ref: ae0845fec517a8f1d0fe73bda0062f6cb59104a8
dir: /doc/ietf/draft-valin-celt-codec.xml/
<?xml version='1.0'?> <!DOCTYPE rfc SYSTEM 'rfc2629.dtd'> <?rfc toc="yes" ?> <rfc ipr="full3978" docName="Constrained-Energy Lapped Transform (CELT) Codec"> <front> <title>draft-valin-celt-codec-00</title> <author initials="J-M" surname="Valin" fullname="Jean-Marc Valin"> <organization>Octasic Semiconductor</organization> <address> <postal> <street>4101, Molson Street, suite 300</street> <city>Montreal</city> <region>Quebec</region> <code>H1Y 3L1</code> <country>Canada</country> </postal> <email>[email protected]</email> </address> </author> <!-- <author initials="et" surname="al." fullname="et al."> <organization></organization> </author> --> <date day="18" month="December" year="2008" /> <area>General</area> <workgroup>AVT Working Group</workgroup> <keyword>I-D</keyword> <keyword>Internet-Draft</keyword> <keyword>CELT</keyword> <abstract> <t> CELT <xref target="celt-website"/>is an open-source voice codec suitable for use in very low delay Voice over IP (VoIP) type applications. This document describes the encoding and decoding process. </t> </abstract> </front> <middle> <section anchor="Introduction" title="Introduction"> <t> This document describes the CELT codec, which is designed for transmitting full-bandwidth audio with very low delay. It is suitable for encoding both speech and music and rates starting at 32 kbit/s. It is primarly designed for transmission over packet networks and protocols such as RTP <xref target="rfc3550"/>, but also includes a certain amount of robustness to bit errors, where this could be done at no significant cost. The codec features are: </t> <t> <list style="symbols"> <t>Ultra-low algorithmic delay (typically 3 to 9 ms)</t> <t>Full audio bandwidth (44.1 kHz and 48 kHz)</t> <t>Support for both voice and music</t> <t>Stereo support</t> <t>Packet loss concealment</t> <t>Constant bit-rates from 32 kbps to 128 kbps and above</t> <t>Free software/open-source/royalty-free</t> </list> </t> <t>The novel aspect of CELT compared to most other codecs is its very low delay, below 10 ms. There are two main advantages to having a very low delay audio link. The lower delay itself is important some interactions, such as playing music remotely. Another advantage is the behaviour in presence of acoustic echo. When the round-trip audio delay is sufficiently low, acoustic echo is no longer perceived as a distinct repetition, but as extra reverberation. Applications of CELT include:</t> <t> <list style="symbols"> <t>Live network music performance</t> <t>High-quality teleconferencing</t> <t>Wireless audio equipment</t> <t>Low-delay links for broadcast applications</t> </list> </t> <t> The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 <xref target="rfc2119"></xref>. </t> </section> <section anchor="Overview of the CELT Codec" title="Overview of the CELT Codec"> <t> CELT stands for "Constrained Energy Lapped Transform". This is the fundamental princple of the codec: the quantization process is designed in such a way as to preserve the energy in a certain number of bands. </t> <t>CELT is a transform codec, based on the Modified Discrete Cosine Transform <xref target="mdct"></xref>, which is based on a DCT-IV, with overlap and time-domain aliasing calcellation.</t> </section> <section anchor="CELT Encoder" title="CELT Encoder"> <t>Insert encoder overview</t> <t>The input audio first goes through a pre-emphasis filter, which attenuates the "spectral tilt". The filter is has the transfer function A(z)=1-alpha_p*z^-1, with alpha_p=0.8. The inverse of the pre-emphasis is applied at the decoder.</t> <section anchor="Range Coder" title="Range Coder"> </section> <section anchor="Forward MDCT" title="Forward MDCT"> <t>The MDCT implementation has no special characteristic. The input is a windowed signal (after pre-emphasis) of 2*N samples and the output is N frequency-domain samples. A "low-overlap" window is used to reduce the algorithmc delay. It is composed of a smaller window with symmetric zero padding on both sides. The window is the same as the one used in the Vorbis codec and defined as: W(n)=[sin(pi/2*sin(pi/2*(n+.5)/L))]^2 </t> </section> <section anchor="Energy Envelope Quantization" title="Energy Envelope Quantization"> <t> It is important to quantize the energy with sufficient resolution because any quantization error in the energy cannot be compensated for at a later stage. Regardless of the resolution used for encoding the shape of a band, it is perceptually important to preserve the energy in each band. We use a coarse-fine strategy for encoding the energy in the log domain (dB).</t> <t> The coarse quantization of the energy uses a fixed resolution of 6 dB and is the only place where prediction and entropy coding are used. The prediction is applied both in time (using the previous frame) and in frequency (using the previous band). The 2-D z-transform of the prediction filter is: A(z_l, z_b)=(1-a*z_l^-1)*(1-z_b^-1)/(1-b*z_b^-1) where b is the band index and l is the frame index. We have obtained good results with a=0.8 and b=0.7. To prevent error accumu- lation, the prediction is applied on the quantized log-energy. The prediction step reduces the entropy of the coarsely-quantized energy from 61 to 30 bits. Of this 31-bit reduction, 12 are due to inter-frame prediction. We approximate the ideal probability distribution of the prediction error using a Laplace distribution, which results in an average of 33 bits per frame to encode the energy of all 19 bands at a 6 dB resolution. Because of the short frames, this represents a 15% bitrate savings in a typical configuration. </t> </section> <section anchor="Bit Allocation" title="Bit Allocation"> <t>Bit allocation is performed based only on information available to both the encoder and decoder. The same calculations are performed in a bit-exact manner in both the encoder and decoder to ensure that the result is always exactly the same. Any mismatch would cause an error in the decoded output. </t> <t>For a given band, the bit allocation is nearly constant across frames that use the same number of bits for Q1 , yielding a pre- defined signal-to-mask ratio (SMR) for each band. Because the bands have a width of one Bark, this is equivalent to modelling the masking occurring within each critical band, while ignoring inter- band masking and tone-vs-noise characteristics. While this is not an optimal bit allocation, it provides good results without requiring the transmission of any allocation information. </t> </section> <section anchor="Pitch Prediction" title="Pitch Prediction"> </section> <section anchor="Spherical Vector Quantization" title="Spherical Vector Quantization"> <t>CELT uses a Pyramid Vector Quantization (PVQ) <xref target="PVQ"></xref> codebook for quantising the details of the spectrum in each band that have not been predicted by the pitch predictor. When no pitch is encoded, ... </t> <section anchor="Index Encoding" title="Index Encoding"> </section> </section> <section anchor="Short windows" title="Short windows"> </section> </section> <section anchor="CELT Decoder" title="CELT Decoder"> <t> Some more text </t> <section anchor="Range Decoder" title="Range Decoder"> </section> <section anchor="Spherical VQ Decoder" title="Spherical VQ Decoder"> <t>CELT uses a Pyramid Vector Quantization (PVQ) [] codebook for quantising the details of the spectrum in each band that haven't been predicted by the pitch predictor.</t> </section> <section anchor="Index Decoding" title="Index Decoding"> </section> <section anchor="Backward MDCT" title="Backward MDCT"> </section> <section anchor="Packet Loss Concealment" title="Packet Loss Concealment (PLC)"> </section> </section> <section anchor="Security Considerations" title="Security Considerations"> <t> A potential denial-of-service threat exists for data encodings using compression techniques that have non-uniform receiver-end computational load. The attacker can inject pathological datagrams into the stream which are complex to decode and cause the receiver to be overloaded. However, this encoding does not exhibit any significant non-uniformity. </t> </section> <section anchor="Evaluation of CELT Implementations" title="Evaluation of CELT Implementations"> <t> Insert some text here. </t> </section> <section anchor="Issues that need to be addressed" title="Issues that need to be addressed"> <t> <list> <t>Dynamic bit allocation</t> <t>Stereo coupling</t> </list> </t> </section> <section anchor="Acknowledgments" title="Acknowledgments"> <t> The authors would also like to thank the following members of the CELT and AVT communities for their input: </t> </section> </middle> <back> <references title="Normative References"> <reference anchor="rfc2119"> <front> <title>Key words for use in RFCs to Indicate Requirement Levels </title> <author initials="S." surname="Bradner" fullname="Scott Bradner"><organization/></author> </front> <seriesInfo name="RFC" value="2119" /> </reference> <reference anchor="rfc3550"> <front> <title>RTP: A Transport Protocol for real-time applications</title> <author initials="H." surname="Schulzrinne" fullname=""><organization/></author> <author initials="S." surname="Casner" fullname=""><organization/></author> <author initials="R." surname="Frederick" fullname=""><organization/></author> <author initials="V." surname="Jacobson" fullname=""><organization/></author> </front> <seriesInfo name="RFC" value="3550" /> </reference> </references> <references title="Informative References"> <reference anchor="celt-website"> <front> <title>The CELT ultra-low delay audio codec</title> <author><organization/></author> </front> <seriesInfo name="CELT website" value="http://www.celt-codec.org/" /> </reference> <reference anchor="mdct"> <front> <title>Modified Discrete Cosine Transform</title> <author><organization/></author> </front> <seriesInfo name="MDCT" value="http://en.wikipedia.org/wiki/Modified_discrete_cosine_transform" /> </reference> <reference anchor="PVQ"> <front> <title>A Pyramid Vector Quantizer</title> <author initials="T." surname="Fischer" fullname=""><organization/></author> <date month="July" year="1986" /> </front> <seriesInfo name="Pyramid Vector Quantizer" value="http://en.wikipedia.org/wiki/Modified_discrete_cosine_transform" /> </reference> </references> <section anchor="Reference Implementation" title="Reference Implementation"> <t>Insert a copy of the CELT source code here.</t> <!--<t><?rfc include="source/celt.c"?></t> <t><?rfc include="source/bands.c"?></t> --> </section> </back> </rfc>