20dea54207
parent: 1cca151671509a2c0f7383fe98a1298c37d4fdbd
author: Timothy B. Terriberry <[email protected]>
date: Tue May 26 05:09:27 EDT 2009
CWRS clean-ups and optimizations. Adds specialized O(N*log(K)) versions of cwrsi() and O(N) versions of icwrs() for N={3,4,5}, which allows them to operate all the way up to the theoretical pulse limit without serious performance degredation. Also substantially reduces the computation time and stack usage of get_required_bits(). On x86-64, this gives a 2% speed-up for 256 sample frames, and almost a 16% speed-up for 64 sample frames.
--- a/libcelt/cwrs.c
+++ b/libcelt/cwrs.c
@@ -29,15 +29,6 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
-/* Functions for encoding and decoding pulse vectors.
- These are based on the function
- U(n,m) = U(n-1,m) + U(n,m-1) + U(n-1,m-1),
- U(n,1) = U(1,m) = 2,
- which counts the number of ways of placing m pulses in n dimensions, where
- at least one pulse lies in dimension 0.
- For more details, see: http://people.xiph.org/~tterribe/notes/cwrs.html
-*/
-
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
@@ -80,28 +71,9 @@
else return l-1<<frac;
}
-int fits_in32(int _n, int _m)
-{
- static const celt_int16_t maxN[15] = {
- 32767, 32767, 32767, 1476, 283, 109, 60, 40,
- 29, 24, 20, 18, 16, 14, 13};
- static const celt_int16_t maxM[15] = {
- 32767, 32767, 32767, 32767, 1172, 238, 95, 53,
- 36, 27, 22, 18, 16, 15, 13};
- if (_n>=14)
- {
- if (_m>=14)
- return 0;
- else
- return _n <= maxN[_m];
- } else {
- return _m <= maxM[_n];
- }
-}
-
#define MASK32 (0xFFFFFFFF)
-/*INV_TABLE[i] holds the multiplicative inverse of (2*i-1) mod 2**32.*/
+/*INV_TABLE[i] holds the multiplicative inverse of (2*i+1) mod 2**32.*/
static const celt_uint32_t INV_TABLE[128]={
0x00000001,0xAAAAAAAB,0xCCCCCCCD,0xB6DB6DB7,
0x38E38E39,0xBA2E8BA3,0xC4EC4EC5,0xEEEEEEEF,
@@ -137,12 +109,12 @@
0x0E64C149,0x9A020A33,0xE6B41C55,0xFEFEFEFF
};
-/*Computes (_a*_b-_c)/(2*_d-1) when the quotient is known to be exact.
+/*Computes (_a*_b-_c)/(2*_d+1) when the quotient is known to be exact.
_a, _b, _c, and _d may be arbitrary so long as the arbitrary precision result
fits in 32 bits, but currently the table for multiplicative inverses is only
valid for _d<128.*/
static inline celt_uint32_t imusdiv32odd(celt_uint32_t _a,celt_uint32_t _b,
- celt_uint32_t _c,celt_uint32_t _d){
+ celt_uint32_t _c,int _d){
return (_a*_b-_c)*INV_TABLE[_d]&MASK32;
}
@@ -150,16 +122,18 @@
_d does not actually have to be even, but imusdiv32odd will be faster when
it's odd, so you should use that instead.
_a and _d are assumed to be small (e.g., _a*_d fits in 32 bits; currently the
- table for multiplicative inverses is only valid for _d<256).
+ table for multiplicative inverses is only valid for _d<=256).
_b and _c may be arbitrary so long as the arbitrary precision reuslt fits in
32 bits.*/
static inline celt_uint32_t imusdiv32even(celt_uint32_t _a,celt_uint32_t _b,
- celt_uint32_t _c,celt_uint32_t _d){
+ celt_uint32_t _c,int _d){
celt_uint32_t inv;
- int mask;
- int shift;
- int one;
+ int mask;
+ int shift;
+ int one;
+ celt_assert(_d>0);
shift=EC_ILOG(_d^_d-1);
+ celt_assert(_d<=256);
inv=INV_TABLE[_d-1>>shift];
shift--;
one=1<<shift;
@@ -168,13 +142,262 @@
(_a*(_b&mask)+one-(_c&mask)>>shift)-1)*inv&MASK32;
}
+/*Compute floor(sqrt(_val)) with exact arithmetic.
+ This has been tested on all possible 32-bit inputs.*/
+static unsigned isqrt32(celt_uint32_t _val){
+ unsigned b;
+ unsigned g;
+ int bshift;
+ /*Uses the second method from
+ http://www.azillionmonkeys.com/qed/sqroot.html
+ The main idea is to search for the largest binary digit b such that
+ (g+b)*(g+b) <= _val, and add it to the solution g.*/
+ g=0;
+ bshift=EC_ILOG(_val)-1>>1;
+ b=1U<<bshift;
+ for(;bshift>=0;bshift--){
+ celt_uint32_t t;
+ t=((celt_uint32_t)g<<1)+b<<bshift;
+ if(t<=_val){
+ g+=b;
+ _val-=t;
+ }
+ b>>=1;
+ }
+ return g;
+}
+
+/*Compute floor(sqrt(_val)) with exact arithmetic.
+ This has been tested on all possible 36-bit inputs.*/
+static celt_uint32_t isqrt36(celt_uint64_t _val){
+ celt_uint32_t val32;
+ celt_uint32_t b;
+ celt_uint32_t g;
+ int bshift;
+ g=0;
+ b=0x20000;
+ for(bshift=18;bshift-->13;){
+ celt_uint64_t t;
+ t=((celt_uint64_t)g<<1)+b<<bshift;
+ if(t<=_val){
+ g+=b;
+ _val-=t;
+ }
+ b>>=1;
+ }
+ val32=(celt_uint32_t)_val;
+ for(;bshift>=0;bshift--){
+ celt_uint32_t t;
+ t=(g<<1)+b<<bshift;
+ if(t<=val32){
+ g+=b;
+ val32-=t;
+ }
+ b>>=1;
+ }
+ return g;
+}
+
+/*Although derived separately, the pulse vector coding scheme is equivalent to
+ a Pyramid Vector Quantizer \cite{Fis86}.
+ Some additional notes about an early version appear at
+ http://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering
+ and the definitions of some terms have evolved since that was written.
+
+ The conversion from a pulse vector to an integer index (encoding) and back
+ (decoding) is governed by two related functions, V(N,K) and U(N,K).
+
+ V(N,K) = the number of combinations, with replacement, of N items, taken K
+ at a time, when a sign bit is added to each item taken at least once (i.e.,
+ the number of N-dimensional unit pulse vectors with K pulses).
+ One way to compute this is via
+ V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1,
+ where choose() is the binomial function.
+ A table of values for N<10 and K<10 looks like:
+ V[10][10] = {
+ {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
+ {1, 2, 2, 2, 2, 2, 2, 2, 2, 2},
+ {1, 4, 8, 12, 16, 20, 24, 28, 32, 36},
+ {1, 6, 18, 38, 66, 102, 146, 198, 258, 326},
+ {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992},
+ {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290},
+ {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436},
+ {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598},
+ {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688},
+ {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146}
+ };
+
+ U(N,K) = the number of such combinations wherein N-1 objects are taken at
+ most K-1 at a time.
+ This is given by
+ U(N,K) = sum(k=0...K-1,V(N-1,k))
+ = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0.
+ The latter expression also makes clear that U(N,K) is half the number of such
+ combinations wherein the first object is taken at least once.
+ Although it may not be clear from either of these definitions, U(N,K) is the
+ natural function to work with when enumerating the pulse vector codebooks,
+ not V(N,K).
+ U(N,K) is not well-defined for N=0, but with the extension
+ U(0,K) = K>0 ? 0 : 1,
+ the function becomes symmetric: U(N,K) = U(K,N), with a similar table:
+ U[10][10] = {
+ {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
+ {0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
+ {0, 1, 3, 5, 7, 9, 11, 13, 15, 17},
+ {0, 1, 5, 13, 25, 41, 61, 85, 113, 145},
+ {0, 1, 7, 25, 63, 129, 231, 377, 575, 833},
+ {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649},
+ {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073},
+ {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081},
+ {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545},
+ {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729}
+ };
+
+ With this extension, V(N,K) may be written in terms of U(N,K):
+ V(N,K) = U(N,K) + U(N,K+1)
+ for all N>=0, K>=0.
+ Thus U(N,K+1) represents the number of combinations where the first element
+ is positive or zero, and U(N,K) represents the number of combinations where
+ it is negative.
+ With a large enough table of U(N,K) values, we could write O(N) encoding
+ and O(min(N*log(K),N+K)) decoding routines, but such a table would be
+ prohibitively large for small embedded devices (K may be as large as 32767
+ for small N, and N may be as large as 200).
+
+ Both functions obey the same recurrence relation:
+ V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1),
+ U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1),
+ for all N>0, K>0, with different initial conditions at N=0 or K=0.
+ This allows us to construct a row of one of the tables above given the
+ previous row or the next row.
+ Thus we can derive O(NK) encoding and decoding routines with O(K) memory
+ using only addition and subtraction.
+
+ When encoding, we build up from the U(2,K) row and work our way forwards.
+ When decoding, we need to start at the U(N,K) row and work our way backwards,
+ which requires a means of computing U(N,K).
+ U(N,K) may be computed from two previous values with the same N:
+ U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2)
+ for all N>1, and since U(N,K) is symmetric, a similar relation holds for two
+ previous values with the same K:
+ U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K)
+ for all K>1.
+ This allows us to construct an arbitrary row of the U(N,K) table by starting
+ with the first two values, which are constants.
+ This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K)
+ multiplications.
+ Similar relations can be derived for V(N,K), but are not used here.
+
+ For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree
+ polynomial for fixed N.
+ The first few are
+ U(1,K) = 1,
+ U(2,K) = 2*K-1,
+ U(3,K) = (2*K-2)*K+1,
+ U(4,K) = (((4*K-6)*K+8)*K-3)/3,
+ U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3,
+ and
+ V(1,K) = 2,
+ V(2,K) = 4*K,
+ V(3,K) = 4*K*K+2,
+ V(4,K) = 8*(K*K+2)*K/3,
+ V(5,K) = ((4*K*K+20)*K*K+6)/3,
+ for all K>0.
+ This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for
+ small N (and indeed decoding is also O(N) for N<3).
+
+ @ARTICLE{Fis86,
+ author="Thomas R. Fischer",
+ title="A Pyramid Vector Quantizer",
+ journal="IEEE Transactions on Information Theory",
+ volume="IT-32",
+ number=4,
+ pages="568--583",
+ month=Jul,
+ year=1986
+ }*/
+
+/*Determines if V(N,K) fits in a 32-bit unsigned integer.
+ N and K are themselves limited to 15 bits.*/
+int fits_in32(int _n, int _k)
+{
+ static const celt_int16_t maxN[15] = {
+ 32767, 32767, 32767, 1476, 283, 109, 60, 40,
+ 29, 24, 20, 18, 16, 14, 13};
+ static const celt_int16_t maxK[15] = {
+ 32767, 32767, 32767, 32767, 1172, 238, 95, 53,
+ 36, 27, 22, 18, 16, 15, 13};
+ if (_n>=14)
+ {
+ if (_k>=14)
+ return 0;
+ else
+ return _n <= maxN[_k];
+ } else {
+ return _k <= maxK[_n];
+ }
+}
+
+/*Compute U(1,_k).*/
+static inline unsigned ucwrs1(int _k){
+ return _k?1:0;
+}
+
+/*Compute V(1,_k).*/
+static inline unsigned ncwrs1(int _k){
+ return _k?2:1;
+}
+
+/*Compute U(2,_k).
+ Note that this may be called with _k=32768 (maxK[2]+1).*/
+static inline unsigned ucwrs2(unsigned _k){
+ return _k?_k+(_k-1):0;
+}
+
+/*Compute V(2,_k).*/
+static inline celt_uint32_t ncwrs2(int _k){
+ return _k?4*(celt_uint32_t)_k:1;
+}
+
+/*Compute U(3,_k).
+ Note that this may be called with _k=32768 (maxK[3]+1).*/
+static inline celt_uint32_t ucwrs3(unsigned _k){
+ return _k?(2*(celt_uint32_t)_k-2)*_k+1:0;
+}
+
+/*Compute V(3,_k).*/
+static inline celt_uint32_t ncwrs3(int _k){
+ return _k?2*(2*(unsigned)_k*(celt_uint32_t)_k+1):1;
+}
+
+/*Compute U(4,_k).*/
+static inline celt_uint32_t ucwrs4(int _k){
+ return _k?imusdiv32odd(2*_k,(2*_k-3)*(celt_uint32_t)_k+4,3,1):0;
+}
+
+/*Compute V(4,_k).*/
+static inline celt_uint32_t ncwrs4(int _k){
+ return _k?((_k*(celt_uint32_t)_k+2)*_k)/3<<3:1;
+}
+
+/*Compute U(5,_k).*/
+static inline celt_uint32_t ucwrs5(int _k){
+ return _k?(((((_k-2)*(unsigned)_k+5)*(celt_uint32_t)_k-4)*_k)/3<<1)+1:0;
+}
+
+/*Compute V(5,_k).*/
+static inline celt_uint32_t ncwrs5(int _k){
+ return _k?(((_k*(unsigned)_k+5)*(celt_uint32_t)_k*_k)/3<<2)+2:1;
+}
+
/*Computes the next row/column of any recurrence that obeys the relation
u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1].
_ui0 is the base case for the new row/column.*/
-static inline void unext32(celt_uint32_t *_ui,int _len,celt_uint32_t _ui0){
+static inline void unext(celt_uint32_t *_ui,unsigned _len,celt_uint32_t _ui0){
celt_uint32_t ui1;
- int j;
- /* doing a do-while would overrun the array if we had less than 2 samples */
+ unsigned j;
+ /*This do-while will overrun the array if we don't have storage for at least
+ 2 values.*/
j=1; do {
ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0);
_ui[j-1]=_ui0;
@@ -186,10 +409,11 @@
/*Computes the previous row/column of any recurrence that obeys the relation
u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1].
_ui0 is the base case for the new row/column.*/
-static inline void uprev32(celt_uint32_t *_ui,int _n,celt_uint32_t _ui0){
+static inline void uprev(celt_uint32_t *_ui,unsigned _n,celt_uint32_t _ui0){
celt_uint32_t ui1;
- int j;
- /* doing a do-while would overrun the array if we had less than 2 samples */
+ unsigned j;
+ /*This do-while will overrun the array if we don't have storage for at least
+ 2 values.*/
j=1; do {
ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0);
_ui[j-1]=_ui0;
@@ -198,27 +422,27 @@
_ui[j-1]=_ui0;
}
-/*Returns the number of ways of choosing _m elements from a set of size _n with
- replacement when a sign bit is needed for each unique element.
- _u: On exit, _u[i] contains U(_n,i) for i in [0..._m+1].*/
-celt_uint32_t ncwrs_u32(int _n,int _m,celt_uint32_t *_u){
+/*Compute V(_n,_k), as well as U(_n,0..._k+1).
+ _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/
+static celt_uint32_t ncwrs_urow(unsigned _n,unsigned _k,celt_uint32_t *_u){
celt_uint32_t um2;
- int k;
- int len;
- len=_m+2;
+ unsigned len;
+ unsigned k;
+ len=_k+2;
+ /*We require storage at least 3 values (e.g., _k>0).*/
+ celt_assert(len>=3);
_u[0]=0;
_u[1]=um2=1;
- if(_n<=6 || _m>255){
+ if(_n<=6 || _k>255){
/*If _n==0, _u[0] should be 1 and the rest should be 0.*/
/*If _n==1, _u[i] should be 1 for i>1.*/
celt_assert(_n>=2);
- /*If _m==0, the following do-while loop will overflow the buffer.*/
- celt_assert(_m>0);
+ /*If _k==0, the following do-while loop will overflow the buffer.*/
+ celt_assert(_k>0);
k=2;
do _u[k]=(k<<1)-1;
while(++k<len);
- for(k=2;k<_n;k++)
- unext32(_u+1,_m+1,1);
+ for(k=2;k<_n;k++)unext(_u+1,_k+1,1);
}
else{
celt_uint32_t um1;
@@ -225,52 +449,223 @@
celt_uint32_t n2m1;
_u[2]=n2m1=um1=(_n<<1)-1;
for(k=3;k<len;k++){
- /*U(n,m) = ((2*n-1)*U(n,m-1)-U(n,m-2))/(m-1) + U(n,m-2)*/
+ /*U(N,K) = ((2*N-1)*U(N,K-1)-U(N,K-2))/(K-1) + U(N,K-2)*/
_u[k]=um2=imusdiv32even(n2m1,um1,um2,k-1)+um2;
if(++k>=len)break;
_u[k]=um1=imusdiv32odd(n2m1,um2,um1,k-1>>1)+um1;
}
}
- return _u[_m]+_u[_m+1];
+ return _u[_k]+_u[_k+1];
}
+/*Returns the _i'th combination of _k elements (at most 32767) chosen from a
+ set of size 1 with associated sign bits.
+ _y: Returns the vector of pulses.*/
+static inline void cwrsi1(int _k,celt_uint32_t _i,int *_y){
+ int s;
+ s=-(int)_i;
+ _y[0]=_k+s^s;
+}
-/*Returns the _i'th combination of _m elements chosen from a set of size _n
+/*Returns the _i'th combination of _k elements (at most 32767) chosen from a
+ set of size 2 with associated sign bits.
+ _y: Returns the vector of pulses.*/
+static inline void cwrsi2(int _k,celt_uint32_t _i,int *_y){
+ celt_uint32_t p;
+ int s;
+ int yj;
+ p=ucwrs2(_k+1U);
+ s=-(_i>=p);
+ _i-=p&s;
+ yj=_k;
+ _k=_i+1>>1;
+ p=ucwrs2(_k);
+ _i-=p;
+ yj-=_k;
+ _y[0]=yj+s^s;
+ cwrsi1(_k,_i,_y+1);
+}
+
+/*Returns the _i'th combination of _k elements (at most 32767) chosen from a
+ set of size 3 with associated sign bits.
+ _y: Returns the vector of pulses.*/
+static void cwrsi3(int _k,celt_uint32_t _i,int *_y){
+ celt_uint32_t p;
+ int s;
+ int yj;
+ p=ucwrs3(_k+1U);
+ s=-(_i>=p);
+ _i-=p&s;
+ yj=_k;
+ /*Finds the maximum _k such that ucwrs3(_k)<=_i (tested for all
+ _i<2147418113=U(3,32768)).*/
+ _k=_i>0?isqrt32(2*_i-1)+1>>1:0;
+ p=ucwrs3(_k);
+ _i-=p;
+ yj-=_k;
+ _y[0]=yj+s^s;
+ cwrsi2(_k,_i,_y+1);
+}
+
+/*Returns the _i'th combination of _k elements (at most 1172) chosen from a set
+ of size 4 with associated sign bits.
+ _y: Returns the vector of pulses.*/
+static void cwrsi4(int _k,celt_uint32_t _i,int *_y){
+ celt_uint32_t p;
+ int s;
+ int yj;
+ int kl;
+ int kr;
+ p=ucwrs4(_k+1);
+ s=-(_i>=p);
+ _i-=p&s;
+ yj=_k;
+ /*We could solve a cubic for k here, but the form of the direct solution does
+ not lend itself well to exact integer arithmetic.
+ Instead we do a binary search on U(4,K).*/
+ kl=0;
+ kr=_k;
+ for(;;){
+ _k=kl+kr>>1;
+ p=ucwrs4(_k);
+ if(p<_i){
+ if(_k>=kr)break;
+ kl=_k+1;
+ }
+ else if(p>_i)kr=_k-1;
+ else break;
+ }
+ _i-=p;
+ yj-=_k;
+ _y[0]=yj+s^s;
+ cwrsi3(_k,_i,_y+1);
+}
+
+/*Returns the _i'th combination of _k elements (at most 238) chosen from a set
+ of size 5 with associated sign bits.
+ _y: Returns the vector of pulses.*/
+static void cwrsi5(int _k,celt_uint32_t _i,int *_y){
+ celt_uint32_t p;
+ int s;
+ int yj;
+ p=ucwrs5(_k+1);
+ s=-(_i>=p);
+ _i-=p&s;
+ yj=_k;
+ /*Finds the maximum _k such that ucwrs5(_k)<=_i (tested for all
+ _i<2157192969=U(5,239)).*/
+ if(_i>=0x2AAAAAA9UL)_k=isqrt32(2*isqrt36(10+6*(celt_uint64_t)_i)-7)+1>>1;
+ else _k=_i>0?isqrt32(2*(celt_uint32_t)isqrt32(10+6*_i)-7)+1>>1:0;
+ p=ucwrs5(_k);
+ _i-=p;
+ yj-=_k;
+ _y[0]=yj+s^s;
+ cwrsi4(_k,_i,_y+1);
+}
+
+/*Returns the _i'th combination of _k elements chosen from a set of size _n
with associated sign bits.
_y: Returns the vector of pulses.
- _u: Must contain entries [0..._m+1] of row _n of U() on input.
+ _u: Must contain entries [0..._k+1] of row _n of U() on input.
Its contents will be destructively modified.*/
-void cwrsi32(int _n,int _m,celt_uint32_t _i,int *_y,celt_uint32_t *_u){
+static void cwrsi(int _n,int _k,celt_uint32_t _i,int *_y,celt_uint32_t *_u){
int j;
- int k;
celt_assert(_n>0);
j=0;
- k=_m;
do{
celt_uint32_t p;
int s;
int yj;
- p=_u[k+1];
- s=_i>=p;
- if(s)_i-=p;
- yj=k;
- p=_u[k];
- while(p>_i)p=_u[--k];
+ p=_u[_k+1];
+ s=-(_i>=p);
+ _i-=p&s;
+ yj=_k;
+ p=_u[_k];
+ while(p>_i)p=_u[--_k];
_i-=p;
- yj-=k;
- _y[j]=yj-(yj<<1&-s);
- uprev32(_u,k+2,0);
+ yj-=_k;
+ _y[j]=yj+s^s;
+ uprev(_u,_k+2,0);
}
while(++j<_n);
}
-/*Returns the index of the given combination of _m elements chosen from a set
+/*Returns the index of the given combination of K elements chosen from a set
+ of size 1 with associated sign bits.
+ _y: The vector of pulses, whose sum of absolute values is K.
+ _k: Returns K.*/
+static inline celt_uint32_t icwrs1(const int *_y,int *_k){
+ *_k=abs(_y[0]);
+ return _y[0]<0;
+}
+
+/*Returns the index of the given combination of K elements chosen from a set
+ of size 2 with associated sign bits.
+ _y: The vector of pulses, whose sum of absolute values is K.
+ _k: Returns K.*/
+static inline celt_uint32_t icwrs2(const int *_y,int *_k){
+ celt_uint32_t i;
+ int k;
+ i=icwrs1(_y+1,&k);
+ i+=ucwrs2(k);
+ k+=abs(_y[0]);
+ if(_y[0]<0)i+=ucwrs2(k+1U);
+ *_k=k;
+ return i;
+}
+
+/*Returns the index of the given combination of K elements chosen from a set
+ of size 3 with associated sign bits.
+ _y: The vector of pulses, whose sum of absolute values is K.
+ _k: Returns K.*/
+static inline celt_uint32_t icwrs3(const int *_y,int *_k){
+ celt_uint32_t i;
+ int k;
+ i=icwrs2(_y+1,&k);
+ i+=ucwrs3(k);
+ k+=abs(_y[0]);
+ if(_y[0]<0)i+=ucwrs3(k+1U);
+ *_k=k;
+ return i;
+}
+
+/*Returns the index of the given combination of K elements chosen from a set
+ of size 4 with associated sign bits.
+ _y: The vector of pulses, whose sum of absolute values is K.
+ _k: Returns K.*/
+static inline celt_uint32_t icwrs4(const int *_y,int *_k){
+ celt_uint32_t i;
+ int k;
+ i=icwrs3(_y+1,&k);
+ i+=ucwrs4(k);
+ k+=abs(_y[0]);
+ if(_y[0]<0)i+=ucwrs4(k+1);
+ *_k=k;
+ return i;
+}
+
+/*Returns the index of the given combination of K elements chosen from a set
+ of size 5 with associated sign bits.
+ _y: The vector of pulses, whose sum of absolute values is K.
+ _k: Returns K.*/
+static inline celt_uint32_t icwrs5(const int *_y,int *_k){
+ celt_uint32_t i;
+ int k;
+ i=icwrs4(_y+1,&k);
+ i+=ucwrs5(k);
+ k+=abs(_y[0]);
+ if(_y[0]<0)i+=ucwrs5(k+1);
+ *_k=k;
+ return i;
+}
+
+/*Returns the index of the given combination of K elements chosen from a set
of size _n with associated sign bits.
- _y: The vector of pulses, whose sum of absolute values must be _m.
- _nc: Returns V(_n,_m).*/
-celt_uint32_t icwrs32(int _n,int _m,celt_uint32_t *_nc,const int *_y,
+ _y: The vector of pulses, whose sum of absolute values must be _k.
+ _nc: Returns V(_n,_k).*/
+celt_uint32_t icwrs(int _n,int _k,celt_uint32_t *_nc,const int *_y,
celt_uint32_t *_u){
celt_uint32_t i;
int j;
@@ -277,100 +672,180 @@
int k;
/*We can't unroll the first two iterations of the loop unless _n>=2.*/
celt_assert(_n>=2);
- i=_y[_n-1]<0;
_u[0]=0;
- for(k=1;k<=_m+1;k++)_u[k]=(k<<1)-1;
- k=abs(_y[_n-1]);
+ for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1;
+ i=icwrs1(_y+_n-1,&k);
j=_n-2;
i+=_u[k];
k+=abs(_y[j]);
if(_y[j]<0)i+=_u[k+1];
while(j-->0){
- unext32(_u,_m+2,0);
+ unext(_u,_k+2,0);
i+=_u[k];
k+=abs(_y[j]);
if(_y[j]<0)i+=_u[k+1];
}
- *_nc=_u[_m]+_u[_m+1];
+ *_nc=_u[k]+_u[k+1];
return i;
}
-static inline void encode_pulse32(int _n,int _m,const int *_y,ec_enc *_enc){
- VARDECL(celt_uint32_t,u);
- celt_uint32_t nc;
- celt_uint32_t i;
- SAVE_STACK;
- ALLOC(u,_m+2,celt_uint32_t);
- i=icwrs32(_n,_m,&nc,_y,u);
- ec_enc_uint(_enc,i,nc);
- RESTORE_STACK;
+
+/*Computes get_required_bits when splitting is required.
+ _left_bits and _right_bits must contain the required bits for the left and
+ right sides of the split, respectively (which themselves may require
+ splitting).*/
+static void get_required_split_bits(celt_int16_t *_bits,
+ const celt_int16_t *_left_bits,const celt_int16_t *_right_bits,
+ int _n,int _maxk,int _frac){
+ int k;
+ for(k=_maxk;k-->0;){
+ /*If we've reached a k where everything fits in 32 bits, evaluate the
+ remaining required bits directly.*/
+ if(fits_in32(_n,k)){
+ get_required_bits(_bits,_n,k+1,_frac);
+ break;
+ }
+ else{
+ int worst_bits;
+ int i;
+ /*Due to potentially recursive splitting, it's difficult to derive an
+ analytic expression for the location of the worst-case split index.
+ We simply check them all.*/
+ worst_bits=0;
+ for(i=0;i<=k;i++){
+ int split_bits;
+ split_bits=_left_bits[i]+_right_bits[k-i];
+ if(split_bits>worst_bits)worst_bits=split_bits;
+ }
+ _bits[k]=log2_frac(k+1,_frac)+worst_bits;
+ }
+ }
}
-int get_required_bits32(int N, int K, int frac)
-{
- int nbits;
- VARDECL(celt_uint32_t,u);
- SAVE_STACK;
- ALLOC(u,K+2,celt_uint32_t);
- nbits = log2_frac(ncwrs_u32(N,K,u), frac);
- RESTORE_STACK;
- return nbits;
+/*Computes get_required_bits for a pair of N values.
+ _n1 and _n2 must either be equal or two consecutive integers.
+ Returns the buffer used to store the required bits for _n2, which is either
+ _bits1 if _n1==_n2 or _bits2 if _n1+1==_n2.*/
+static celt_int16_t *get_required_bits_pair(celt_int16_t *_bits1,
+ celt_int16_t *_bits2,celt_int16_t *_tmp,int _n1,int _n2,int _maxk,int _frac){
+ celt_int16_t *tmp2;
+ /*If we only need a single set of required bits...*/
+ if(_n1==_n2){
+ /*Stop recursing if everything fits.*/
+ if(fits_in32(_n1,_maxk-1))get_required_bits(_bits1,_n1,_maxk,_frac);
+ else{
+ _tmp=get_required_bits_pair(_bits2,_tmp,_bits1,
+ _n1>>1,_n1+1>>1,_maxk,_frac);
+ get_required_split_bits(_bits1,_bits2,_tmp,_n1,_maxk,_frac);
+ }
+ return _bits1;
+ }
+ /*Otherwise we need two distinct sets...*/
+ celt_assert(_n1+1==_n2);
+ /*Stop recursing if everything fits.*/
+ if(fits_in32(_n2,_maxk-1)){
+ get_required_bits(_bits1,_n1,_maxk,_frac);
+ get_required_bits(_bits2,_n2,_maxk,_frac);
+ }
+ /*Otherwise choose an evaluation order that doesn't require extra buffers.*/
+ else if(_n1&1){
+ /*This special case isn't really needed, but can save some work.*/
+ if(fits_in32(_n1,_maxk-1)){
+ tmp2=get_required_bits_pair(_tmp,_bits1,_bits2,
+ _n2>>1,_n2>>1,_maxk,_frac);
+ get_required_split_bits(_bits2,_tmp,tmp2,_n2,_maxk,_frac);
+ get_required_bits(_bits1,_n1,_maxk,_frac);
+ }
+ else{
+ _tmp=get_required_bits_pair(_bits2,_tmp,_bits1,
+ _n1>>1,_n1+1>>1,_maxk,_frac);
+ get_required_split_bits(_bits1,_bits2,_tmp,_n1,_maxk,_frac);
+ get_required_split_bits(_bits2,_tmp,_tmp,_n2,_maxk,_frac);
+ }
+ }
+ else{
+ /*There's no need to special case _n1 fitting by itself, since _n2 requires
+ us to recurse for both values anyway.*/
+ tmp2=get_required_bits_pair(_tmp,_bits1,_bits2,
+ _n2>>1,_n2+1>>1,_maxk,_frac);
+ get_required_split_bits(_bits2,_tmp,tmp2,_n2,_maxk,_frac);
+ get_required_split_bits(_bits1,_tmp,_tmp,_n1,_maxk,_frac);
+ }
+ return _bits2;
}
-void get_required_bits(celt_int16_t *bits,int N, int MAXK, int frac)
-{
- int k;
- /*We special case k==0 below, since fits_in32 could reject it for large N.*/
- celt_assert(MAXK>0);
- if(fits_in32(N,MAXK-1)){
- bits[0]=0;
- /*This could be sped up one heck of a lot if we didn't recompute u in
- ncwrs_u32 every time.*/
- for(k=1;k<MAXK;k++)bits[k]=get_required_bits32(N,k,frac);
- }
- else{
- VARDECL(celt_int16_t,n1bits);
- VARDECL(celt_int16_t,_n2bits);
- celt_int16_t *n2bits;
+void get_required_bits(celt_int16_t *_bits,int _n,int _maxk,int _frac){
+ int k;
+ /*_maxk==0 => there's nothing to do.*/
+ celt_assert(_maxk>0);
+ if(fits_in32(_n,_maxk-1)){
+ _bits[0]=0;
+ if(_maxk>1){
+ VARDECL(celt_uint32_t,u);
SAVE_STACK;
- ALLOC(n1bits,MAXK,celt_int16_t);
- ALLOC(_n2bits,MAXK,celt_int16_t);
- get_required_bits(n1bits,(N+1)/2,MAXK,frac);
- if(N&1){
- n2bits=_n2bits;
- get_required_bits(n2bits,N/2,MAXK,frac);
- }else{
- n2bits=n1bits;
- }
- bits[0]=0;
- for(k=1;k<MAXK;k++){
- if(fits_in32(N,k))bits[k]=get_required_bits32(N,k,frac);
- else{
- int worst_bits;
- int i;
- worst_bits=0;
- for(i=0;i<=k;i++){
- int split_bits;
- split_bits=n1bits[i]+n2bits[k-i];
- if(split_bits>worst_bits)worst_bits=split_bits;
- }
- bits[k]=log2_frac(k+1,frac)+worst_bits;
- }
- }
+ ALLOC(u,_maxk+1U,celt_uint32_t);
+ ncwrs_urow(_n,_maxk-1,u);
+ for(k=1;k<_maxk;k++)_bits[k]=log2_frac(u[k]+u[k+1],_frac);
RESTORE_STACK;
- }
+ }
+ }
+ else{
+ VARDECL(celt_int16_t,n1bits);
+ VARDECL(celt_int16_t,n2bits_buf);
+ celt_int16_t *n2bits;
+ SAVE_STACK;
+ ALLOC(n1bits,_maxk,celt_int16_t);
+ ALLOC(n2bits_buf,_maxk,celt_int16_t);
+ n2bits=get_required_bits_pair(n1bits,n2bits_buf,_bits,
+ _n>>1,_n+1>>1,_maxk,_frac);
+ get_required_split_bits(_bits,n1bits,n2bits,_n,_maxk,_frac);
+ RESTORE_STACK;
+ }
}
+static inline void encode_pulses32(int _n,int _k,const int *_y,ec_enc *_enc){
+ celt_uint32_t i;
+ switch(_n){
+ case 1:{
+ i=icwrs1(_y,&_k);
+ celt_assert(ncwrs1(_k)==2);
+ ec_enc_bits(_enc,i,1);
+ }break;
+ case 2:{
+ i=icwrs2(_y,&_k);
+ ec_enc_uint(_enc,i,ncwrs2(_k));
+ }break;
+ case 3:{
+ i=icwrs3(_y,&_k);
+ ec_enc_uint(_enc,i,ncwrs3(_k));
+ }break;
+ case 4:{
+ i=icwrs4(_y,&_k);
+ ec_enc_uint(_enc,i,ncwrs4(_k));
+ }break;
+ case 5:{
+ i=icwrs5(_y,&_k);
+ ec_enc_uint(_enc,i,ncwrs5(_k));
+ }break;
+ default:{
+ VARDECL(celt_uint32_t,u);
+ celt_uint32_t nc;
+ SAVE_STACK;
+ ALLOC(u,_k+2U,celt_uint32_t);
+ i=icwrs(_n,_k,&nc,_y,u);
+ ec_enc_uint(_enc,i,nc);
+ RESTORE_STACK;
+ }break;
+ }
+}
+
void encode_pulses(int *_y, int N, int K, ec_enc *enc)
{
if (K==0) {
- } else if (N==1)
- {
- ec_enc_bits(enc, _y[0]<0, 1);
} else if(fits_in32(N,K))
{
- encode_pulse32(N, K, _y, enc);
+ encode_pulses32(N, K, _y, enc);
} else {
int i;
int count=0;
@@ -384,12 +859,24 @@
}
}
-static inline void decode_pulse32(int _n,int _m,int *_y,ec_dec *_dec){
- VARDECL(celt_uint32_t,u);
- SAVE_STACK;
- ALLOC(u,_m+2,celt_uint32_t);
- cwrsi32(_n,_m,ec_dec_uint(_dec,ncwrs_u32(_n,_m,u)),_y,u);
- RESTORE_STACK;
+static inline void decode_pulses32(int _n,int _k,int *_y,ec_dec *_dec){
+ switch(_n){
+ case 1:{
+ celt_assert(ncwrs1(_k)==2);
+ cwrsi1(_k,ec_dec_bits(_dec,1),_y);
+ }break;
+ case 2:cwrsi2(_k,ec_dec_uint(_dec,ncwrs2(_k)),_y);break;
+ case 3:cwrsi3(_k,ec_dec_uint(_dec,ncwrs3(_k)),_y);break;
+ case 4:cwrsi4(_k,ec_dec_uint(_dec,ncwrs4(_k)),_y);break;
+ case 5:cwrsi5(_k,ec_dec_uint(_dec,ncwrs5(_k)),_y);break;
+ default:{
+ VARDECL(celt_uint32_t,u);
+ SAVE_STACK;
+ ALLOC(u,_k+2U,celt_uint32_t);
+ cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u);
+ RESTORE_STACK;
+ }
+ }
}
void decode_pulses(int *_y, int N, int K, ec_dec *dec)
@@ -398,16 +885,9 @@
int i;
for (i=0;i<N;i++)
_y[i] = 0;
- } else if (N==1)
- {
- int s = ec_dec_bits(dec, 1);
- if (s==0)
- _y[0] = K;
- else
- _y[0] = -K;
} else if(fits_in32(N,K))
{
- decode_pulse32(N, K, _y, dec);
+ decode_pulses32(N, K, _y, dec);
} else {
int split;
int count = ec_dec_uint(dec,K+1);
--- a/libcelt/cwrs.h
+++ b/libcelt/cwrs.h
@@ -38,29 +38,8 @@
int log2_frac(ec_uint32 val, int frac);
-/* Returns log of an integer with fractional accuracy */
-int log2_frac64(ec_uint64 val, int frac);
/* Whether the CWRS codebook will fit into 32 bits */
int fits_in32(int _n, int _m);
-/* Whether the CWRS codebook will fit into 64 bits */
-int fits_in64(int _n, int _m);
-
-/* 32-bit versions */
-celt_uint32_t ncwrs_u32(int _n,int _m,celt_uint32_t *_u);
-
-void cwrsi32(int _n,int _m,celt_uint32_t _i,int *_y,celt_uint32_t *_u);
-
-celt_uint32_t icwrs32(int _n,int _m,celt_uint32_t *_nc,const int *_y,
- celt_uint32_t *_u);
-
-/* 64-bit versions */
-celt_uint64_t ncwrs_u64(int _n,int _m,celt_uint64_t *_u);
-
-void cwrsi64(int _n,int _m,celt_uint64_t _i,int *_y,celt_uint64_t *_u);
-
-celt_uint64_t icwrs64(int _n,int _m,celt_uint64_t *_nc,const int *_y,
- celt_uint64_t *_u);
-
void get_required_bits(celt_int16_t *bits, int N, int K, int frac);
--- a/tests/cwrs32-test.c
+++ b/tests/cwrs32-test.c
@@ -3,52 +3,169 @@
#endif
#include <stdio.h>
-#include "cwrs.h"
#include <string.h>
-#include "../libcelt/cwrs.c"
#include "../libcelt/rangeenc.c"
#include "../libcelt/rangedec.c"
#include "../libcelt/entenc.c"
#include "../libcelt/entdec.c"
#include "../libcelt/entcode.c"
+#include "../libcelt/cwrs.c"
-#define NMAX (10)
-#define MMAX (9)
+#define NMAX (14)
+#define KMAX (32767)
+static const int kmax[15]={
+ 32767,32767,32767,32767, 1172,
+ 238, 95, 53, 36, 27,
+ 22, 18, 16, 15, 13
+};
+
+
int main(int _argc,char **_argv){
int n;
for(n=2;n<=NMAX;n++){
- int m;
- for(m=1;m<=MMAX;m++){
- celt_uint32_t uu[MMAX+2];
+ int dk;
+ int k;
+ dk=kmax[n]>7?kmax[n]/7:1;
+ k=1-dk;
+ do{
+ celt_uint32_t uu[KMAX+2U];
celt_uint32_t inc;
celt_uint32_t nc;
celt_uint32_t i;
- nc=ncwrs_u32(n,m,uu);
+ k=kmax[n]-dk<k?kmax[n]:k+dk;
+ printf("Testing CWRS with N=%i, K=%i...\n",n,k);
+ nc=ncwrs_urow(n,k,uu);
inc=nc/10000;
if(inc<1)inc=1;
for(i=0;i<nc;i+=inc){
- celt_uint32_t u[MMAX+2];
+ celt_uint32_t u[KMAX+2U];
int y[NMAX];
+ int yy[5];
celt_uint32_t v;
- memcpy(u,uu,(m+2)*sizeof(*u));
- cwrsi32(n,m,i,y,u);
+ celt_uint32_t ii;
+ int kk;
+ int j;
+ memcpy(u,uu,(k+2U)*sizeof(*u));
+ cwrsi(n,k,i,y,u);
/*printf("%6u of %u:",i,nc);
- for(k=0;k<n;k++)printf(" %+3i",y[k]);
+ for(j=0;j<n;j++)printf(" %+3i",y[j]);
printf(" ->");*/
- if(icwrs32(n,m,&v,y,u)!=i){
- fprintf(stderr,"Combination-index mismatch.\n");
+ ii=icwrs(n,k,&v,y,u);
+ if(ii!=i){
+ fprintf(stderr,"Combination-index mismatch (%lu!=%lu).\n",
+ (long)ii,(long)i);
return 1;
}
if(v!=nc){
- fprintf(stderr,"Combination count mismatch.\n");
+ fprintf(stderr,"Combination count mismatch (%lu!=%lu).\n",
+ (long)v,(long)nc);
return 2;
}
+ if(n==2){
+ cwrsi2(k,i,yy);
+ for(j=0;j<2;j++)if(yy[j]!=y[j]){
+ fprintf(stderr,"N=2 pulse vector mismatch ({%i,%i}!={%i,%i}).\n",
+ yy[0],yy[1],y[0],y[1]);
+ return 3;
+ }
+ ii=icwrs2(yy,&kk);
+ if(ii!=i){
+ fprintf(stderr,"N=2 combination-index mismatch (%lu!=%lu).\n",
+ (long)ii,(long)i);
+ return 4;
+ }
+ if(kk!=k){
+ fprintf(stderr,"N=2 pulse count mismatch (%i,%i).\n",kk,k);
+ return 5;
+ }
+ v=ncwrs2(k);
+ if(v!=nc){
+ fprintf(stderr,"N=2 combination count mismatch (%lu,%lu).\n",
+ (long)v,(long)nc);
+ return 6;
+ }
+ }
+ else if(n==3){
+ cwrsi3(k,i,yy);
+ for(j=0;j<3;j++)if(yy[j]!=y[j]){
+ fprintf(stderr,"N=3 pulse vector mismatch "
+ "({%i,%i,%i}!={%i,%i,%i}).\n",yy[0],yy[1],yy[2],y[0],y[1],y[2]);
+ return 7;
+ }
+ ii=icwrs3(yy,&kk);
+ if(ii!=i){
+ fprintf(stderr,"N=3 combination-index mismatch (%lu!=%lu).\n",
+ (long)ii,(long)i);
+ return 8;
+ }
+ if(kk!=k){
+ fprintf(stderr,"N=3 pulse count mismatch (%i!=%i).\n",kk,k);
+ return 9;
+ }
+ v=ncwrs3(k);
+ if(v!=nc){
+ fprintf(stderr,"N=3 combination count mismatch (%lu!=%lu).\n",
+ (long)v,(long)nc);
+ return 10;
+ }
+ }
+ else if(n==4){
+ cwrsi4(k,i,yy);
+ for(j=0;j<4;j++)if(yy[j]!=y[j]){
+ fprintf(stderr,"N=4 pulse vector mismatch "
+ "({%i,%i,%i,%i}!={%i,%i,%i,%i}.\n",
+ yy[0],yy[1],yy[2],yy[3],y[0],y[1],y[2],y[3]);
+ return 11;
+ }
+ ii=icwrs4(yy,&kk);
+ if(ii!=i){
+ fprintf(stderr,"N=4 combination-index mismatch (%lu!=%lu).\n",
+ (long)ii,(long)i);
+ return 12;
+ }
+ if(kk!=k){
+ fprintf(stderr,"N=4 pulse count mismatch (%i!=%i).\n",kk,k);
+ return 13;
+ }
+ v=ncwrs4(k);
+ if(v!=nc){
+ fprintf(stderr,"N=4 combination count mismatch (%lu!=%lu).\n",
+ (long)v,(long)nc);
+ return 14;
+ }
+ }
+ else if(n==5){
+ cwrsi5(k,i,yy);
+ for(j=0;j<5;j++)if(yy[j]!=y[j]){
+ fprintf(stderr,"N=5 pulse vector mismatch "
+ "({%i,%i,%i,%i,%i}!={%i,%i,%i,%i,%i}).\n",
+ yy[0],yy[1],yy[2],yy[3],yy[4],y[0],y[1],y[2],y[3],y[4]);
+ return 15;
+ }
+ ii=icwrs5(yy,&kk);
+ if(ii!=i){
+ fprintf(stderr,"N=5 combination-index mismatch (%lu!=%lu).\n",
+ (long)ii,(long)i);
+ return 16;
+ }
+ if(kk!=k){
+ fprintf(stderr,"N=5 pulse count mismatch (%i!=%i).\n",kk,k);
+ return 17;
+ }
+ v=ncwrs5(k);
+ if(v!=nc){
+ fprintf(stderr,"N=5 combination count mismatch (%lu!=%lu).\n",
+ (long)v,(long)nc);
+ return 18;
+ }
+ }
/*printf(" %6u\n",i);*/
}
/*printf("\n");*/
}
+ while(k<kmax[n]);
}
return 0;
}
--- a/tests/cwrs64-test.c
+++ /dev/null
@@ -1,50 +1,0 @@
-#ifdef HAVE_CONFIG_H
-#include "config.h"
-#endif
-
-#include <stdio.h>
-#include "cwrs.h"
-#include <string.h>
-
-#define NMAX (32)
-#define MMAX (16)
-
-int main(int _argc,char **_argv){
- int n;
- for(n=2;n<=NMAX;n+=3){
- int m;
- for(m=1;m<=MMAX;m++){
- celt_uint64_t uu[MMAX+2];
- celt_uint64_t inc;
- celt_uint64_t nc;
- celt_uint64_t i;
- nc=ncwrs_u64(n,m,uu);
- /*Testing all cases just wouldn't work!*/
- inc=nc/1000;
- if(inc<1)inc=1;
- /*printf("%d/%d: %llu",n,m, nc);*/
- for(i=0;i<nc;i+=inc){
- celt_uint64_t u[MMAX+2];
- int y[NMAX];
- celt_uint64_t v;
- int k;
- memcpy(u,uu,(m+2)*sizeof(*u));
- cwrsi64(n,m,i,y,u);
- /*printf("%llu of %llu:",i,nc);
- for(k=0;k<n;k++)printf(" %+3i",y[k]);
- printf(" ->");*/
- if(icwrs64(n,m,&v,y,u)!=i){
- fprintf(stderr,"Combination-index mismatch.\n");
- return 1;
- }
- if(v!=nc){
- fprintf(stderr,"Combination count mismatch.\n");
- return 2;
- }
- /*printf(" %6llu\n",i);*/
- }
- /*printf("\n");*/
- }
- }
- return 0;
-}