ref: 6906210cb0083f6a23acf0d34ddf576be5074f25
parent: ae0e2ca89f81e608bd4c3839bf0cb62be3549e99
author: Jean-Marc Valin <[email protected]>
date: Thu Nov 8 04:42:27 EST 2012
Splits out the CELT encoder and decoder
--- a/celt/celt.c
+++ b/celt/celt.c
@@ -50,63 +50,9 @@
#include "celt_lpc.h"
#include "vq.h"
-#ifndef OPUS_VERSION
-#define OPUS_VERSION "unknown"
-#endif
-#ifdef CUSTOM_MODES
-#define OPUS_CUSTOM_NOSTATIC
-#else
-#define OPUS_CUSTOM_NOSTATIC static inline
-#endif
-
-static const unsigned char trim_icdf[11] = {126, 124, 119, 109, 87, 41, 19, 9, 4, 2, 0};
-/* Probs: NONE: 21.875%, LIGHT: 6.25%, NORMAL: 65.625%, AGGRESSIVE: 6.25% */
-static const unsigned char spread_icdf[4] = {25, 23, 2, 0};
-
-static const unsigned char tapset_icdf[3]={2,1,0};
-
-#ifdef CUSTOM_MODES
-static const unsigned char toOpusTable[20] = {
- 0xE0, 0xE8, 0xF0, 0xF8,
- 0xC0, 0xC8, 0xD0, 0xD8,
- 0xA0, 0xA8, 0xB0, 0xB8,
- 0x00, 0x00, 0x00, 0x00,
- 0x80, 0x88, 0x90, 0x98,
-};
-
-static const unsigned char fromOpusTable[16] = {
- 0x80, 0x88, 0x90, 0x98,
- 0x40, 0x48, 0x50, 0x58,
- 0x20, 0x28, 0x30, 0x38,
- 0x00, 0x08, 0x10, 0x18
-};
-
-static inline int toOpus(unsigned char c)
+int resampling_factor(opus_int32 rate)
{
- int ret=0;
- if (c<0xA0)
- ret = toOpusTable[c>>3];
- if (ret == 0)
- return -1;
- else
- return ret|(c&0x7);
-}
-
-static inline int fromOpus(unsigned char c)
-{
- if (c<0x80)
- return -1;
- else
- return fromOpusTable[(c>>3)-16] | (c&0x7);
-}
-#endif /* CUSTOM_MODES */
-
-#define COMBFILTER_MAXPERIOD 1024
-#define COMBFILTER_MINPERIOD 15
-
-static int resampling_factor(opus_int32 rate)
-{
int ret;
switch (rate)
{
@@ -135,479 +81,8 @@
return ret;
}
-/** Encoder state
- @brief Encoder state
- */
-struct OpusCustomEncoder {
- const OpusCustomMode *mode; /**< Mode used by the encoder */
- int overlap;
- int channels;
- int stream_channels;
- int force_intra;
- int clip;
- int disable_pf;
- int complexity;
- int upsample;
- int start, end;
-
- opus_int32 bitrate;
- int vbr;
- int signalling;
- int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */
- int loss_rate;
- int lsb_depth;
-
- /* Everything beyond this point gets cleared on a reset */
-#define ENCODER_RESET_START rng
-
- opus_uint32 rng;
- int spread_decision;
- opus_val32 delayedIntra;
- int tonal_average;
- int lastCodedBands;
- int hf_average;
- int tapset_decision;
-
- int prefilter_period;
- opus_val16 prefilter_gain;
- int prefilter_tapset;
-#ifdef RESYNTH
- int prefilter_period_old;
- opus_val16 prefilter_gain_old;
- int prefilter_tapset_old;
-#endif
- int consec_transient;
- AnalysisInfo analysis;
-
- opus_val32 preemph_memE[2];
- opus_val32 preemph_memD[2];
-
- /* VBR-related parameters */
- opus_int32 vbr_reservoir;
- opus_int32 vbr_drift;
- opus_int32 vbr_offset;
- opus_int32 vbr_count;
- opus_val16 overlap_max;
- opus_val16 stereo_saving;
- int intensity;
-
-#ifdef RESYNTH
- /* +MAX_PERIOD/2 to make space for overlap */
- celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2];
-#endif
-
- celt_sig in_mem[1]; /* Size = channels*mode->overlap */
- /* celt_sig prefilter_mem[], Size = channels*COMBFILTER_MAXPERIOD */
- /* opus_val16 oldBandE[], Size = channels*mode->nbEBands */
- /* opus_val16 oldLogE[], Size = channels*mode->nbEBands */
- /* opus_val16 oldLogE2[], Size = channels*mode->nbEBands */
-};
-
-int celt_encoder_get_size(int channels)
-{
- CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
- return opus_custom_encoder_get_size(mode, channels);
-}
-
-OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels)
-{
- int size = sizeof(struct CELTEncoder)
- + (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */
- + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */
- + 3*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */
- /* opus_val16 oldLogE[channels*mode->nbEBands]; */
- /* opus_val16 oldLogE2[channels*mode->nbEBands]; */
- return size;
-}
-
-#ifdef CUSTOM_MODES
-CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error)
-{
- int ret;
- CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels));
- /* init will handle the NULL case */
- ret = opus_custom_encoder_init(st, mode, channels);
- if (ret != OPUS_OK)
- {
- opus_custom_encoder_destroy(st);
- st = NULL;
- }
- if (error)
- *error = ret;
- return st;
-}
-#endif /* CUSTOM_MODES */
-
-int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels)
-{
- int ret;
- ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
- if (ret != OPUS_OK)
- return ret;
- st->upsample = resampling_factor(sampling_rate);
- return OPUS_OK;
-}
-
-OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels)
-{
- if (channels < 0 || channels > 2)
- return OPUS_BAD_ARG;
-
- if (st==NULL || mode==NULL)
- return OPUS_ALLOC_FAIL;
-
- OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels));
-
- st->mode = mode;
- st->overlap = mode->overlap;
- st->stream_channels = st->channels = channels;
-
- st->upsample = 1;
- st->start = 0;
- st->end = st->mode->effEBands;
- st->signalling = 1;
-
- st->constrained_vbr = 1;
- st->clip = 1;
-
- st->bitrate = OPUS_BITRATE_MAX;
- st->vbr = 0;
- st->force_intra = 0;
- st->complexity = 5;
- st->lsb_depth=24;
-
- opus_custom_encoder_ctl(st, OPUS_RESET_STATE);
-
- return OPUS_OK;
-}
-
-#ifdef CUSTOM_MODES
-void opus_custom_encoder_destroy(CELTEncoder *st)
-{
- opus_free(st);
-}
-#endif /* CUSTOM_MODES */
-
-static inline opus_val16 SIG2WORD16(celt_sig x)
-{
-#ifdef FIXED_POINT
- x = PSHR32(x, SIG_SHIFT);
- x = MAX32(x, -32768);
- x = MIN32(x, 32767);
- return EXTRACT16(x);
-#else
- return (opus_val16)x;
-#endif
-}
-
-static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C,
- opus_val16 *tf_estimate, int *tf_chan)
-{
- int i;
- VARDECL(opus_val16, tmp);
- opus_val32 mem0,mem1;
- int is_transient = 0;
- opus_int32 mask_metric = 0;
- int c;
- int tf_max;
- /* Table of 6*64/x, trained on real data to minimize the average error */
- static const unsigned char inv_table[128] = {
- 255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25,
- 23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12,
- 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8,
- 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2,
- };
- SAVE_STACK;
- ALLOC(tmp, len, opus_val16);
-
- tf_max = 0;
- for (c=0;c<C;c++)
- {
- opus_val32 mean;
- opus_int32 unmask=0;
- opus_val32 norm;
- mem0=0;
- mem1=0;
- /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */
- for (i=0;i<len;i++)
- {
- opus_val32 x,y;
- x = SHR32(in[i+c*len],SIG_SHIFT);
- y = ADD32(mem0, x);
-#ifdef FIXED_POINT
- mem0 = mem1 + y - SHL32(x,1);
- mem1 = x - SHR32(y,1);
-#else
- mem0 = mem1 + y - 2*x;
- mem1 = x - .5f*y;
-#endif
- tmp[i] = EXTRACT16(SHR32(y,2));
- /*printf("%f ", tmp[i]);*/
- }
- /*printf("\n");*/
- /* First few samples are bad because we don't propagate the memory */
- for (i=0;i<12;i++)
- tmp[i] = 0;
-
-#ifdef FIXED_POINT
- /* Normalize tmp to max range */
- {
- int shift=0;
- shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len));
- if (shift!=0)
- {
- for (i=0;i<len;i++)
- tmp[i] = SHL16(tmp[i], shift);
- }
- }
-#endif
-
- mean=0;
- mem0=0;
- /* Grouping by two to reduce complexity */
- len/=2;
- /* Forward pass to compute the post-echo threshold*/
- for (i=0;i<len;i++)
- {
- opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16);
- mean += x2;
-#ifdef FIXED_POINT
- /* FIXME: Use PSHR16() instead */
- tmp[i] = mem0 + PSHR32(x2-mem0,4);
-#else
- tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0);
-#endif
- mem0 = tmp[i];
- }
-
- mem0=0;
- /* Backward pass to compute the pre-echo threshold */
- for (i=len-1;i>=0;i--)
- {
-#ifdef FIXED_POINT
- /* FIXME: Use PSHR16() instead */
- tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3);
-#else
- tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0);
-#endif
- mem0 = tmp[i];
- }
- /*for (i=0;i<len;i++)printf("%f ", tmp[i]/mean);printf("\n");*/
-
- /* Compute the ratio of the mean energy over the harmonic mean of the energy.
- This essentially corresponds to a bitrate-normalized temporal noise-to-mask
- ratio */
-
- /* Inverse of the mean energy in Q15+6 */
- norm = SHL32(EXTEND32(len),6+14)/ADD32(EPSILON,SHR32(mean,1));
- /* Compute harmonic mean discarding the unreliable boundaries
- The data is smooth, so we only take 1/4th of the samples */
- unmask=0;
- for (i=12;i<len-5;i+=4)
- {
- int id;
-#ifdef FIXED_POINT
- id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */
-#else
- id = IMAX(0,IMIN(127,floor(64*norm*tmp[i]))); /* Do not round to nearest */
-#endif
- unmask += inv_table[id];
- }
- /*printf("%d\n", unmask);*/
- /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */
- unmask = 64*unmask*4/(6*(len-17));
- if (unmask>mask_metric)
- {
- *tf_chan = c;
- mask_metric = unmask;
- }
- }
- is_transient = mask_metric>141;
-
- /* Arbitrary metric for VBR boost */
- tf_max = MAX16(0,celt_sqrt(64*mask_metric)-64);
- /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */
- *tf_estimate = QCONST16(1.f, 14) + celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),IMIN(163,tf_max)),14)-QCONST32(0.139,28)));
- /*printf("%d %f\n", tf_max, mask_metric);*/
- RESTORE_STACK;
-#ifdef FUZZING
- is_transient = rand()&0x1;
-#endif
- /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/
- return is_transient;
-}
-
-/** Apply window and compute the MDCT for all sub-frames and
- all channels in a frame */
-static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, celt_sig * OPUS_RESTRICT out, int C, int LM)
-{
- const int overlap = OVERLAP(mode);
- int N;
- int B;
- int shift;
- int b, c;
- if (shortBlocks)
- {
- B = shortBlocks;
- N = mode->shortMdctSize;
- shift = mode->maxLM;
- } else {
- B = 1;
- N = mode->shortMdctSize<<LM;
- shift = mode->maxLM-LM;
- }
- c=0; do {
- for (b=0;b<B;b++)
- {
- /* Interleaving the sub-frames while doing the MDCTs */
- clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B);
- }
- } while (++c<C);
-}
-
-/** Compute the IMDCT and apply window for all sub-frames and
- all channels in a frame */
-static void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X,
- celt_sig * OPUS_RESTRICT out_mem[], int C, int LM)
-{
- int b, c;
- int B;
- int N;
- int shift;
- const int overlap = OVERLAP(mode);
-
- if (shortBlocks)
- {
- B = shortBlocks;
- N = mode->shortMdctSize;
- shift = mode->maxLM;
- } else {
- B = 1;
- N = mode->shortMdctSize<<LM;
- shift = mode->maxLM-LM;
- }
- c=0; do {
- /* IMDCT on the interleaved the sub-frames, overlap-add is performed by the IMDCT */
- for (b=0;b<B;b++)
- clt_mdct_backward(&mode->mdct, &X[b+c*N*B], out_mem[c]+N*b, mode->window, overlap, shift, B);
- } while (++c<C);
-}
-
-static void preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp,
- int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip)
-{
- int i;
- opus_val16 coef0, coef1;
- celt_sig m;
- int Nu;
-
- coef0 = coef[0];
- coef1 = coef[1];
-
-
- Nu = N/upsample;
- if (upsample!=1)
- {
- for (i=0;i<N;i++)
- inp[i] = 0;
- }
- for (i=0;i<Nu;i++)
- {
- celt_sig x;
-
- x = SCALEIN(pcmp[CC*i]);
-#ifndef FIXED_POINT
- /* Replace NaNs with zeros */
- if (!(x==x))
- x = 0;
-#endif
- inp[i*upsample] = x;
- }
-
-#ifndef FIXED_POINT
- if (clip)
- {
- /* Clip input to avoid encoding non-portable files */
- for (i=0;i<Nu;i++)
- inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample]));
- }
-#endif
- m = *mem;
- if (coef1 == 0)
- {
- for (i=0;i<N;i++)
- {
- celt_sig x;
- x = SHL32(inp[i], SIG_SHIFT);
- /* Apply pre-emphasis */
- inp[i] = x + m;
- m = - MULT16_32_Q15(coef0, x);
- }
- } else {
- opus_val16 coef2 = coef[2];
- for (i=0;i<N;i++)
- {
- opus_val16 x, tmp;
- x = inp[i];
- /* Apply pre-emphasis */
- tmp = MULT16_16(coef2, x);
- inp[i] = tmp + m;
- m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp);
- }
- }
- *mem = m;
-}
-
-static void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem, celt_sig * OPUS_RESTRICT scratch)
-{
- int c;
- int Nd;
- opus_val16 coef0, coef1;
-
- coef0 = coef[0];
- coef1 = coef[1];
- Nd = N/downsample;
- c=0; do {
- int j;
- celt_sig * OPUS_RESTRICT x;
- opus_val16 * OPUS_RESTRICT y;
- celt_sig m = mem[c];
- x =in[c];
- y = pcm+c;
- /* Shortcut for the standard (non-custom modes) case */
- if (coef1 == 0)
- {
- for (j=0;j<N;j++)
- {
- celt_sig tmp = x[j] + m;
- m = MULT16_32_Q15(coef0, tmp);
- scratch[j] = tmp;
- }
- } else {
- opus_val16 coef3 = coef[3];
- for (j=0;j<N;j++)
- {
- celt_sig tmp = x[j] + m;
- m = MULT16_32_Q15(coef0, tmp)
- - MULT16_32_Q15(coef1, x[j]);
- tmp = SHL32(MULT16_32_Q15(coef3, tmp), 2);
- scratch[j] = tmp;
- }
- }
- mem[c] = m;
-
- /* Perform down-sampling */
- for (j=0;j<Nd;j++)
- y[j*C] = SCALEOUT(SIG2WORD16(scratch[j*downsample]));
- } while (++c<C);
-}
-
-static void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
+void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
opus_val16 g0, opus_val16 g1, int tapset0, int tapset1,
const opus_val16 *window, int overlap)
{
@@ -677,7 +152,7 @@
}
}
-static const signed char tf_select_table[4][8] = {
+const signed char tf_select_table[4][8] = {
{0, -1, 0, -1, 0,-1, 0,-1},
{0, -1, 0, -2, 1, 0, 1,-1},
{0, -2, 0, -3, 2, 0, 1,-1},
@@ -684,283 +159,10 @@
{0, -2, 0, -3, 3, 0, 1,-1},
};
-static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias)
-{
- int i;
- opus_val32 L1;
- L1 = 0;
- for (i=0;i<N;i++)
- L1 += EXTEND32(ABS16(tmp[i]));
- /* When in doubt, prefer good freq resolution */
- L1 = MAC16_32_Q15(L1, LM*bias, L1);
- return L1;
-}
-
-static int tf_analysis(const CELTMode *m, int len, int C, int isTransient,
- int *tf_res, int nbCompressedBytes, celt_norm *X, int N0, int LM,
- int *tf_sum, opus_val16 tf_estimate, int tf_chan)
+void init_caps(const CELTMode *m,int *cap,int LM,int C)
{
int i;
- VARDECL(int, metric);
- int cost0;
- int cost1;
- VARDECL(int, path0);
- VARDECL(int, path1);
- VARDECL(celt_norm, tmp);
- VARDECL(celt_norm, tmp_1);
- int lambda;
- int sel;
- int selcost[2];
- int tf_select=0;
- opus_val16 bias;
-
- SAVE_STACK;
- bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(1.5f,14)-tf_estimate));
- /*printf("%f ", bias);*/
-
- if (nbCompressedBytes<15*C)
- {
- *tf_sum = 0;
- for (i=0;i<len;i++)
- tf_res[i] = isTransient;
- return 0;
- }
- if (nbCompressedBytes<40)
- lambda = 12;
- else if (nbCompressedBytes<60)
- lambda = 6;
- else if (nbCompressedBytes<100)
- lambda = 4;
- else
- lambda = 3;
- lambda*=2;
- ALLOC(metric, len, int);
- ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
- ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
- ALLOC(path0, len, int);
- ALLOC(path1, len, int);
-
- *tf_sum = 0;
- for (i=0;i<len;i++)
- {
- int j, k, N;
- int narrow;
- opus_val32 L1, best_L1;
- int best_level=0;
- N = (m->eBands[i+1]-m->eBands[i])<<LM;
- /* band is too narrow to be split down to LM=-1 */
- narrow = (m->eBands[i+1]-m->eBands[i])==1;
- for (j=0;j<N;j++)
- tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)];
- /* Just add the right channel if we're in stereo */
- /*if (C==2)
- for (j=0;j<N;j++)
- tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/
- L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias);
- best_L1 = L1;
- /* Check the -1 case for transients */
- if (isTransient && !narrow)
- {
- for (j=0;j<N;j++)
- tmp_1[j] = tmp[j];
- haar1(tmp_1, N>>LM, 1<<LM);
- L1 = l1_metric(tmp_1, N, LM+1, bias);
- if (L1<best_L1)
- {
- best_L1 = L1;
- best_level = -1;
- }
- }
- /*printf ("%f ", L1);*/
- for (k=0;k<LM+!(isTransient||narrow);k++)
- {
- int B;
-
- if (isTransient)
- B = (LM-k-1);
- else
- B = k+1;
-
- haar1(tmp, N>>k, 1<<k);
-
- L1 = l1_metric(tmp, N, B, bias);
-
- if (L1 < best_L1)
- {
- best_L1 = L1;
- best_level = k+1;
- }
- }
- /*printf ("%d ", isTransient ? LM-best_level : best_level);*/
- /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */
- if (isTransient)
- metric[i] = 2*best_level;
- else
- metric[i] = -2*best_level;
- *tf_sum += (isTransient ? LM : 0) - metric[i]/2;
- /* For bands that can't be split to -1, set the metric to the half-way point to avoid
- biasing the decision */
- if (narrow && (metric[i]==0 || metric[i]==-2*LM))
- metric[i]-=1;
- /*printf("%d ", metric[i]);*/
- }
- /*printf("\n");*/
- /* Search for the optimal tf resolution, including tf_select */
- tf_select = 0;
- for (sel=0;sel<2;sel++)
- {
- cost0 = 0;
- cost1 = isTransient ? 0 : lambda;
- for (i=1;i<len;i++)
- {
- int curr0, curr1;
- curr0 = IMIN(cost0, cost1 + lambda);
- curr1 = IMIN(cost0 + lambda, cost1);
- cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]);
- cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]);
- }
- cost0 = IMIN(cost0, cost1);
- selcost[sel]=cost0;
- }
- /* For now, we're conservative and only allow tf_select=1 for transients.
- * If tests confirm it's useful for non-transients, we could allow it. */
- if (selcost[1]<selcost[0] && isTransient)
- tf_select=1;
- cost0 = 0;
- cost1 = isTransient ? 0 : lambda;
- /* Viterbi forward pass */
- for (i=1;i<len;i++)
- {
- int curr0, curr1;
- int from0, from1;
-
- from0 = cost0;
- from1 = cost1 + lambda;
- if (from0 < from1)
- {
- curr0 = from0;
- path0[i]= 0;
- } else {
- curr0 = from1;
- path0[i]= 1;
- }
-
- from0 = cost0 + lambda;
- from1 = cost1;
- if (from0 < from1)
- {
- curr1 = from0;
- path1[i]= 0;
- } else {
- curr1 = from1;
- path1[i]= 1;
- }
- cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]);
- cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]);
- }
- tf_res[len-1] = cost0 < cost1 ? 0 : 1;
- /* Viterbi backward pass to check the decisions */
- for (i=len-2;i>=0;i--)
- {
- if (tf_res[i+1] == 1)
- tf_res[i] = path1[i+1];
- else
- tf_res[i] = path0[i+1];
- }
- /*printf("%d %f\n", *tf_sum, tf_estimate);*/
- RESTORE_STACK;
-#ifdef FUZZING
- tf_select = rand()&0x1;
- tf_res[0] = rand()&0x1;
- for (i=1;i<len;i++)
- tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0);
-#endif
- return tf_select;
-}
-
-static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc)
-{
- int curr, i;
- int tf_select_rsv;
- int tf_changed;
- int logp;
- opus_uint32 budget;
- opus_uint32 tell;
- budget = enc->storage*8;
- tell = ec_tell(enc);
- logp = isTransient ? 2 : 4;
- /* Reserve space to code the tf_select decision. */
- tf_select_rsv = LM>0 && tell+logp+1 <= budget;
- budget -= tf_select_rsv;
- curr = tf_changed = 0;
- for (i=start;i<end;i++)
- {
- if (tell+logp<=budget)
- {
- ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp);
- tell = ec_tell(enc);
- curr = tf_res[i];
- tf_changed |= curr;
- }
- else
- tf_res[i] = curr;
- logp = isTransient ? 4 : 5;
- }
- /* Only code tf_select if it would actually make a difference. */
- if (tf_select_rsv &&
- tf_select_table[LM][4*isTransient+0+tf_changed]!=
- tf_select_table[LM][4*isTransient+2+tf_changed])
- ec_enc_bit_logp(enc, tf_select, 1);
- else
- tf_select = 0;
- for (i=start;i<end;i++)
- tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
- /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/
-}
-
-static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec)
-{
- int i, curr, tf_select;
- int tf_select_rsv;
- int tf_changed;
- int logp;
- opus_uint32 budget;
- opus_uint32 tell;
-
- budget = dec->storage*8;
- tell = ec_tell(dec);
- logp = isTransient ? 2 : 4;
- tf_select_rsv = LM>0 && tell+logp+1<=budget;
- budget -= tf_select_rsv;
- tf_changed = curr = 0;
- for (i=start;i<end;i++)
- {
- if (tell+logp<=budget)
- {
- curr ^= ec_dec_bit_logp(dec, logp);
- tell = ec_tell(dec);
- tf_changed |= curr;
- }
- tf_res[i] = curr;
- logp = isTransient ? 4 : 5;
- }
- tf_select = 0;
- if (tf_select_rsv &&
- tf_select_table[LM][4*isTransient+0+tf_changed] !=
- tf_select_table[LM][4*isTransient+2+tf_changed])
- {
- tf_select = ec_dec_bit_logp(dec, 1);
- }
- for (i=start;i<end;i++)
- {
- tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
- }
-}
-
-static void init_caps(const CELTMode *m,int *cap,int LM,int C)
-{
- int i;
for (i=0;i<m->nbEBands;i++)
{
int N;
@@ -967,2303 +169,6 @@
N=(m->eBands[i+1]-m->eBands[i])<<LM;
cap[i] = (m->cache.caps[m->nbEBands*(2*LM+C-1)+i]+64)*C*N>>2;
}
-}
-
-static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X,
- const opus_val16 *bandLogE, int end, int LM, int C, int N0,
- AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate,
- int intensity)
-{
- int i;
- opus_val32 diff=0;
- int c;
- int trim_index = 5;
- opus_val16 trim = QCONST16(5.f, 8);
- opus_val16 logXC, logXC2;
- if (C==2)
- {
- opus_val16 sum = 0; /* Q10 */
- opus_val16 minXC; /* Q10 */
- /* Compute inter-channel correlation for low frequencies */
- for (i=0;i<8;i++)
- {
- int j;
- opus_val32 partial = 0;
- for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
- partial = MAC16_16(partial, X[j], X[N0+j]);
- sum = ADD16(sum, EXTRACT16(SHR32(partial, 18)));
- }
- sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum);
- sum = MIN16(QCONST16(1.f, 10), ABS16(sum));
- minXC = sum;
- for (i=8;i<intensity;i++)
- {
- int j;
- opus_val32 partial = 0;
- for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
- partial = MAC16_16(partial, X[j], X[N0+j]);
- minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18))));
- }
- minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC));
- /*printf ("%f\n", sum);*/
- if (sum > QCONST16(.995f,10))
- trim_index-=4;
- else if (sum > QCONST16(.92f,10))
- trim_index-=3;
- else if (sum > QCONST16(.85f,10))
- trim_index-=2;
- else if (sum > QCONST16(.8f,10))
- trim_index-=1;
- /* mid-side savings estimations based on the LF average*/
- logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum));
- /* mid-side savings estimations based on min correlation */
- logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC)));
-#ifdef FIXED_POINT
- /* Compensate for Q20 vs Q14 input and convert output to Q8 */
- logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
- logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
-#endif
-
- trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC));
- *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2));
- }
-
- /* Estimate spectral tilt */
- c=0; do {
- for (i=0;i<end-1;i++)
- {
- diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end);
- }
- } while (++c<C);
- diff /= C*(end-1);
- /*printf("%f\n", diff);*/
- if (diff > QCONST16(2.f, DB_SHIFT))
- trim_index--;
- if (diff > QCONST16(8.f, DB_SHIFT))
- trim_index--;
- if (diff < -QCONST16(4.f, DB_SHIFT))
- trim_index++;
- if (diff < -QCONST16(10.f, DB_SHIFT))
- trim_index++;
- trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 ));
- trim -= 2*SHR16(tf_estimate-QCONST16(1.f,14), 14-8);
-#ifndef FIXED_POINT
- if (analysis->valid)
- {
- trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), 2*(analysis->tonality_slope+.05)));
- }
-#endif
-
-#ifdef FIXED_POINT
- trim_index = PSHR32(trim, 8);
-#else
- trim_index = floor(.5+trim);
-#endif
- if (trim_index<0)
- trim_index = 0;
- if (trim_index>10)
- trim_index = 10;
- /*printf("%d\n", trim_index);*/
-#ifdef FUZZING
- trim_index = rand()%11;
-#endif
- return trim_index;
-}
-
-static int stereo_analysis(const CELTMode *m, const celt_norm *X,
- int LM, int N0)
-{
- int i;
- int thetas;
- opus_val32 sumLR = EPSILON, sumMS = EPSILON;
-
- /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */
- for (i=0;i<13;i++)
- {
- int j;
- for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
- {
- opus_val32 L, R, M, S;
- /* We cast to 32-bit first because of the -32768 case */
- L = EXTEND32(X[j]);
- R = EXTEND32(X[N0+j]);
- M = ADD32(L, R);
- S = SUB32(L, R);
- sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R)));
- sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S)));
- }
- }
- sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS);
- thetas = 13;
- /* We don't need thetas for lower bands with LM<=1 */
- if (LM<=1)
- thetas -= 8;
- return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS)
- > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR);
-}
-
-static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N,
- int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes)
-{
- int c;
- VARDECL(celt_sig, _pre);
- celt_sig *pre[2];
- const CELTMode *mode;
- int pitch_index;
- opus_val16 gain1;
- opus_val16 pf_threshold;
- int pf_on;
- int qg;
- SAVE_STACK;
-
- mode = st->mode;
- ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig);
-
- pre[0] = _pre;
- pre[1] = _pre + (N+COMBFILTER_MAXPERIOD);
-
-
- c=0; do {
- OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD);
- OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N);
- } while (++c<CC);
-
- if (enabled)
- {
- VARDECL(opus_val16, pitch_buf);
- ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16);
-
- pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC);
- /* Don't search for the fir last 1.5 octave of the range because
- there's too many false-positives due to short-term correlation */
- pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N,
- COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index);
- pitch_index = COMBFILTER_MAXPERIOD-pitch_index;
-
- gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD,
- N, &pitch_index, st->prefilter_period, st->prefilter_gain);
- if (pitch_index > COMBFILTER_MAXPERIOD-2)
- pitch_index = COMBFILTER_MAXPERIOD-2;
- gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1);
- /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/
- if (st->loss_rate>2)
- gain1 = HALF32(gain1);
- if (st->loss_rate>4)
- gain1 = HALF32(gain1);
- if (st->loss_rate>8)
- gain1 = 0;
- } else {
- gain1 = 0;
- pitch_index = COMBFILTER_MINPERIOD;
- }
-
- /* Gain threshold for enabling the prefilter/postfilter */
- pf_threshold = QCONST16(.2f,15);
-
- /* Adjusting the threshold based on rate and continuity */
- if (abs(pitch_index-st->prefilter_period)*10>pitch_index)
- pf_threshold += QCONST16(.2f,15);
- if (nbAvailableBytes<25)
- pf_threshold += QCONST16(.1f,15);
- if (nbAvailableBytes<35)
- pf_threshold += QCONST16(.1f,15);
- if (st->prefilter_gain > QCONST16(.4f,15))
- pf_threshold -= QCONST16(.1f,15);
- if (st->prefilter_gain > QCONST16(.55f,15))
- pf_threshold -= QCONST16(.1f,15);
-
- /* Hard threshold at 0.2 */
- pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15));
- if (gain1<pf_threshold)
- {
- gain1 = 0;
- pf_on = 0;
- qg = 0;
- } else {
- /*This block is not gated by a total bits check only because
- of the nbAvailableBytes check above.*/
- if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15))
- gain1=st->prefilter_gain;
-
-#ifdef FIXED_POINT
- qg = ((gain1+1536)>>10)/3-1;
-#else
- qg = (int)floor(.5f+gain1*32/3)-1;
-#endif
- qg = IMAX(0, IMIN(7, qg));
- gain1 = QCONST16(0.09375f,15)*(qg+1);
- pf_on = 1;
- }
- /*printf("%d %f\n", pitch_index, gain1);*/
-
- c=0; do {
- int offset = mode->shortMdctSize-st->overlap;
- st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
- OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap);
- if (offset)
- comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD,
- st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain,
- st->prefilter_tapset, st->prefilter_tapset, NULL, 0);
-
- comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset,
- st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1,
- st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap);
- OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap);
-
- if (N>COMBFILTER_MAXPERIOD)
- {
- OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD);
- } else {
- OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N);
- OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N);
- }
- } while (++c<CC);
-
- RESTORE_STACK;
- *gain = gain1;
- *pitch = pitch_index;
- *qgain = qg;
- return pf_on;
-}
-
-int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc)
-{
- int i, c, N;
- opus_int32 bits;
- ec_enc _enc;
- VARDECL(celt_sig, in);
- VARDECL(celt_sig, freq);
- VARDECL(celt_norm, X);
- VARDECL(celt_ener, bandE);
- VARDECL(opus_val16, bandLogE);
- VARDECL(opus_val16, bandLogE2);
- VARDECL(int, fine_quant);
- VARDECL(opus_val16, error);
- VARDECL(int, pulses);
- VARDECL(int, cap);
- VARDECL(int, offsets);
- VARDECL(int, fine_priority);
- VARDECL(int, tf_res);
- VARDECL(unsigned char, collapse_masks);
- celt_sig *prefilter_mem;
- opus_val16 *oldBandE, *oldLogE, *oldLogE2;
- int shortBlocks=0;
- int isTransient=0;
- const int CC = st->channels;
- const int C = st->stream_channels;
- int LM, M;
- int tf_select;
- int nbFilledBytes, nbAvailableBytes;
- int effEnd;
- int codedBands;
- int tf_sum;
- int alloc_trim;
- int pitch_index=COMBFILTER_MINPERIOD;
- opus_val16 gain1 = 0;
- int dual_stereo=0;
- int effectiveBytes;
- int dynalloc_logp;
- opus_int32 vbr_rate;
- opus_int32 total_bits;
- opus_int32 total_boost;
- opus_int32 balance;
- opus_int32 tell;
- int prefilter_tapset=0;
- int pf_on;
- int anti_collapse_rsv;
- int anti_collapse_on=0;
- int silence=0;
- int tf_chan = 0;
- opus_val16 tf_estimate;
- int pitch_change=0;
- opus_int32 tot_boost=0;
- opus_val16 sample_max;
- opus_val16 maxDepth;
- const OpusCustomMode *mode;
- int nbEBands;
- int overlap;
- const opus_int16 *eBands;
- int secondMdct;
- ALLOC_STACK;
-
- mode = st->mode;
- nbEBands = mode->nbEBands;
- overlap = mode->overlap;
- eBands = mode->eBands;
- tf_estimate = QCONST16(1.0f,14);
- if (nbCompressedBytes<2 || pcm==NULL)
- return OPUS_BAD_ARG;
-
- frame_size *= st->upsample;
- for (LM=0;LM<=mode->maxLM;LM++)
- if (mode->shortMdctSize<<LM==frame_size)
- break;
- if (LM>mode->maxLM)
- return OPUS_BAD_ARG;
- M=1<<LM;
- N = M*mode->shortMdctSize;
-
- prefilter_mem = st->in_mem+CC*(st->overlap);
- oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD));
- oldLogE = oldBandE + CC*nbEBands;
- oldLogE2 = oldLogE + CC*nbEBands;
-
- if (enc==NULL)
- {
- tell=1;
- nbFilledBytes=0;
- } else {
- tell=ec_tell(enc);
- nbFilledBytes=(tell+4)>>3;
- }
-
-#ifdef CUSTOM_MODES
- if (st->signalling && enc==NULL)
- {
- int tmp = (mode->effEBands-st->end)>>1;
- st->end = IMAX(1, mode->effEBands-tmp);
- compressed[0] = tmp<<5;
- compressed[0] |= LM<<3;
- compressed[0] |= (C==2)<<2;
- /* Convert "standard mode" to Opus header */
- if (mode->Fs==48000 && mode->shortMdctSize==120)
- {
- int c0 = toOpus(compressed[0]);
- if (c0<0)
- return OPUS_BAD_ARG;
- compressed[0] = c0;
- }
- compressed++;
- nbCompressedBytes--;
- }
-#else
- celt_assert(st->signalling==0);
-#endif
-
- /* Can't produce more than 1275 output bytes */
- nbCompressedBytes = IMIN(nbCompressedBytes,1275);
- nbAvailableBytes = nbCompressedBytes - nbFilledBytes;
-
- if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX)
- {
- opus_int32 den=mode->Fs>>BITRES;
- vbr_rate=(st->bitrate*frame_size+(den>>1))/den;
-#ifdef CUSTOM_MODES
- if (st->signalling)
- vbr_rate -= 8<<BITRES;
-#endif
- effectiveBytes = vbr_rate>>(3+BITRES);
- } else {
- opus_int32 tmp;
- vbr_rate = 0;
- tmp = st->bitrate*frame_size;
- if (tell>1)
- tmp += tell;
- if (st->bitrate!=OPUS_BITRATE_MAX)
- nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes,
- (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling));
- effectiveBytes = nbCompressedBytes;
- }
-
- if (enc==NULL)
- {
- ec_enc_init(&_enc, compressed, nbCompressedBytes);
- enc = &_enc;
- }
-
- if (vbr_rate>0)
- {
- /* Computes the max bit-rate allowed in VBR mode to avoid violating the
- target rate and buffering.
- We must do this up front so that bust-prevention logic triggers
- correctly if we don't have enough bits. */
- if (st->constrained_vbr)
- {
- opus_int32 vbr_bound;
- opus_int32 max_allowed;
- /* We could use any multiple of vbr_rate as bound (depending on the
- delay).
- This is clamped to ensure we use at least two bytes if the encoder
- was entirely empty, but to allow 0 in hybrid mode. */
- vbr_bound = vbr_rate;
- max_allowed = IMIN(IMAX(tell==1?2:0,
- (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)),
- nbAvailableBytes);
- if(max_allowed < nbAvailableBytes)
- {
- nbCompressedBytes = nbFilledBytes+max_allowed;
- nbAvailableBytes = max_allowed;
- ec_enc_shrink(enc, nbCompressedBytes);
- }
- }
- }
- total_bits = nbCompressedBytes*8;
-
- effEnd = st->end;
- if (effEnd > mode->effEBands)
- effEnd = mode->effEBands;
-
- ALLOC(in, CC*(N+st->overlap), celt_sig);
-
- sample_max=MAX16(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample));
- st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample);
- sample_max=MAX16(sample_max, st->overlap_max);
-#ifdef FIXED_POINT
- silence = (sample_max==0);
-#else
- silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth));
-#endif
-#ifdef FUZZING
- if ((rand()&0x3F)==0)
- silence = 1;
-#endif
- if (tell==1)
- ec_enc_bit_logp(enc, silence, 15);
- else
- silence=0;
- if (silence)
- {
- /*In VBR mode there is no need to send more than the minimum. */
- if (vbr_rate>0)
- {
- effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2);
- total_bits=nbCompressedBytes*8;
- nbAvailableBytes=2;
- ec_enc_shrink(enc, nbCompressedBytes);
- }
- /* Pretend we've filled all the remaining bits with zeros
- (that's what the initialiser did anyway) */
- tell = nbCompressedBytes*8;
- enc->nbits_total+=tell-ec_tell(enc);
- }
- c=0; do {
- preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample,
- mode->preemph, st->preemph_memE+c, st->clip);
- } while (++c<CC);
-
-
-
- /* Find pitch period and gain */
- {
- int enabled;
- int qg;
- enabled = nbAvailableBytes>12*C && st->start==0 && !silence && !st->disable_pf && st->complexity >= 5;
-
- prefilter_tapset = st->tapset_decision;
- pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes);
- if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && st->analysis.tonality > .3
- && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period))
- pitch_change = 1;
- if (pf_on==0)
- {
- if(st->start==0 && tell+16<=total_bits)
- ec_enc_bit_logp(enc, 0, 1);
- } else {
- /*This block is not gated by a total bits check only because
- of the nbAvailableBytes check above.*/
- int octave;
- ec_enc_bit_logp(enc, 1, 1);
- pitch_index += 1;
- octave = EC_ILOG(pitch_index)-5;
- ec_enc_uint(enc, octave, 6);
- ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave);
- pitch_index -= 1;
- ec_enc_bits(enc, qg, 3);
- ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2);
- }
- }
-
- isTransient = 0;
- shortBlocks = 0;
- if (LM>0 && ec_tell(enc)+3<=total_bits)
- {
- if (st->complexity > 1)
- {
- isTransient = transient_analysis(in, N+st->overlap, CC,
- &tf_estimate, &tf_chan);
- if (isTransient)
- shortBlocks = M;
- }
- ec_enc_bit_logp(enc, isTransient, 3);
- }
-
- ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */
- ALLOC(bandE,nbEBands*CC, celt_ener);
- ALLOC(bandLogE,nbEBands*CC, opus_val16);
-
- secondMdct = shortBlocks && st->complexity>=8;
- ALLOC(bandLogE2, C*nbEBands, opus_val16);
- if (secondMdct)
- {
- compute_mdcts(mode, 0, in, freq, CC, LM);
- if (CC==2&&C==1)
- {
- for (i=0;i<N;i++)
- freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i]));
- }
- if (st->upsample != 1)
- {
- c=0; do
- {
- int bound = N/st->upsample;
- for (i=0;i<bound;i++)
- freq[c*N+i] *= st->upsample;
- for (;i<N;i++)
- freq[c*N+i] = 0;
- } while (++c<C);
- }
- compute_band_energies(mode, freq, bandE, effEnd, C, M);
- amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C);
- for (i=0;i<C*nbEBands;i++)
- bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT));
- }
-
- compute_mdcts(mode, shortBlocks, in, freq, CC, LM);
-
- if (CC==2&&C==1)
- {
- for (i=0;i<N;i++)
- freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i]));
- tf_chan = 0;
- }
- if (st->upsample != 1)
- {
- c=0; do
- {
- int bound = N/st->upsample;
- for (i=0;i<bound;i++)
- freq[c*N+i] *= st->upsample;
- for (;i<N;i++)
- freq[c*N+i] = 0;
- } while (++c<C);
- }
- compute_band_energies(mode, freq, bandE, effEnd, C, M);
-
- amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C);
- /*for (i=0;i<21;i++)
- printf("%f ", bandLogE[i]);
- printf("\n");*/
-
- if (!secondMdct)
- {
- for (i=0;i<C*nbEBands;i++)
- bandLogE2[i] = bandLogE[i];
- }
-
- ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
-
- /* Band normalisation */
- normalise_bands(mode, freq, X, bandE, effEnd, C, M);
-
- ALLOC(tf_res, nbEBands, int);
- tf_select = tf_analysis(mode, effEnd, C, isTransient, tf_res, effectiveBytes, X, N, LM, &tf_sum, tf_estimate, tf_chan);
- for (i=effEnd;i<st->end;i++)
- tf_res[i] = tf_res[effEnd-1];
-
- ALLOC(error, C*nbEBands, opus_val16);
- quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE,
- oldBandE, total_bits, error, enc,
- C, LM, nbAvailableBytes, st->force_intra,
- &st->delayedIntra, st->complexity >= 4, st->loss_rate);
-
- tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc);
-
- if (ec_tell(enc)+4<=total_bits)
- {
- if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C)
- {
- if (st->complexity == 0)
- st->spread_decision = SPREAD_NONE;
- } else {
- if (st->analysis.valid)
- {
- static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)};
- static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)};
- static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)};
- static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)};
- st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision);
- st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision);
- } else {
- st->spread_decision = spreading_decision(mode, X,
- &st->tonal_average, st->spread_decision, &st->hf_average,
- &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M);
- }
- /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/
- /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/
- }
- ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5);
- }
-
- ALLOC(cap, nbEBands, int);
- ALLOC(offsets, nbEBands, int);
-
- init_caps(mode,cap,LM,C);
- for (i=0;i<nbEBands;i++)
- offsets[i] = 0;
- /* Dynamic allocation code */
- maxDepth=-QCONST16(32.f, DB_SHIFT);
- /* Make sure that dynamic allocation can't make us bust the budget */
- if (effectiveBytes > 50 && LM>=1)
- {
- int last=0;
- VARDECL(opus_val16, follower);
- ALLOC(follower, C*nbEBands, opus_val16);
- c=0;do
- {
- follower[c*nbEBands] = bandLogE2[c*nbEBands];
- for (i=1;i<st->end;i++)
- {
- /* The last band to be at least 3 dB higher than the previous one
- is the last we'll consider. Otherwise, we run into problems on
- bandlimited signals. */
- if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT))
- last=i;
- follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]);
- }
- for (i=last-1;i>=0;i--)
- follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i]));
- for (i=0;i<st->end;i++)
- {
- opus_val16 noise_floor;
- /* Noise floor must take into account eMeans, the depth, the width of the bands
- and the preemphasis filter (approx. square of bark band ID) */
- noise_floor = MULT16_16(QCONST16(0.0625f, DB_SHIFT),mode->logN[i])
- +QCONST16(.5f,DB_SHIFT)+SHL16(9-st->lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6)
- +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5));
- follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor);
- maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor);
- }
- } while (++c<C);
- if (C==2)
- {
- for (i=st->start;i<st->end;i++)
- {
- /* Consider 24 dB "cross-talk" */
- follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[ i]-QCONST16(4.f,DB_SHIFT));
- follower[ i] = MAX16(follower[ i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT));
- follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i]));
- }
- } else {
- for (i=st->start;i<st->end;i++)
- {
- follower[i] = MAX16(0, bandLogE[i]-follower[i]);
- }
- }
- /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */
- if ((!st->vbr || st->constrained_vbr)&&!isTransient)
- {
- for (i=st->start;i<st->end;i++)
- follower[i] = HALF16(follower[i]);
- }
- for (i=st->start;i<st->end;i++)
- {
- int width;
- int boost;
- int boost_bits;
-
- if (i<8)
- follower[i] *= 2;
- if (i>=12)
- follower[i] = HALF16(follower[i]);
- follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT));
-
- width = C*(eBands[i+1]-eBands[i])<<LM;
- if (width<6)
- {
- boost = SHR32(EXTEND32(follower[i]),DB_SHIFT);
- boost_bits = boost*width<<BITRES;
- } else if (width > 48) {
- boost = SHR32(EXTEND32(follower[i])*8,DB_SHIFT);
- boost_bits = (boost*width<<BITRES)/8;
- } else {
- boost = SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT);
- boost_bits = boost*6<<BITRES;
- }
- /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */
- if ((!st->vbr || (st->constrained_vbr&&!isTransient))
- && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4)
- {
- offsets[i] = 0;
- break;
- } else {
- offsets[i] = boost;
- tot_boost += boost_bits;
- }
- }
- }
- dynalloc_logp = 6;
- total_bits<<=BITRES;
- total_boost = 0;
- tell = ec_tell_frac(enc);
- for (i=st->start;i<st->end;i++)
- {
- int width, quanta;
- int dynalloc_loop_logp;
- int boost;
- int j;
- width = C*(eBands[i+1]-eBands[i])<<LM;
- /* quanta is 6 bits, but no more than 1 bit/sample
- and no less than 1/8 bit/sample */
- quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
- dynalloc_loop_logp = dynalloc_logp;
- boost = 0;
- for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost
- && boost < cap[i]; j++)
- {
- int flag;
- flag = j<offsets[i];
- ec_enc_bit_logp(enc, flag, dynalloc_loop_logp);
- tell = ec_tell_frac(enc);
- if (!flag)
- break;
- boost += quanta;
- total_boost += quanta;
- dynalloc_loop_logp = 1;
- }
- /* Making dynalloc more likely */
- if (j)
- dynalloc_logp = IMAX(2, dynalloc_logp-1);
- offsets[i] = boost;
- }
-
- if (C==2)
- {
- int effectiveRate;
-
- static const opus_val16 intensity_thresholds[21]=
- /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 off*/
- { 16,21,23,25,27,29,31,33,35,38,42,46,50,54,58,63,68,75,84,102,130};
- static const opus_val16 intensity_histeresis[21]=
- { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 8, 12};
-
- /* Always use MS for 2.5 ms frames until we can do a better analysis */
- if (LM!=0)
- dual_stereo = stereo_analysis(mode, X, LM, N);
-
- /* Account for coarse energy */
- effectiveRate = (8*effectiveBytes - 80)>>LM;
-
- /* effectiveRate in kb/s */
- effectiveRate = 2*effectiveRate/5;
-
- st->intensity = hysteresis_decision(effectiveRate, intensity_thresholds, intensity_histeresis, 21, st->intensity);
- st->intensity = IMIN(st->end,IMAX(st->start, st->intensity));
- }
-
- alloc_trim = 5;
- if (tell+(6<<BITRES) <= total_bits - total_boost)
- {
- alloc_trim = alloc_trim_analysis(mode, X, bandLogE,
- st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity);
- ec_enc_icdf(enc, alloc_trim, trim_icdf, 7);
- tell = ec_tell_frac(enc);
- }
-
- /* Variable bitrate */
- if (vbr_rate>0)
- {
- opus_val16 alpha;
- opus_int32 delta;
- /* The target rate in 8th bits per frame */
- opus_int32 target, base_target;
- opus_int32 min_allowed;
- int coded_bins;
- int coded_bands;
- int lm_diff = mode->maxLM - LM;
- coded_bands = st->lastCodedBands ? st->lastCodedBands : nbEBands;
- coded_bins = eBands[coded_bands]<<LM;
- if (C==2)
- coded_bins += eBands[IMIN(st->intensity, coded_bands)]<<LM;
-
- /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms.
- The CELT allocator will just not be able to use more than that anyway. */
- nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM));
- target = vbr_rate - ((40*C+20)<<BITRES);
- base_target = target;
-
- if (st->constrained_vbr)
- target += (st->vbr_offset>>lm_diff);
-
- /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/
-#ifndef FIXED_POINT
- if (st->analysis.valid && st->analysis.activity<.4)
- target -= (coded_bins<<BITRES)*1*(.4-st->analysis.activity);
-#endif
- /* Stereo savings */
- if (C==2)
- {
- int coded_stereo_bands;
- int coded_stereo_dof;
- coded_stereo_bands = IMIN(st->intensity, coded_bands);
- coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands;
- /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/
- target -= MIN32(target/3, SHR16(MULT16_16(st->stereo_saving,(coded_stereo_dof<<BITRES)),8));
- target += MULT16_16_Q15(QCONST16(0.035,15),coded_stereo_dof<<BITRES);
- }
- /* Limits starving of other bands when using dynalloc */
- target += tot_boost;
- /* Compensates for the average transient boost */
- target = MULT16_32_Q15(QCONST16(0.96f,15),target);
- /* Apply transient boost */
- target = SHL32(MULT16_32_Q15(tf_estimate, target),1);
-
-#ifndef FIXED_POINT
- /* Apply tonality boost */
- if (st->analysis.valid) {
- int tonal_target;
- float tonal;
-
- /* Compensates for the average tonality boost */
- target -= MULT16_16_Q15(QCONST16(0.13f,15),coded_bins<<BITRES);
-
- tonal = MAX16(0,st->analysis.tonality-.2);
- tonal_target = target + (coded_bins<<BITRES)*2.0f*tonal;
- if (pitch_change)
- tonal_target += (coded_bins<<BITRES)*.8;
- /*printf("%f %f ", st->analysis.tonality, tonal);*/
- target = IMAX(tonal_target,target);
- }
-#endif
-
- {
- opus_int32 floor_depth;
- int bins;
- bins = eBands[nbEBands-2]<<LM;
- /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/
- floor_depth = SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT);
- floor_depth = IMAX(floor_depth, target>>2);
- target = IMIN(target, floor_depth);
- /*printf("%f %d\n", maxDepth, floor_depth);*/
- }
-
- if (st->constrained_vbr || st->bitrate<64000)
- {
- opus_val16 rate_factor;
-#ifdef FIXED_POINT
- rate_factor = MAX16(0,(st->bitrate-32000));
-#else
- rate_factor = MAX16(0,(1.f/32768)*(st->bitrate-32000));
-#endif
- if (st->constrained_vbr)
- rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15));
- target = base_target + MULT16_32_Q15(rate_factor, target-base_target);
-
- }
- /* Don't allow more than doubling the rate */
- target = IMIN(2*base_target, target);
-
- /* The current offset is removed from the target and the space used
- so far is added*/
- target=target+tell;
- /* In VBR mode the frame size must not be reduced so much that it would
- result in the encoder running out of bits.
- The margin of 2 bytes ensures that none of the bust-prevention logic
- in the decoder will have triggered so far. */
- min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes;
-
- nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3);
- nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes);
- nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes;
-
- /* By how much did we "miss" the target on that frame */
- delta = target - vbr_rate;
-
- target=nbAvailableBytes<<(BITRES+3);
-
- /*If the frame is silent we don't adjust our drift, otherwise
- the encoder will shoot to very high rates after hitting a
- span of silence, but we do allow the bitres to refill.
- This means that we'll undershoot our target in CVBR/VBR modes
- on files with lots of silence. */
- if(silence)
- {
- nbAvailableBytes = 2;
- target = 2*8<<BITRES;
- delta = 0;
- }
-
- if (st->vbr_count < 970)
- {
- st->vbr_count++;
- alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16));
- } else
- alpha = QCONST16(.001f,15);
- /* How many bits have we used in excess of what we're allowed */
- if (st->constrained_vbr)
- st->vbr_reservoir += target - vbr_rate;
- /*printf ("%d\n", st->vbr_reservoir);*/
-
- /* Compute the offset we need to apply in order to reach the target */
- if (st->constrained_vbr)
- {
- st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift);
- st->vbr_offset = -st->vbr_drift;
- }
- /*printf ("%d\n", st->vbr_drift);*/
-
- if (st->constrained_vbr && st->vbr_reservoir < 0)
- {
- /* We're under the min value -- increase rate */
- int adjust = (-st->vbr_reservoir)/(8<<BITRES);
- /* Unless we're just coding silence */
- nbAvailableBytes += silence?0:adjust;
- st->vbr_reservoir = 0;
- /*printf ("+%d\n", adjust);*/
- }
- nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes);
- /*printf("%d\n", nbCompressedBytes*50*8);*/
- /* This moves the raw bits to take into account the new compressed size */
- ec_enc_shrink(enc, nbCompressedBytes);
- }
-
- /* Bit allocation */
- ALLOC(fine_quant, nbEBands, int);
- ALLOC(pulses, nbEBands, int);
- ALLOC(fine_priority, nbEBands, int);
-
- /* bits = packet size - where we are - safety*/
- bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1;
- anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
- bits -= anti_collapse_rsv;
- codedBands = compute_allocation(mode, st->start, st->end, offsets, cap,
- alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses,
- fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands);
- st->lastCodedBands = codedBands;
-
- quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C);
-
-#ifdef MEASURE_NORM_MSE
- float X0[3000];
- float bandE0[60];
- c=0; do
- for (i=0;i<N;i++)
- X0[i+c*N] = X[i+c*N];
- while (++c<C);
- for (i=0;i<C*nbEBands;i++)
- bandE0[i] = bandE[i];
-#endif
-
- /* Residual quantisation */
- ALLOC(collapse_masks, C*nbEBands, unsigned char);
- quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
- bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res,
- nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng);
-
- if (anti_collapse_rsv > 0)
- {
- anti_collapse_on = st->consec_transient<2;
-#ifdef FUZZING
- anti_collapse_on = rand()&0x1;
-#endif
- ec_enc_bits(enc, anti_collapse_on, 1);
- }
- quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C);
-
- if (silence)
- {
- for (i=0;i<C*nbEBands;i++)
- oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
- }
-
-#ifdef RESYNTH
- /* Re-synthesis of the coded audio if required */
- {
- celt_sig *out_mem[2];
-
- log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
- if (silence)
- {
- for (i=0;i<C*nbEBands;i++)
- bandE[i] = 0;
- }
-
-#ifdef MEASURE_NORM_MSE
- measure_norm_mse(mode, X, X0, bandE, bandE0, M, N, C);
-#endif
- if (anti_collapse_on)
- {
- anti_collapse(mode, X, collapse_masks, LM, C, N,
- st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
- }
-
- /* Synthesis */
- denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M);
-
- c=0; do {
- OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap);
- } while (++c<CC);
-
- if (CC==2&&C==1)
- {
- for (i=0;i<N;i++)
- freq[N+i] = freq[i];
- }
-
- c=0; do {
- out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N;
- } while (++c<CC);
-
- compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM);
-
- c=0; do {
- st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
- st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD);
- comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize,
- st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset,
- mode->window, st->overlap);
- if (LM!=0)
- comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize,
- st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset,
- mode->window, overlap);
- } while (++c<CC);
-
- /* We reuse freq[] as scratch space for the de-emphasis */
- deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq);
- st->prefilter_period_old = st->prefilter_period;
- st->prefilter_gain_old = st->prefilter_gain;
- st->prefilter_tapset_old = st->prefilter_tapset;
- }
-#endif
-
- st->prefilter_period = pitch_index;
- st->prefilter_gain = gain1;
- st->prefilter_tapset = prefilter_tapset;
-#ifdef RESYNTH
- if (LM!=0)
- {
- st->prefilter_period_old = st->prefilter_period;
- st->prefilter_gain_old = st->prefilter_gain;
- st->prefilter_tapset_old = st->prefilter_tapset;
- }
-#endif
-
- if (CC==2&&C==1) {
- for (i=0;i<nbEBands;i++)
- oldBandE[nbEBands+i]=oldBandE[i];
- }
-
- if (!isTransient)
- {
- for (i=0;i<CC*nbEBands;i++)
- oldLogE2[i] = oldLogE[i];
- for (i=0;i<CC*nbEBands;i++)
- oldLogE[i] = oldBandE[i];
- } else {
- for (i=0;i<CC*nbEBands;i++)
- oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
- }
- /* In case start or end were to change */
- c=0; do
- {
- for (i=0;i<st->start;i++)
- {
- oldBandE[c*nbEBands+i]=0;
- oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
- }
- for (i=st->end;i<nbEBands;i++)
- {
- oldBandE[c*nbEBands+i]=0;
- oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
- }
- } while (++c<CC);
-
- if (isTransient)
- st->consec_transient++;
- else
- st->consec_transient=0;
- st->rng = enc->rng;
-
- /* If there's any room left (can only happen for very high rates),
- it's already filled with zeros */
- ec_enc_done(enc);
-
-#ifdef CUSTOM_MODES
- if (st->signalling)
- nbCompressedBytes++;
-#endif
-
- RESTORE_STACK;
- if (ec_get_error(enc))
- return OPUS_INTERNAL_ERROR;
- else
- return nbCompressedBytes;
-}
-
-
-#ifdef CUSTOM_MODES
-
-#ifdef FIXED_POINT
-int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
-{
- return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
-}
-
-#ifndef DISABLE_FLOAT_API
-int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
-{
- int j, ret, C, N;
- VARDECL(opus_int16, in);
- ALLOC_STACK;
-
- if (pcm==NULL)
- return OPUS_BAD_ARG;
-
- C = st->channels;
- N = frame_size;
- ALLOC(in, C*N, opus_int16);
-
- for (j=0;j<C*N;j++)
- in[j] = FLOAT2INT16(pcm[j]);
-
- ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
-#ifdef RESYNTH
- for (j=0;j<C*N;j++)
- ((float*)pcm)[j]=in[j]*(1.f/32768.f);
-#endif
- RESTORE_STACK;
- return ret;
-}
-#endif /* DISABLE_FLOAT_API */
-#else
-
-int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
-{
- int j, ret, C, N;
- VARDECL(celt_sig, in);
- ALLOC_STACK;
-
- if (pcm==NULL)
- return OPUS_BAD_ARG;
-
- C=st->channels;
- N=frame_size;
- ALLOC(in, C*N, celt_sig);
- for (j=0;j<C*N;j++) {
- in[j] = SCALEOUT(pcm[j]);
- }
-
- ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
-#ifdef RESYNTH
- for (j=0;j<C*N;j++)
- ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]);
-#endif
- RESTORE_STACK;
- return ret;
-}
-
-int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
-{
- return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
-}
-
-#endif
-
-#endif /* CUSTOM_MODES */
-
-int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...)
-{
- va_list ap;
-
- va_start(ap, request);
- switch (request)
- {
- case OPUS_SET_COMPLEXITY_REQUEST:
- {
- int value = va_arg(ap, opus_int32);
- if (value<0 || value>10)
- goto bad_arg;
- st->complexity = value;
- }
- break;
- case CELT_SET_START_BAND_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- if (value<0 || value>=st->mode->nbEBands)
- goto bad_arg;
- st->start = value;
- }
- break;
- case CELT_SET_END_BAND_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- if (value<1 || value>st->mode->nbEBands)
- goto bad_arg;
- st->end = value;
- }
- break;
- case CELT_SET_PREDICTION_REQUEST:
- {
- int value = va_arg(ap, opus_int32);
- if (value<0 || value>2)
- goto bad_arg;
- st->disable_pf = value<=1;
- st->force_intra = value==0;
- }
- break;
- case OPUS_SET_PACKET_LOSS_PERC_REQUEST:
- {
- int value = va_arg(ap, opus_int32);
- if (value<0 || value>100)
- goto bad_arg;
- st->loss_rate = value;
- }
- break;
- case OPUS_SET_VBR_CONSTRAINT_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- st->constrained_vbr = value;
- }
- break;
- case OPUS_SET_VBR_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- st->vbr = value;
- }
- break;
- case OPUS_SET_BITRATE_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- if (value<=500 && value!=OPUS_BITRATE_MAX)
- goto bad_arg;
- value = IMIN(value, 260000*st->channels);
- st->bitrate = value;
- }
- break;
- case CELT_SET_CHANNELS_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- if (value<1 || value>2)
- goto bad_arg;
- st->stream_channels = value;
- }
- break;
- case OPUS_SET_LSB_DEPTH_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- if (value<8 || value>24)
- goto bad_arg;
- st->lsb_depth=value;
- }
- break;
- case OPUS_GET_LSB_DEPTH_REQUEST:
- {
- opus_int32 *value = va_arg(ap, opus_int32*);
- *value=st->lsb_depth;
- }
- break;
- case OPUS_RESET_STATE:
- {
- int i;
- opus_val16 *oldBandE, *oldLogE, *oldLogE2;
- oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD));
- oldLogE = oldBandE + st->channels*st->mode->nbEBands;
- oldLogE2 = oldLogE + st->channels*st->mode->nbEBands;
- OPUS_CLEAR((char*)&st->ENCODER_RESET_START,
- opus_custom_encoder_get_size(st->mode, st->channels)-
- ((char*)&st->ENCODER_RESET_START - (char*)st));
- for (i=0;i<st->channels*st->mode->nbEBands;i++)
- oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
- st->vbr_offset = 0;
- st->delayedIntra = 1;
- st->spread_decision = SPREAD_NORMAL;
- st->tonal_average = 256;
- st->hf_average = 0;
- st->tapset_decision = 0;
- }
- break;
-#ifdef CUSTOM_MODES
- case CELT_SET_INPUT_CLIPPING_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- st->clip = value;
- }
- break;
-#endif
- case CELT_SET_SIGNALLING_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- st->signalling = value;
- }
- break;
- case CELT_SET_ANALYSIS_REQUEST:
- {
- AnalysisInfo *info = va_arg(ap, AnalysisInfo *);
- if (info)
- OPUS_COPY(&st->analysis, info, 1);
- }
- break;
- case CELT_GET_MODE_REQUEST:
- {
- const CELTMode ** value = va_arg(ap, const CELTMode**);
- if (value==0)
- goto bad_arg;
- *value=st->mode;
- }
- break;
- case OPUS_GET_FINAL_RANGE_REQUEST:
- {
- opus_uint32 * value = va_arg(ap, opus_uint32 *);
- if (value==0)
- goto bad_arg;
- *value=st->rng;
- }
- break;
- default:
- goto bad_request;
- }
- va_end(ap);
- return OPUS_OK;
-bad_arg:
- va_end(ap);
- return OPUS_BAD_ARG;
-bad_request:
- va_end(ap);
- return OPUS_UNIMPLEMENTED;
-}
-
-/**********************************************************************/
-/* */
-/* DECODER */
-/* */
-/**********************************************************************/
-#define DECODE_BUFFER_SIZE 2048
-
-/** Decoder state
- @brief Decoder state
- */
-struct OpusCustomDecoder {
- const OpusCustomMode *mode;
- int overlap;
- int channels;
- int stream_channels;
-
- int downsample;
- int start, end;
- int signalling;
-
- /* Everything beyond this point gets cleared on a reset */
-#define DECODER_RESET_START rng
-
- opus_uint32 rng;
- int error;
- int last_pitch_index;
- int loss_count;
- int postfilter_period;
- int postfilter_period_old;
- opus_val16 postfilter_gain;
- opus_val16 postfilter_gain_old;
- int postfilter_tapset;
- int postfilter_tapset_old;
-
- celt_sig preemph_memD[2];
-
- celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */
- /* opus_val16 lpc[], Size = channels*LPC_ORDER */
- /* opus_val16 oldEBands[], Size = 2*mode->nbEBands */
- /* opus_val16 oldLogE[], Size = 2*mode->nbEBands */
- /* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */
- /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */
-};
-
-int celt_decoder_get_size(int channels)
-{
- const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
- return opus_custom_decoder_get_size(mode, channels);
-}
-
-OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels)
-{
- int size = sizeof(struct CELTDecoder)
- + (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig)
- + channels*LPC_ORDER*sizeof(opus_val16)
- + 4*2*mode->nbEBands*sizeof(opus_val16);
- return size;
-}
-
-#ifdef CUSTOM_MODES
-CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error)
-{
- int ret;
- CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels));
- ret = opus_custom_decoder_init(st, mode, channels);
- if (ret != OPUS_OK)
- {
- opus_custom_decoder_destroy(st);
- st = NULL;
- }
- if (error)
- *error = ret;
- return st;
-}
-#endif /* CUSTOM_MODES */
-
-int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels)
-{
- int ret;
- ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
- if (ret != OPUS_OK)
- return ret;
- st->downsample = resampling_factor(sampling_rate);
- if (st->downsample==0)
- return OPUS_BAD_ARG;
- else
- return OPUS_OK;
-}
-
-OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels)
-{
- if (channels < 0 || channels > 2)
- return OPUS_BAD_ARG;
-
- if (st==NULL)
- return OPUS_ALLOC_FAIL;
-
- OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels));
-
- st->mode = mode;
- st->overlap = mode->overlap;
- st->stream_channels = st->channels = channels;
-
- st->downsample = 1;
- st->start = 0;
- st->end = st->mode->effEBands;
- st->signalling = 1;
-
- st->loss_count = 0;
-
- opus_custom_decoder_ctl(st, OPUS_RESET_STATE);
-
- return OPUS_OK;
-}
-
-#ifdef CUSTOM_MODES
-void opus_custom_decoder_destroy(CELTDecoder *st)
-{
- opus_free(st);
-}
-#endif /* CUSTOM_MODES */
-
-static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, opus_val16 * OPUS_RESTRICT pcm, int N, int LM)
-{
- int c;
- int pitch_index;
- opus_val16 fade = Q15ONE;
- int i, len;
- const int C = st->channels;
- int offset;
- celt_sig *out_mem[2];
- celt_sig *decode_mem[2];
- opus_val16 *lpc;
- opus_val32 *out_syn[2];
- opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
- const OpusCustomMode *mode;
- int nbEBands;
- int overlap;
- const opus_int16 *eBands;
- VARDECL(celt_sig, scratch);
- SAVE_STACK;
-
- mode = st->mode;
- nbEBands = mode->nbEBands;
- overlap = mode->overlap;
- eBands = mode->eBands;
-
- c=0; do {
- decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+st->overlap);
- out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
- } while (++c<C);
- lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*C);
- oldBandE = lpc+C*LPC_ORDER;
- oldLogE = oldBandE + 2*nbEBands;
- oldLogE2 = oldLogE + 2*nbEBands;
- backgroundLogE = oldLogE2 + 2*nbEBands;
-
- c=0; do {
- out_syn[c] = out_mem[c]+MAX_PERIOD-N;
- } while (++c<C);
-
- len = N+overlap;
-
- if (st->loss_count >= 5 || st->start!=0)
- {
- /* Noise-based PLC/CNG */
- VARDECL(celt_sig, freq);
- VARDECL(celt_norm, X);
- VARDECL(celt_ener, bandE);
- opus_uint32 seed;
- int effEnd;
-
- effEnd = st->end;
- if (effEnd > mode->effEBands)
- effEnd = mode->effEBands;
-
- ALLOC(freq, C*N, celt_sig); /**< Interleaved signal MDCTs */
- ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
- ALLOC(bandE, nbEBands*C, celt_ener);
-
- if (st->loss_count >= 5)
- log2Amp(mode, st->start, st->end, bandE, backgroundLogE, C);
- else {
- /* Energy decay */
- opus_val16 decay = st->loss_count==0 ? QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT);
- c=0; do
- {
- for (i=st->start;i<st->end;i++)
- oldBandE[c*nbEBands+i] -= decay;
- } while (++c<C);
- log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
- }
- seed = st->rng;
- for (c=0;c<C;c++)
- {
- for (i=st->start;i<mode->effEBands;i++)
- {
- int j;
- int boffs;
- int blen;
- boffs = N*c+(eBands[i]<<LM);
- blen = (eBands[i+1]-eBands[i])<<LM;
- for (j=0;j<blen;j++)
- {
- seed = celt_lcg_rand(seed);
- X[boffs+j] = (celt_norm)((opus_int32)seed>>20);
- }
- renormalise_vector(X+boffs, blen, Q15ONE);
- }
- }
- st->rng = seed;
-
- denormalise_bands(mode, X, freq, bandE, st->start, mode->effEBands, C, 1<<LM);
-
- c=0; do
- for (i=0;i<eBands[st->start]<<LM;i++)
- freq[c*N+i] = 0;
- while (++c<C);
- c=0; do {
- int bound = eBands[effEnd]<<LM;
- if (st->downsample!=1)
- bound = IMIN(bound, N/st->downsample);
- for (i=bound;i<N;i++)
- freq[c*N+i] = 0;
- } while (++c<C);
- c=0; do {
- OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
- } while (++c<C);
- compute_inv_mdcts(mode, 0, freq, out_syn, C, LM);
- } else {
- /* Pitch-based PLC */
- VARDECL(opus_val32, e);
-
- if (st->loss_count == 0)
- {
- opus_val16 pitch_buf[DECODE_BUFFER_SIZE>>1];
- /* Corresponds to a min pitch of 67 Hz. It's possible to save CPU in this
- search by using only part of the decode buffer */
- int poffset = 720;
- pitch_downsample(decode_mem, pitch_buf, DECODE_BUFFER_SIZE, C);
- /* Max pitch is 100 samples (480 Hz) */
- pitch_search(pitch_buf+((poffset)>>1), pitch_buf, DECODE_BUFFER_SIZE-poffset,
- poffset-100, &pitch_index);
- pitch_index = poffset-pitch_index;
- st->last_pitch_index = pitch_index;
- } else {
- pitch_index = st->last_pitch_index;
- fade = QCONST16(.8f,15);
- }
-
- ALLOC(e, MAX_PERIOD+2*overlap, opus_val32);
- c=0; do {
- opus_val16 exc[MAX_PERIOD];
- opus_val32 ac[LPC_ORDER+1];
- opus_val16 decay = 1;
- opus_val32 S1=0;
- opus_val16 mem[LPC_ORDER]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-
- offset = MAX_PERIOD-pitch_index;
- for (i=0;i<MAX_PERIOD;i++)
- exc[i] = ROUND16(out_mem[c][i], SIG_SHIFT);
-
- if (st->loss_count == 0)
- {
- _celt_autocorr(exc, ac, mode->window, overlap,
- LPC_ORDER, MAX_PERIOD);
-
- /* Noise floor -40 dB */
-#ifdef FIXED_POINT
- ac[0] += SHR32(ac[0],13);
-#else
- ac[0] *= 1.0001f;
-#endif
- /* Lag windowing */
- for (i=1;i<=LPC_ORDER;i++)
- {
- /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/
-#ifdef FIXED_POINT
- ac[i] -= MULT16_32_Q15(2*i*i, ac[i]);
-#else
- ac[i] -= ac[i]*(.008f*i)*(.008f*i);
-#endif
- }
-
- _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER);
- }
- for (i=0;i<LPC_ORDER;i++)
- mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT);
- celt_fir(exc, lpc+c*LPC_ORDER, exc, MAX_PERIOD, LPC_ORDER, mem);
- /*for (i=0;i<MAX_PERIOD;i++)printf("%d ", exc[i]); printf("\n");*/
- /* Check if the waveform is decaying (and if so how fast) */
- {
- opus_val32 E1=1, E2=1;
- int period;
- if (pitch_index <= MAX_PERIOD/2)
- period = pitch_index;
- else
- period = MAX_PERIOD/2;
- for (i=0;i<period;i++)
- {
- E1 += SHR32(MULT16_16(exc[MAX_PERIOD-period+i],exc[MAX_PERIOD-period+i]),8);
- E2 += SHR32(MULT16_16(exc[MAX_PERIOD-2*period+i],exc[MAX_PERIOD-2*period+i]),8);
- }
- if (E1 > E2)
- E1 = E2;
- decay = celt_sqrt(frac_div32(SHR32(E1,1),E2));
- }
-
- /* Copy excitation, taking decay into account */
- for (i=0;i<len+overlap;i++)
- {
- opus_val16 tmp;
- if (offset+i >= MAX_PERIOD)
- {
- offset -= pitch_index;
- decay = MULT16_16_Q15(decay, decay);
- }
- e[i] = SHL32(EXTEND32(MULT16_16_Q15(decay, exc[offset+i])), SIG_SHIFT);
- tmp = ROUND16(out_mem[c][offset+i],SIG_SHIFT);
- S1 += SHR32(MULT16_16(tmp,tmp),8);
- }
- for (i=0;i<LPC_ORDER;i++)
- mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT);
- for (i=0;i<len+overlap;i++)
- e[i] = MULT16_32_Q15(fade, e[i]);
- celt_iir(e, lpc+c*LPC_ORDER, e, len+overlap, LPC_ORDER, mem);
-
- {
- opus_val32 S2=0;
- for (i=0;i<len+overlap;i++)
- {
- opus_val16 tmp = ROUND16(e[i],SIG_SHIFT);
- S2 += SHR32(MULT16_16(tmp,tmp),8);
- }
- /* This checks for an "explosion" in the synthesis */
-#ifdef FIXED_POINT
- if (!(S1 > SHR32(S2,2)))
-#else
- /* Float test is written this way to catch NaNs at the same time */
- if (!(S1 > 0.2f*S2))
-#endif
- {
- for (i=0;i<len+overlap;i++)
- e[i] = 0;
- } else if (S1 < S2)
- {
- opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1));
- for (i=0;i<len+overlap;i++)
- e[i] = MULT16_32_Q15(ratio, e[i]);
- }
- }
-
- /* Apply post-filter to the MDCT overlap of the previous frame */
- comb_filter(out_mem[c]+MAX_PERIOD, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfilter_period, st->overlap,
- st->postfilter_gain, st->postfilter_gain, st->postfilter_tapset, st->postfilter_tapset,
- NULL, 0);
-
- for (i=0;i<MAX_PERIOD+overlap-N;i++)
- out_mem[c][i] = out_mem[c][N+i];
-
- /* Apply TDAC to the concealed audio so that it blends with the
- previous and next frames */
- for (i=0;i<overlap/2;i++)
- {
- opus_val32 tmp;
- tmp = MULT16_32_Q15(mode->window[i], e[N+overlap-1-i]) +
- MULT16_32_Q15(mode->window[overlap-i-1], e[N+i ]);
- out_mem[c][MAX_PERIOD+i] = MULT16_32_Q15(mode->window[overlap-i-1], tmp);
- out_mem[c][MAX_PERIOD+overlap-i-1] = MULT16_32_Q15(mode->window[i], tmp);
- }
- for (i=0;i<N;i++)
- out_mem[c][MAX_PERIOD-N+i] = e[i];
-
- /* Apply pre-filter to the MDCT overlap for the next frame (post-filter will be applied then) */
- comb_filter(e, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfilter_period, st->overlap,
- -st->postfilter_gain, -st->postfilter_gain, st->postfilter_tapset, st->postfilter_tapset,
- NULL, 0);
- for (i=0;i<overlap;i++)
- out_mem[c][MAX_PERIOD+i] = e[i];
- } while (++c<C);
- }
-
- ALLOC(scratch, N, celt_sig);
- deemphasis(out_syn, pcm, N, C, st->downsample, mode->preemph, st->preemph_memD, scratch);
-
- st->loss_count++;
-
- RESTORE_STACK;
-}
-
-int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec)
-{
- int c, i, N;
- int spread_decision;
- opus_int32 bits;
- ec_dec _dec;
- VARDECL(celt_sig, freq);
- VARDECL(celt_norm, X);
- VARDECL(celt_ener, bandE);
- VARDECL(int, fine_quant);
- VARDECL(int, pulses);
- VARDECL(int, cap);
- VARDECL(int, offsets);
- VARDECL(int, fine_priority);
- VARDECL(int, tf_res);
- VARDECL(unsigned char, collapse_masks);
- celt_sig *out_mem[2];
- celt_sig *decode_mem[2];
- celt_sig *out_syn[2];
- opus_val16 *lpc;
- opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
-
- int shortBlocks;
- int isTransient;
- int intra_ener;
- const int CC = st->channels;
- int LM, M;
- int effEnd;
- int codedBands;
- int alloc_trim;
- int postfilter_pitch;
- opus_val16 postfilter_gain;
- int intensity=0;
- int dual_stereo=0;
- opus_int32 total_bits;
- opus_int32 balance;
- opus_int32 tell;
- int dynalloc_logp;
- int postfilter_tapset;
- int anti_collapse_rsv;
- int anti_collapse_on=0;
- int silence;
- int C = st->stream_channels;
- const OpusCustomMode *mode;
- int nbEBands;
- int overlap;
- const opus_int16 *eBands;
- ALLOC_STACK;
-
- mode = st->mode;
- nbEBands = mode->nbEBands;
- overlap = mode->overlap;
- eBands = mode->eBands;
- frame_size *= st->downsample;
-
- c=0; do {
- decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap);
- out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
- } while (++c<CC);
- lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*CC);
- oldBandE = lpc+CC*LPC_ORDER;
- oldLogE = oldBandE + 2*nbEBands;
- oldLogE2 = oldLogE + 2*nbEBands;
- backgroundLogE = oldLogE2 + 2*nbEBands;
-
-#ifdef CUSTOM_MODES
- if (st->signalling && data!=NULL)
- {
- int data0=data[0];
- /* Convert "standard mode" to Opus header */
- if (mode->Fs==48000 && mode->shortMdctSize==120)
- {
- data0 = fromOpus(data0);
- if (data0<0)
- return OPUS_INVALID_PACKET;
- }
- st->end = IMAX(1, mode->effEBands-2*(data0>>5));
- LM = (data0>>3)&0x3;
- C = 1 + ((data0>>2)&0x1);
- data++;
- len--;
- if (LM>mode->maxLM)
- return OPUS_INVALID_PACKET;
- if (frame_size < mode->shortMdctSize<<LM)
- return OPUS_BUFFER_TOO_SMALL;
- else
- frame_size = mode->shortMdctSize<<LM;
- } else {
-#else
- {
-#endif
- for (LM=0;LM<=mode->maxLM;LM++)
- if (mode->shortMdctSize<<LM==frame_size)
- break;
- if (LM>mode->maxLM)
- return OPUS_BAD_ARG;
- }
- M=1<<LM;
-
- if (len<0 || len>1275 || pcm==NULL)
- return OPUS_BAD_ARG;
-
- N = M*mode->shortMdctSize;
-
- effEnd = st->end;
- if (effEnd > mode->effEBands)
- effEnd = mode->effEBands;
-
- if (data == NULL || len<=1)
- {
- celt_decode_lost(st, pcm, N, LM);
- RESTORE_STACK;
- return frame_size/st->downsample;
- }
-
- if (dec == NULL)
- {
- ec_dec_init(&_dec,(unsigned char*)data,len);
- dec = &_dec;
- }
-
- if (C==1)
- {
- for (i=0;i<nbEBands;i++)
- oldBandE[i]=MAX16(oldBandE[i],oldBandE[nbEBands+i]);
- }
-
- total_bits = len*8;
- tell = ec_tell(dec);
-
- if (tell >= total_bits)
- silence = 1;
- else if (tell==1)
- silence = ec_dec_bit_logp(dec, 15);
- else
- silence = 0;
- if (silence)
- {
- /* Pretend we've read all the remaining bits */
- tell = len*8;
- dec->nbits_total+=tell-ec_tell(dec);
- }
-
- postfilter_gain = 0;
- postfilter_pitch = 0;
- postfilter_tapset = 0;
- if (st->start==0 && tell+16 <= total_bits)
- {
- if(ec_dec_bit_logp(dec, 1))
- {
- int qg, octave;
- octave = ec_dec_uint(dec, 6);
- postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1;
- qg = ec_dec_bits(dec, 3);
- if (ec_tell(dec)+2<=total_bits)
- postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2);
- postfilter_gain = QCONST16(.09375f,15)*(qg+1);
- }
- tell = ec_tell(dec);
- }
-
- if (LM > 0 && tell+3 <= total_bits)
- {
- isTransient = ec_dec_bit_logp(dec, 3);
- tell = ec_tell(dec);
- }
- else
- isTransient = 0;
-
- if (isTransient)
- shortBlocks = M;
- else
- shortBlocks = 0;
-
- /* Decode the global flags (first symbols in the stream) */
- intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0;
- /* Get band energies */
- unquant_coarse_energy(mode, st->start, st->end, oldBandE,
- intra_ener, dec, C, LM);
-
- ALLOC(tf_res, nbEBands, int);
- tf_decode(st->start, st->end, isTransient, tf_res, LM, dec);
-
- tell = ec_tell(dec);
- spread_decision = SPREAD_NORMAL;
- if (tell+4 <= total_bits)
- spread_decision = ec_dec_icdf(dec, spread_icdf, 5);
-
- ALLOC(cap, nbEBands, int);
-
- init_caps(mode,cap,LM,C);
-
- ALLOC(offsets, nbEBands, int);
-
- dynalloc_logp = 6;
- total_bits<<=BITRES;
- tell = ec_tell_frac(dec);
- for (i=st->start;i<st->end;i++)
- {
- int width, quanta;
- int dynalloc_loop_logp;
- int boost;
- width = C*(eBands[i+1]-eBands[i])<<LM;
- /* quanta is 6 bits, but no more than 1 bit/sample
- and no less than 1/8 bit/sample */
- quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
- dynalloc_loop_logp = dynalloc_logp;
- boost = 0;
- while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i])
- {
- int flag;
- flag = ec_dec_bit_logp(dec, dynalloc_loop_logp);
- tell = ec_tell_frac(dec);
- if (!flag)
- break;
- boost += quanta;
- total_bits -= quanta;
- dynalloc_loop_logp = 1;
- }
- offsets[i] = boost;
- /* Making dynalloc more likely */
- if (boost>0)
- dynalloc_logp = IMAX(2, dynalloc_logp-1);
- }
-
- ALLOC(fine_quant, nbEBands, int);
- alloc_trim = tell+(6<<BITRES) <= total_bits ?
- ec_dec_icdf(dec, trim_icdf, 7) : 5;
-
- bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1;
- anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
- bits -= anti_collapse_rsv;
-
- ALLOC(pulses, nbEBands, int);
- ALLOC(fine_priority, nbEBands, int);
-
- codedBands = compute_allocation(mode, st->start, st->end, offsets, cap,
- alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses,
- fine_quant, fine_priority, C, LM, dec, 0, 0);
-
- unquant_fine_energy(mode, st->start, st->end, oldBandE, fine_quant, dec, C);
-
- /* Decode fixed codebook */
- ALLOC(collapse_masks, C*nbEBands, unsigned char);
- ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
-
- quant_all_bands(0, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
- NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res,
- len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng);
-
- if (anti_collapse_rsv > 0)
- {
- anti_collapse_on = ec_dec_bits(dec, 1);
- }
-
- unquant_energy_finalise(mode, st->start, st->end, oldBandE,
- fine_quant, fine_priority, len*8-ec_tell(dec), dec, C);
-
- if (anti_collapse_on)
- anti_collapse(mode, X, collapse_masks, LM, C, N,
- st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
-
- ALLOC(bandE, nbEBands*C, celt_ener);
-
- log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
-
- if (silence)
- {
- for (i=0;i<C*nbEBands;i++)
- {
- bandE[i] = 0;
- oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
- }
- }
- ALLOC(freq, IMAX(CC,C)*N, celt_sig); /**< Interleaved signal MDCTs */
- /* Synthesis */
- denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M);
-
- c=0; do {
- OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
- } while (++c<CC);
-
- c=0; do
- for (i=0;i<M*eBands[st->start];i++)
- freq[c*N+i] = 0;
- while (++c<C);
- c=0; do {
- int bound = M*eBands[effEnd];
- if (st->downsample!=1)
- bound = IMIN(bound, N/st->downsample);
- for (i=bound;i<N;i++)
- freq[c*N+i] = 0;
- } while (++c<C);
-
- c=0; do {
- out_syn[c] = out_mem[c]+MAX_PERIOD-N;
- } while (++c<CC);
-
- if (CC==2&&C==1)
- {
- for (i=0;i<N;i++)
- freq[N+i] = freq[i];
- }
- if (CC==1&&C==2)
- {
- for (i=0;i<N;i++)
- freq[i] = HALF32(ADD32(freq[i],freq[N+i]));
- }
-
- /* Compute inverse MDCTs */
- compute_inv_mdcts(mode, shortBlocks, freq, out_syn, CC, LM);
-
- c=0; do {
- st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD);
- st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD);
- comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, mode->shortMdctSize,
- st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset,
- mode->window, overlap);
- if (LM!=0)
- comb_filter(out_syn[c]+mode->shortMdctSize, out_syn[c]+mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-mode->shortMdctSize,
- st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset,
- mode->window, overlap);
-
- } while (++c<CC);
- st->postfilter_period_old = st->postfilter_period;
- st->postfilter_gain_old = st->postfilter_gain;
- st->postfilter_tapset_old = st->postfilter_tapset;
- st->postfilter_period = postfilter_pitch;
- st->postfilter_gain = postfilter_gain;
- st->postfilter_tapset = postfilter_tapset;
- if (LM!=0)
- {
- st->postfilter_period_old = st->postfilter_period;
- st->postfilter_gain_old = st->postfilter_gain;
- st->postfilter_tapset_old = st->postfilter_tapset;
- }
-
- if (C==1) {
- for (i=0;i<nbEBands;i++)
- oldBandE[nbEBands+i]=oldBandE[i];
- }
-
- /* In case start or end were to change */
- if (!isTransient)
- {
- for (i=0;i<2*nbEBands;i++)
- oldLogE2[i] = oldLogE[i];
- for (i=0;i<2*nbEBands;i++)
- oldLogE[i] = oldBandE[i];
- for (i=0;i<2*nbEBands;i++)
- backgroundLogE[i] = MIN16(backgroundLogE[i] + M*QCONST16(0.001f,DB_SHIFT), oldBandE[i]);
- } else {
- for (i=0;i<2*nbEBands;i++)
- oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
- }
- c=0; do
- {
- for (i=0;i<st->start;i++)
- {
- oldBandE[c*nbEBands+i]=0;
- oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
- }
- for (i=st->end;i<nbEBands;i++)
- {
- oldBandE[c*nbEBands+i]=0;
- oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
- }
- } while (++c<2);
- st->rng = dec->rng;
-
- /* We reuse freq[] as scratch space for the de-emphasis */
- deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, freq);
- st->loss_count = 0;
- RESTORE_STACK;
- if (ec_tell(dec) > 8*len)
- return OPUS_INTERNAL_ERROR;
- if(ec_get_error(dec))
- st->error = 1;
- return frame_size/st->downsample;
-}
-
-
-#ifdef CUSTOM_MODES
-
-#ifdef FIXED_POINT
-int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
-{
- return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
-}
-
-#ifndef DISABLE_FLOAT_API
-int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
-{
- int j, ret, C, N;
- VARDECL(opus_int16, out);
- ALLOC_STACK;
-
- if (pcm==NULL)
- return OPUS_BAD_ARG;
-
- C = st->channels;
- N = frame_size;
-
- ALLOC(out, C*N, opus_int16);
- ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
- if (ret>0)
- for (j=0;j<C*ret;j++)
- pcm[j]=out[j]*(1.f/32768.f);
-
- RESTORE_STACK;
- return ret;
-}
-#endif /* DISABLE_FLOAT_API */
-
-#else
-
-int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
-{
- return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
-}
-
-int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
-{
- int j, ret, C, N;
- VARDECL(celt_sig, out);
- ALLOC_STACK;
-
- if (pcm==NULL)
- return OPUS_BAD_ARG;
-
- C = st->channels;
- N = frame_size;
- ALLOC(out, C*N, celt_sig);
-
- ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
-
- if (ret>0)
- for (j=0;j<C*ret;j++)
- pcm[j] = FLOAT2INT16 (out[j]);
-
- RESTORE_STACK;
- return ret;
-}
-
-#endif
-#endif /* CUSTOM_MODES */
-
-int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...)
-{
- va_list ap;
-
- va_start(ap, request);
- switch (request)
- {
- case CELT_SET_START_BAND_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- if (value<0 || value>=st->mode->nbEBands)
- goto bad_arg;
- st->start = value;
- }
- break;
- case CELT_SET_END_BAND_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- if (value<1 || value>st->mode->nbEBands)
- goto bad_arg;
- st->end = value;
- }
- break;
- case CELT_SET_CHANNELS_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- if (value<1 || value>2)
- goto bad_arg;
- st->stream_channels = value;
- }
- break;
- case CELT_GET_AND_CLEAR_ERROR_REQUEST:
- {
- opus_int32 *value = va_arg(ap, opus_int32*);
- if (value==NULL)
- goto bad_arg;
- *value=st->error;
- st->error = 0;
- }
- break;
- case OPUS_GET_LOOKAHEAD_REQUEST:
- {
- opus_int32 *value = va_arg(ap, opus_int32*);
- if (value==NULL)
- goto bad_arg;
- *value = st->overlap/st->downsample;
- }
- break;
- case OPUS_RESET_STATE:
- {
- int i;
- opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2;
- lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels);
- oldBandE = lpc+st->channels*LPC_ORDER;
- oldLogE = oldBandE + 2*st->mode->nbEBands;
- oldLogE2 = oldLogE + 2*st->mode->nbEBands;
- OPUS_CLEAR((char*)&st->DECODER_RESET_START,
- opus_custom_decoder_get_size(st->mode, st->channels)-
- ((char*)&st->DECODER_RESET_START - (char*)st));
- for (i=0;i<2*st->mode->nbEBands;i++)
- oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
- }
- break;
- case OPUS_GET_PITCH_REQUEST:
- {
- opus_int32 *value = va_arg(ap, opus_int32*);
- if (value==NULL)
- goto bad_arg;
- *value = st->postfilter_period;
- }
- break;
-#ifdef OPUS_BUILD
- case CELT_GET_MODE_REQUEST:
- {
- const CELTMode ** value = va_arg(ap, const CELTMode**);
- if (value==0)
- goto bad_arg;
- *value=st->mode;
- }
- break;
- case CELT_SET_SIGNALLING_REQUEST:
- {
- opus_int32 value = va_arg(ap, opus_int32);
- st->signalling = value;
- }
- break;
- case OPUS_GET_FINAL_RANGE_REQUEST:
- {
- opus_uint32 * value = va_arg(ap, opus_uint32 *);
- if (value==0)
- goto bad_arg;
- *value=st->rng;
- }
- break;
-#endif
- default:
- goto bad_request;
- }
- va_end(ap);
- return OPUS_OK;
-bad_arg:
- va_end(ap);
- return OPUS_BAD_ARG;
-bad_request:
- va_end(ap);
- return OPUS_UNIMPLEMENTED;
}
--- a/celt/celt.h
+++ b/celt/celt.h
@@ -128,6 +128,79 @@
#define celt_encoder_ctl opus_custom_encoder_ctl
#define celt_decoder_ctl opus_custom_decoder_ctl
+
+#ifndef OPUS_VERSION
+#define OPUS_VERSION "unknown"
+#endif
+
+#ifdef CUSTOM_MODES
+#define OPUS_CUSTOM_NOSTATIC
+#else
+#define OPUS_CUSTOM_NOSTATIC static inline
+#endif
+
+static const unsigned char trim_icdf[11] = {126, 124, 119, 109, 87, 41, 19, 9, 4, 2, 0};
+/* Probs: NONE: 21.875%, LIGHT: 6.25%, NORMAL: 65.625%, AGGRESSIVE: 6.25% */
+static const unsigned char spread_icdf[4] = {25, 23, 2, 0};
+
+static const unsigned char tapset_icdf[3]={2,1,0};
+
+#ifdef CUSTOM_MODES
+static const unsigned char toOpusTable[20] = {
+ 0xE0, 0xE8, 0xF0, 0xF8,
+ 0xC0, 0xC8, 0xD0, 0xD8,
+ 0xA0, 0xA8, 0xB0, 0xB8,
+ 0x00, 0x00, 0x00, 0x00,
+ 0x80, 0x88, 0x90, 0x98,
+};
+
+static const unsigned char fromOpusTable[16] = {
+ 0x80, 0x88, 0x90, 0x98,
+ 0x40, 0x48, 0x50, 0x58,
+ 0x20, 0x28, 0x30, 0x38,
+ 0x00, 0x08, 0x10, 0x18
+};
+
+static inline int toOpus(unsigned char c)
+{
+ int ret=0;
+ if (c<0xA0)
+ ret = toOpusTable[c>>3];
+ if (ret == 0)
+ return -1;
+ else
+ return ret|(c&0x7);
+}
+
+static inline int fromOpus(unsigned char c)
+{
+ if (c<0x80)
+ return -1;
+ else
+ return fromOpusTable[(c>>3)-16] | (c&0x7);
+}
+#endif /* CUSTOM_MODES */
+
+#define COMBFILTER_MAXPERIOD 1024
+#define COMBFILTER_MINPERIOD 15
+
+extern const signed char tf_select_table[4][8];
+
+int resampling_factor(opus_int32 rate);
+
+void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
+ opus_val16 g0, opus_val16 g1, int tapset0, int tapset1,
+ const opus_val16 *window, int overlap);
+
+void init_caps(const CELTMode *m,int *cap,int LM,int C);
+
+#ifdef RESYNTH
+void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem, celt_sig * OPUS_RESTRICT scratch);
+
+void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X,
+ celt_sig * OPUS_RESTRICT out_mem[], int C, int LM);
+#endif
+
#ifdef __cplusplus
}
#endif
--- /dev/null
+++ b/celt/celt_decoder.c
@@ -1,0 +1,1127 @@
+/* Copyright (c) 2007-2008 CSIRO
+ Copyright (c) 2007-2010 Xiph.Org Foundation
+ Copyright (c) 2008 Gregory Maxwell
+ Written by Jean-Marc Valin and Gregory Maxwell */
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#define CELT_C
+#define DECODER
+
+#include "os_support.h"
+#include "mdct.h"
+#include <math.h>
+#include "celt.h"
+#include "pitch.h"
+#include "bands.h"
+#include "modes.h"
+#include "entcode.h"
+#include "quant_bands.h"
+#include "rate.h"
+#include "stack_alloc.h"
+#include "mathops.h"
+#include "float_cast.h"
+#include <stdarg.h>
+#include "celt_lpc.h"
+#include "vq.h"
+
+/**********************************************************************/
+/* */
+/* DECODER */
+/* */
+/**********************************************************************/
+#define DECODE_BUFFER_SIZE 2048
+
+/** Decoder state
+ @brief Decoder state
+ */
+struct OpusCustomDecoder {
+ const OpusCustomMode *mode;
+ int overlap;
+ int channels;
+ int stream_channels;
+
+ int downsample;
+ int start, end;
+ int signalling;
+
+ /* Everything beyond this point gets cleared on a reset */
+#define DECODER_RESET_START rng
+
+ opus_uint32 rng;
+ int error;
+ int last_pitch_index;
+ int loss_count;
+ int postfilter_period;
+ int postfilter_period_old;
+ opus_val16 postfilter_gain;
+ opus_val16 postfilter_gain_old;
+ int postfilter_tapset;
+ int postfilter_tapset_old;
+
+ celt_sig preemph_memD[2];
+
+ celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */
+ /* opus_val16 lpc[], Size = channels*LPC_ORDER */
+ /* opus_val16 oldEBands[], Size = 2*mode->nbEBands */
+ /* opus_val16 oldLogE[], Size = 2*mode->nbEBands */
+ /* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */
+ /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */
+};
+
+int celt_decoder_get_size(int channels)
+{
+ const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
+ return opus_custom_decoder_get_size(mode, channels);
+}
+
+OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels)
+{
+ int size = sizeof(struct CELTDecoder)
+ + (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig)
+ + channels*LPC_ORDER*sizeof(opus_val16)
+ + 4*2*mode->nbEBands*sizeof(opus_val16);
+ return size;
+}
+
+#ifdef CUSTOM_MODES
+CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error)
+{
+ int ret;
+ CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels));
+ ret = opus_custom_decoder_init(st, mode, channels);
+ if (ret != OPUS_OK)
+ {
+ opus_custom_decoder_destroy(st);
+ st = NULL;
+ }
+ if (error)
+ *error = ret;
+ return st;
+}
+#endif /* CUSTOM_MODES */
+
+int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels)
+{
+ int ret;
+ ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
+ if (ret != OPUS_OK)
+ return ret;
+ st->downsample = resampling_factor(sampling_rate);
+ if (st->downsample==0)
+ return OPUS_BAD_ARG;
+ else
+ return OPUS_OK;
+}
+
+OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels)
+{
+ if (channels < 0 || channels > 2)
+ return OPUS_BAD_ARG;
+
+ if (st==NULL)
+ return OPUS_ALLOC_FAIL;
+
+ OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels));
+
+ st->mode = mode;
+ st->overlap = mode->overlap;
+ st->stream_channels = st->channels = channels;
+
+ st->downsample = 1;
+ st->start = 0;
+ st->end = st->mode->effEBands;
+ st->signalling = 1;
+
+ st->loss_count = 0;
+
+ opus_custom_decoder_ctl(st, OPUS_RESET_STATE);
+
+ return OPUS_OK;
+}
+
+#ifdef CUSTOM_MODES
+void opus_custom_decoder_destroy(CELTDecoder *st)
+{
+ opus_free(st);
+}
+#endif /* CUSTOM_MODES */
+
+static inline opus_val16 SIG2WORD16(celt_sig x)
+{
+#ifdef FIXED_POINT
+ x = PSHR32(x, SIG_SHIFT);
+ x = MAX32(x, -32768);
+ x = MIN32(x, 32767);
+ return EXTRACT16(x);
+#else
+ return (opus_val16)x;
+#endif
+}
+
+#ifndef RESYNTH
+static
+#endif
+void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem, celt_sig * OPUS_RESTRICT scratch)
+{
+ int c;
+ int Nd;
+ opus_val16 coef0, coef1;
+
+ coef0 = coef[0];
+ coef1 = coef[1];
+ Nd = N/downsample;
+ c=0; do {
+ int j;
+ celt_sig * OPUS_RESTRICT x;
+ opus_val16 * OPUS_RESTRICT y;
+ celt_sig m = mem[c];
+ x =in[c];
+ y = pcm+c;
+ /* Shortcut for the standard (non-custom modes) case */
+ if (coef1 == 0)
+ {
+ for (j=0;j<N;j++)
+ {
+ celt_sig tmp = x[j] + m;
+ m = MULT16_32_Q15(coef0, tmp);
+ scratch[j] = tmp;
+ }
+ } else {
+ opus_val16 coef3 = coef[3];
+ for (j=0;j<N;j++)
+ {
+ celt_sig tmp = x[j] + m;
+ m = MULT16_32_Q15(coef0, tmp)
+ - MULT16_32_Q15(coef1, x[j]);
+ tmp = SHL32(MULT16_32_Q15(coef3, tmp), 2);
+ scratch[j] = tmp;
+ }
+ }
+ mem[c] = m;
+
+ /* Perform down-sampling */
+ for (j=0;j<Nd;j++)
+ y[j*C] = SCALEOUT(SIG2WORD16(scratch[j*downsample]));
+ } while (++c<C);
+}
+
+/** Compute the IMDCT and apply window for all sub-frames and
+ all channels in a frame */
+#ifndef RESYNTH
+static
+#endif
+void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X,
+ celt_sig * OPUS_RESTRICT out_mem[], int C, int LM)
+{
+ int b, c;
+ int B;
+ int N;
+ int shift;
+ const int overlap = OVERLAP(mode);
+
+ if (shortBlocks)
+ {
+ B = shortBlocks;
+ N = mode->shortMdctSize;
+ shift = mode->maxLM;
+ } else {
+ B = 1;
+ N = mode->shortMdctSize<<LM;
+ shift = mode->maxLM-LM;
+ }
+ c=0; do {
+ /* IMDCT on the interleaved the sub-frames, overlap-add is performed by the IMDCT */
+ for (b=0;b<B;b++)
+ clt_mdct_backward(&mode->mdct, &X[b+c*N*B], out_mem[c]+N*b, mode->window, overlap, shift, B);
+ } while (++c<C);
+}
+
+static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec)
+{
+ int i, curr, tf_select;
+ int tf_select_rsv;
+ int tf_changed;
+ int logp;
+ opus_uint32 budget;
+ opus_uint32 tell;
+
+ budget = dec->storage*8;
+ tell = ec_tell(dec);
+ logp = isTransient ? 2 : 4;
+ tf_select_rsv = LM>0 && tell+logp+1<=budget;
+ budget -= tf_select_rsv;
+ tf_changed = curr = 0;
+ for (i=start;i<end;i++)
+ {
+ if (tell+logp<=budget)
+ {
+ curr ^= ec_dec_bit_logp(dec, logp);
+ tell = ec_tell(dec);
+ tf_changed |= curr;
+ }
+ tf_res[i] = curr;
+ logp = isTransient ? 4 : 5;
+ }
+ tf_select = 0;
+ if (tf_select_rsv &&
+ tf_select_table[LM][4*isTransient+0+tf_changed] !=
+ tf_select_table[LM][4*isTransient+2+tf_changed])
+ {
+ tf_select = ec_dec_bit_logp(dec, 1);
+ }
+ for (i=start;i<end;i++)
+ {
+ tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
+ }
+}
+
+
+static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, opus_val16 * OPUS_RESTRICT pcm, int N, int LM)
+{
+ int c;
+ int pitch_index;
+ opus_val16 fade = Q15ONE;
+ int i, len;
+ const int C = st->channels;
+ int offset;
+ celt_sig *out_mem[2];
+ celt_sig *decode_mem[2];
+ opus_val16 *lpc;
+ opus_val32 *out_syn[2];
+ opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
+ const OpusCustomMode *mode;
+ int nbEBands;
+ int overlap;
+ const opus_int16 *eBands;
+ VARDECL(celt_sig, scratch);
+ SAVE_STACK;
+
+ mode = st->mode;
+ nbEBands = mode->nbEBands;
+ overlap = mode->overlap;
+ eBands = mode->eBands;
+
+ c=0; do {
+ decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+st->overlap);
+ out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
+ } while (++c<C);
+ lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*C);
+ oldBandE = lpc+C*LPC_ORDER;
+ oldLogE = oldBandE + 2*nbEBands;
+ oldLogE2 = oldLogE + 2*nbEBands;
+ backgroundLogE = oldLogE2 + 2*nbEBands;
+
+ c=0; do {
+ out_syn[c] = out_mem[c]+MAX_PERIOD-N;
+ } while (++c<C);
+
+ len = N+overlap;
+
+ if (st->loss_count >= 5 || st->start!=0)
+ {
+ /* Noise-based PLC/CNG */
+ VARDECL(celt_sig, freq);
+ VARDECL(celt_norm, X);
+ VARDECL(celt_ener, bandE);
+ opus_uint32 seed;
+ int effEnd;
+
+ effEnd = st->end;
+ if (effEnd > mode->effEBands)
+ effEnd = mode->effEBands;
+
+ ALLOC(freq, C*N, celt_sig); /**< Interleaved signal MDCTs */
+ ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
+ ALLOC(bandE, nbEBands*C, celt_ener);
+
+ if (st->loss_count >= 5)
+ log2Amp(mode, st->start, st->end, bandE, backgroundLogE, C);
+ else {
+ /* Energy decay */
+ opus_val16 decay = st->loss_count==0 ? QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT);
+ c=0; do
+ {
+ for (i=st->start;i<st->end;i++)
+ oldBandE[c*nbEBands+i] -= decay;
+ } while (++c<C);
+ log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
+ }
+ seed = st->rng;
+ for (c=0;c<C;c++)
+ {
+ for (i=st->start;i<mode->effEBands;i++)
+ {
+ int j;
+ int boffs;
+ int blen;
+ boffs = N*c+(eBands[i]<<LM);
+ blen = (eBands[i+1]-eBands[i])<<LM;
+ for (j=0;j<blen;j++)
+ {
+ seed = celt_lcg_rand(seed);
+ X[boffs+j] = (celt_norm)((opus_int32)seed>>20);
+ }
+ renormalise_vector(X+boffs, blen, Q15ONE);
+ }
+ }
+ st->rng = seed;
+
+ denormalise_bands(mode, X, freq, bandE, st->start, mode->effEBands, C, 1<<LM);
+
+ c=0; do
+ for (i=0;i<eBands[st->start]<<LM;i++)
+ freq[c*N+i] = 0;
+ while (++c<C);
+ c=0; do {
+ int bound = eBands[effEnd]<<LM;
+ if (st->downsample!=1)
+ bound = IMIN(bound, N/st->downsample);
+ for (i=bound;i<N;i++)
+ freq[c*N+i] = 0;
+ } while (++c<C);
+ c=0; do {
+ OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
+ } while (++c<C);
+ compute_inv_mdcts(mode, 0, freq, out_syn, C, LM);
+ } else {
+ /* Pitch-based PLC */
+ VARDECL(opus_val32, e);
+
+ if (st->loss_count == 0)
+ {
+ opus_val16 pitch_buf[DECODE_BUFFER_SIZE>>1];
+ /* Corresponds to a min pitch of 67 Hz. It's possible to save CPU in this
+ search by using only part of the decode buffer */
+ int poffset = 720;
+ pitch_downsample(decode_mem, pitch_buf, DECODE_BUFFER_SIZE, C);
+ /* Max pitch is 100 samples (480 Hz) */
+ pitch_search(pitch_buf+((poffset)>>1), pitch_buf, DECODE_BUFFER_SIZE-poffset,
+ poffset-100, &pitch_index);
+ pitch_index = poffset-pitch_index;
+ st->last_pitch_index = pitch_index;
+ } else {
+ pitch_index = st->last_pitch_index;
+ fade = QCONST16(.8f,15);
+ }
+
+ ALLOC(e, MAX_PERIOD+2*overlap, opus_val32);
+ c=0; do {
+ opus_val16 exc[MAX_PERIOD];
+ opus_val32 ac[LPC_ORDER+1];
+ opus_val16 decay = 1;
+ opus_val32 S1=0;
+ opus_val16 mem[LPC_ORDER]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+
+ offset = MAX_PERIOD-pitch_index;
+ for (i=0;i<MAX_PERIOD;i++)
+ exc[i] = ROUND16(out_mem[c][i], SIG_SHIFT);
+
+ if (st->loss_count == 0)
+ {
+ _celt_autocorr(exc, ac, mode->window, overlap,
+ LPC_ORDER, MAX_PERIOD);
+
+ /* Noise floor -40 dB */
+#ifdef FIXED_POINT
+ ac[0] += SHR32(ac[0],13);
+#else
+ ac[0] *= 1.0001f;
+#endif
+ /* Lag windowing */
+ for (i=1;i<=LPC_ORDER;i++)
+ {
+ /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/
+#ifdef FIXED_POINT
+ ac[i] -= MULT16_32_Q15(2*i*i, ac[i]);
+#else
+ ac[i] -= ac[i]*(.008f*i)*(.008f*i);
+#endif
+ }
+
+ _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER);
+ }
+ for (i=0;i<LPC_ORDER;i++)
+ mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT);
+ celt_fir(exc, lpc+c*LPC_ORDER, exc, MAX_PERIOD, LPC_ORDER, mem);
+ /*for (i=0;i<MAX_PERIOD;i++)printf("%d ", exc[i]); printf("\n");*/
+ /* Check if the waveform is decaying (and if so how fast) */
+ {
+ opus_val32 E1=1, E2=1;
+ int period;
+ if (pitch_index <= MAX_PERIOD/2)
+ period = pitch_index;
+ else
+ period = MAX_PERIOD/2;
+ for (i=0;i<period;i++)
+ {
+ E1 += SHR32(MULT16_16(exc[MAX_PERIOD-period+i],exc[MAX_PERIOD-period+i]),8);
+ E2 += SHR32(MULT16_16(exc[MAX_PERIOD-2*period+i],exc[MAX_PERIOD-2*period+i]),8);
+ }
+ if (E1 > E2)
+ E1 = E2;
+ decay = celt_sqrt(frac_div32(SHR32(E1,1),E2));
+ }
+
+ /* Copy excitation, taking decay into account */
+ for (i=0;i<len+overlap;i++)
+ {
+ opus_val16 tmp;
+ if (offset+i >= MAX_PERIOD)
+ {
+ offset -= pitch_index;
+ decay = MULT16_16_Q15(decay, decay);
+ }
+ e[i] = SHL32(EXTEND32(MULT16_16_Q15(decay, exc[offset+i])), SIG_SHIFT);
+ tmp = ROUND16(out_mem[c][offset+i],SIG_SHIFT);
+ S1 += SHR32(MULT16_16(tmp,tmp),8);
+ }
+ for (i=0;i<LPC_ORDER;i++)
+ mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT);
+ for (i=0;i<len+overlap;i++)
+ e[i] = MULT16_32_Q15(fade, e[i]);
+ celt_iir(e, lpc+c*LPC_ORDER, e, len+overlap, LPC_ORDER, mem);
+
+ {
+ opus_val32 S2=0;
+ for (i=0;i<len+overlap;i++)
+ {
+ opus_val16 tmp = ROUND16(e[i],SIG_SHIFT);
+ S2 += SHR32(MULT16_16(tmp,tmp),8);
+ }
+ /* This checks for an "explosion" in the synthesis */
+#ifdef FIXED_POINT
+ if (!(S1 > SHR32(S2,2)))
+#else
+ /* Float test is written this way to catch NaNs at the same time */
+ if (!(S1 > 0.2f*S2))
+#endif
+ {
+ for (i=0;i<len+overlap;i++)
+ e[i] = 0;
+ } else if (S1 < S2)
+ {
+ opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1));
+ for (i=0;i<len+overlap;i++)
+ e[i] = MULT16_32_Q15(ratio, e[i]);
+ }
+ }
+
+ /* Apply post-filter to the MDCT overlap of the previous frame */
+ comb_filter(out_mem[c]+MAX_PERIOD, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfilter_period, st->overlap,
+ st->postfilter_gain, st->postfilter_gain, st->postfilter_tapset, st->postfilter_tapset,
+ NULL, 0);
+
+ for (i=0;i<MAX_PERIOD+overlap-N;i++)
+ out_mem[c][i] = out_mem[c][N+i];
+
+ /* Apply TDAC to the concealed audio so that it blends with the
+ previous and next frames */
+ for (i=0;i<overlap/2;i++)
+ {
+ opus_val32 tmp;
+ tmp = MULT16_32_Q15(mode->window[i], e[N+overlap-1-i]) +
+ MULT16_32_Q15(mode->window[overlap-i-1], e[N+i ]);
+ out_mem[c][MAX_PERIOD+i] = MULT16_32_Q15(mode->window[overlap-i-1], tmp);
+ out_mem[c][MAX_PERIOD+overlap-i-1] = MULT16_32_Q15(mode->window[i], tmp);
+ }
+ for (i=0;i<N;i++)
+ out_mem[c][MAX_PERIOD-N+i] = e[i];
+
+ /* Apply pre-filter to the MDCT overlap for the next frame (post-filter will be applied then) */
+ comb_filter(e, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfilter_period, st->overlap,
+ -st->postfilter_gain, -st->postfilter_gain, st->postfilter_tapset, st->postfilter_tapset,
+ NULL, 0);
+ for (i=0;i<overlap;i++)
+ out_mem[c][MAX_PERIOD+i] = e[i];
+ } while (++c<C);
+ }
+
+ ALLOC(scratch, N, celt_sig);
+ deemphasis(out_syn, pcm, N, C, st->downsample, mode->preemph, st->preemph_memD, scratch);
+
+ st->loss_count++;
+
+ RESTORE_STACK;
+}
+
+int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec)
+{
+ int c, i, N;
+ int spread_decision;
+ opus_int32 bits;
+ ec_dec _dec;
+ VARDECL(celt_sig, freq);
+ VARDECL(celt_norm, X);
+ VARDECL(celt_ener, bandE);
+ VARDECL(int, fine_quant);
+ VARDECL(int, pulses);
+ VARDECL(int, cap);
+ VARDECL(int, offsets);
+ VARDECL(int, fine_priority);
+ VARDECL(int, tf_res);
+ VARDECL(unsigned char, collapse_masks);
+ celt_sig *out_mem[2];
+ celt_sig *decode_mem[2];
+ celt_sig *out_syn[2];
+ opus_val16 *lpc;
+ opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
+
+ int shortBlocks;
+ int isTransient;
+ int intra_ener;
+ const int CC = st->channels;
+ int LM, M;
+ int effEnd;
+ int codedBands;
+ int alloc_trim;
+ int postfilter_pitch;
+ opus_val16 postfilter_gain;
+ int intensity=0;
+ int dual_stereo=0;
+ opus_int32 total_bits;
+ opus_int32 balance;
+ opus_int32 tell;
+ int dynalloc_logp;
+ int postfilter_tapset;
+ int anti_collapse_rsv;
+ int anti_collapse_on=0;
+ int silence;
+ int C = st->stream_channels;
+ const OpusCustomMode *mode;
+ int nbEBands;
+ int overlap;
+ const opus_int16 *eBands;
+ ALLOC_STACK;
+
+ mode = st->mode;
+ nbEBands = mode->nbEBands;
+ overlap = mode->overlap;
+ eBands = mode->eBands;
+ frame_size *= st->downsample;
+
+ c=0; do {
+ decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap);
+ out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
+ } while (++c<CC);
+ lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*CC);
+ oldBandE = lpc+CC*LPC_ORDER;
+ oldLogE = oldBandE + 2*nbEBands;
+ oldLogE2 = oldLogE + 2*nbEBands;
+ backgroundLogE = oldLogE2 + 2*nbEBands;
+
+#ifdef CUSTOM_MODES
+ if (st->signalling && data!=NULL)
+ {
+ int data0=data[0];
+ /* Convert "standard mode" to Opus header */
+ if (mode->Fs==48000 && mode->shortMdctSize==120)
+ {
+ data0 = fromOpus(data0);
+ if (data0<0)
+ return OPUS_INVALID_PACKET;
+ }
+ st->end = IMAX(1, mode->effEBands-2*(data0>>5));
+ LM = (data0>>3)&0x3;
+ C = 1 + ((data0>>2)&0x1);
+ data++;
+ len--;
+ if (LM>mode->maxLM)
+ return OPUS_INVALID_PACKET;
+ if (frame_size < mode->shortMdctSize<<LM)
+ return OPUS_BUFFER_TOO_SMALL;
+ else
+ frame_size = mode->shortMdctSize<<LM;
+ } else {
+#else
+ {
+#endif
+ for (LM=0;LM<=mode->maxLM;LM++)
+ if (mode->shortMdctSize<<LM==frame_size)
+ break;
+ if (LM>mode->maxLM)
+ return OPUS_BAD_ARG;
+ }
+ M=1<<LM;
+
+ if (len<0 || len>1275 || pcm==NULL)
+ return OPUS_BAD_ARG;
+
+ N = M*mode->shortMdctSize;
+
+ effEnd = st->end;
+ if (effEnd > mode->effEBands)
+ effEnd = mode->effEBands;
+
+ if (data == NULL || len<=1)
+ {
+ celt_decode_lost(st, pcm, N, LM);
+ RESTORE_STACK;
+ return frame_size/st->downsample;
+ }
+
+ if (dec == NULL)
+ {
+ ec_dec_init(&_dec,(unsigned char*)data,len);
+ dec = &_dec;
+ }
+
+ if (C==1)
+ {
+ for (i=0;i<nbEBands;i++)
+ oldBandE[i]=MAX16(oldBandE[i],oldBandE[nbEBands+i]);
+ }
+
+ total_bits = len*8;
+ tell = ec_tell(dec);
+
+ if (tell >= total_bits)
+ silence = 1;
+ else if (tell==1)
+ silence = ec_dec_bit_logp(dec, 15);
+ else
+ silence = 0;
+ if (silence)
+ {
+ /* Pretend we've read all the remaining bits */
+ tell = len*8;
+ dec->nbits_total+=tell-ec_tell(dec);
+ }
+
+ postfilter_gain = 0;
+ postfilter_pitch = 0;
+ postfilter_tapset = 0;
+ if (st->start==0 && tell+16 <= total_bits)
+ {
+ if(ec_dec_bit_logp(dec, 1))
+ {
+ int qg, octave;
+ octave = ec_dec_uint(dec, 6);
+ postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1;
+ qg = ec_dec_bits(dec, 3);
+ if (ec_tell(dec)+2<=total_bits)
+ postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2);
+ postfilter_gain = QCONST16(.09375f,15)*(qg+1);
+ }
+ tell = ec_tell(dec);
+ }
+
+ if (LM > 0 && tell+3 <= total_bits)
+ {
+ isTransient = ec_dec_bit_logp(dec, 3);
+ tell = ec_tell(dec);
+ }
+ else
+ isTransient = 0;
+
+ if (isTransient)
+ shortBlocks = M;
+ else
+ shortBlocks = 0;
+
+ /* Decode the global flags (first symbols in the stream) */
+ intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0;
+ /* Get band energies */
+ unquant_coarse_energy(mode, st->start, st->end, oldBandE,
+ intra_ener, dec, C, LM);
+
+ ALLOC(tf_res, nbEBands, int);
+ tf_decode(st->start, st->end, isTransient, tf_res, LM, dec);
+
+ tell = ec_tell(dec);
+ spread_decision = SPREAD_NORMAL;
+ if (tell+4 <= total_bits)
+ spread_decision = ec_dec_icdf(dec, spread_icdf, 5);
+
+ ALLOC(cap, nbEBands, int);
+
+ init_caps(mode,cap,LM,C);
+
+ ALLOC(offsets, nbEBands, int);
+
+ dynalloc_logp = 6;
+ total_bits<<=BITRES;
+ tell = ec_tell_frac(dec);
+ for (i=st->start;i<st->end;i++)
+ {
+ int width, quanta;
+ int dynalloc_loop_logp;
+ int boost;
+ width = C*(eBands[i+1]-eBands[i])<<LM;
+ /* quanta is 6 bits, but no more than 1 bit/sample
+ and no less than 1/8 bit/sample */
+ quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
+ dynalloc_loop_logp = dynalloc_logp;
+ boost = 0;
+ while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i])
+ {
+ int flag;
+ flag = ec_dec_bit_logp(dec, dynalloc_loop_logp);
+ tell = ec_tell_frac(dec);
+ if (!flag)
+ break;
+ boost += quanta;
+ total_bits -= quanta;
+ dynalloc_loop_logp = 1;
+ }
+ offsets[i] = boost;
+ /* Making dynalloc more likely */
+ if (boost>0)
+ dynalloc_logp = IMAX(2, dynalloc_logp-1);
+ }
+
+ ALLOC(fine_quant, nbEBands, int);
+ alloc_trim = tell+(6<<BITRES) <= total_bits ?
+ ec_dec_icdf(dec, trim_icdf, 7) : 5;
+
+ bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1;
+ anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
+ bits -= anti_collapse_rsv;
+
+ ALLOC(pulses, nbEBands, int);
+ ALLOC(fine_priority, nbEBands, int);
+
+ codedBands = compute_allocation(mode, st->start, st->end, offsets, cap,
+ alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses,
+ fine_quant, fine_priority, C, LM, dec, 0, 0);
+
+ unquant_fine_energy(mode, st->start, st->end, oldBandE, fine_quant, dec, C);
+
+ /* Decode fixed codebook */
+ ALLOC(collapse_masks, C*nbEBands, unsigned char);
+ ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
+
+ quant_all_bands(0, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
+ NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res,
+ len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng);
+
+ if (anti_collapse_rsv > 0)
+ {
+ anti_collapse_on = ec_dec_bits(dec, 1);
+ }
+
+ unquant_energy_finalise(mode, st->start, st->end, oldBandE,
+ fine_quant, fine_priority, len*8-ec_tell(dec), dec, C);
+
+ if (anti_collapse_on)
+ anti_collapse(mode, X, collapse_masks, LM, C, N,
+ st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
+
+ ALLOC(bandE, nbEBands*C, celt_ener);
+
+ log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
+
+ if (silence)
+ {
+ for (i=0;i<C*nbEBands;i++)
+ {
+ bandE[i] = 0;
+ oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
+ }
+ }
+ ALLOC(freq, IMAX(CC,C)*N, celt_sig); /**< Interleaved signal MDCTs */
+ /* Synthesis */
+ denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M);
+
+ c=0; do {
+ OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
+ } while (++c<CC);
+
+ c=0; do
+ for (i=0;i<M*eBands[st->start];i++)
+ freq[c*N+i] = 0;
+ while (++c<C);
+ c=0; do {
+ int bound = M*eBands[effEnd];
+ if (st->downsample!=1)
+ bound = IMIN(bound, N/st->downsample);
+ for (i=bound;i<N;i++)
+ freq[c*N+i] = 0;
+ } while (++c<C);
+
+ c=0; do {
+ out_syn[c] = out_mem[c]+MAX_PERIOD-N;
+ } while (++c<CC);
+
+ if (CC==2&&C==1)
+ {
+ for (i=0;i<N;i++)
+ freq[N+i] = freq[i];
+ }
+ if (CC==1&&C==2)
+ {
+ for (i=0;i<N;i++)
+ freq[i] = HALF32(ADD32(freq[i],freq[N+i]));
+ }
+
+ /* Compute inverse MDCTs */
+ compute_inv_mdcts(mode, shortBlocks, freq, out_syn, CC, LM);
+
+ c=0; do {
+ st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD);
+ st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD);
+ comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, mode->shortMdctSize,
+ st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset,
+ mode->window, overlap);
+ if (LM!=0)
+ comb_filter(out_syn[c]+mode->shortMdctSize, out_syn[c]+mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-mode->shortMdctSize,
+ st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset,
+ mode->window, overlap);
+
+ } while (++c<CC);
+ st->postfilter_period_old = st->postfilter_period;
+ st->postfilter_gain_old = st->postfilter_gain;
+ st->postfilter_tapset_old = st->postfilter_tapset;
+ st->postfilter_period = postfilter_pitch;
+ st->postfilter_gain = postfilter_gain;
+ st->postfilter_tapset = postfilter_tapset;
+ if (LM!=0)
+ {
+ st->postfilter_period_old = st->postfilter_period;
+ st->postfilter_gain_old = st->postfilter_gain;
+ st->postfilter_tapset_old = st->postfilter_tapset;
+ }
+
+ if (C==1) {
+ for (i=0;i<nbEBands;i++)
+ oldBandE[nbEBands+i]=oldBandE[i];
+ }
+
+ /* In case start or end were to change */
+ if (!isTransient)
+ {
+ for (i=0;i<2*nbEBands;i++)
+ oldLogE2[i] = oldLogE[i];
+ for (i=0;i<2*nbEBands;i++)
+ oldLogE[i] = oldBandE[i];
+ for (i=0;i<2*nbEBands;i++)
+ backgroundLogE[i] = MIN16(backgroundLogE[i] + M*QCONST16(0.001f,DB_SHIFT), oldBandE[i]);
+ } else {
+ for (i=0;i<2*nbEBands;i++)
+ oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
+ }
+ c=0; do
+ {
+ for (i=0;i<st->start;i++)
+ {
+ oldBandE[c*nbEBands+i]=0;
+ oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
+ }
+ for (i=st->end;i<nbEBands;i++)
+ {
+ oldBandE[c*nbEBands+i]=0;
+ oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
+ }
+ } while (++c<2);
+ st->rng = dec->rng;
+
+ /* We reuse freq[] as scratch space for the de-emphasis */
+ deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, freq);
+ st->loss_count = 0;
+ RESTORE_STACK;
+ if (ec_tell(dec) > 8*len)
+ return OPUS_INTERNAL_ERROR;
+ if(ec_get_error(dec))
+ st->error = 1;
+ return frame_size/st->downsample;
+}
+
+
+#ifdef CUSTOM_MODES
+
+#ifdef FIXED_POINT
+int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
+{
+ return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
+}
+
+#ifndef DISABLE_FLOAT_API
+int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
+{
+ int j, ret, C, N;
+ VARDECL(opus_int16, out);
+ ALLOC_STACK;
+
+ if (pcm==NULL)
+ return OPUS_BAD_ARG;
+
+ C = st->channels;
+ N = frame_size;
+
+ ALLOC(out, C*N, opus_int16);
+ ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
+ if (ret>0)
+ for (j=0;j<C*ret;j++)
+ pcm[j]=out[j]*(1.f/32768.f);
+
+ RESTORE_STACK;
+ return ret;
+}
+#endif /* DISABLE_FLOAT_API */
+
+#else
+
+int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
+{
+ return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
+}
+
+int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
+{
+ int j, ret, C, N;
+ VARDECL(celt_sig, out);
+ ALLOC_STACK;
+
+ if (pcm==NULL)
+ return OPUS_BAD_ARG;
+
+ C = st->channels;
+ N = frame_size;
+ ALLOC(out, C*N, celt_sig);
+
+ ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
+
+ if (ret>0)
+ for (j=0;j<C*ret;j++)
+ pcm[j] = FLOAT2INT16 (out[j]);
+
+ RESTORE_STACK;
+ return ret;
+}
+
+#endif
+#endif /* CUSTOM_MODES */
+
+int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...)
+{
+ va_list ap;
+
+ va_start(ap, request);
+ switch (request)
+ {
+ case CELT_SET_START_BAND_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ if (value<0 || value>=st->mode->nbEBands)
+ goto bad_arg;
+ st->start = value;
+ }
+ break;
+ case CELT_SET_END_BAND_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ if (value<1 || value>st->mode->nbEBands)
+ goto bad_arg;
+ st->end = value;
+ }
+ break;
+ case CELT_SET_CHANNELS_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ if (value<1 || value>2)
+ goto bad_arg;
+ st->stream_channels = value;
+ }
+ break;
+ case CELT_GET_AND_CLEAR_ERROR_REQUEST:
+ {
+ opus_int32 *value = va_arg(ap, opus_int32*);
+ if (value==NULL)
+ goto bad_arg;
+ *value=st->error;
+ st->error = 0;
+ }
+ break;
+ case OPUS_GET_LOOKAHEAD_REQUEST:
+ {
+ opus_int32 *value = va_arg(ap, opus_int32*);
+ if (value==NULL)
+ goto bad_arg;
+ *value = st->overlap/st->downsample;
+ }
+ break;
+ case OPUS_RESET_STATE:
+ {
+ int i;
+ opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2;
+ lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels);
+ oldBandE = lpc+st->channels*LPC_ORDER;
+ oldLogE = oldBandE + 2*st->mode->nbEBands;
+ oldLogE2 = oldLogE + 2*st->mode->nbEBands;
+ OPUS_CLEAR((char*)&st->DECODER_RESET_START,
+ opus_custom_decoder_get_size(st->mode, st->channels)-
+ ((char*)&st->DECODER_RESET_START - (char*)st));
+ for (i=0;i<2*st->mode->nbEBands;i++)
+ oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
+ }
+ break;
+ case OPUS_GET_PITCH_REQUEST:
+ {
+ opus_int32 *value = va_arg(ap, opus_int32*);
+ if (value==NULL)
+ goto bad_arg;
+ *value = st->postfilter_period;
+ }
+ break;
+#ifdef OPUS_BUILD
+ case CELT_GET_MODE_REQUEST:
+ {
+ const CELTMode ** value = va_arg(ap, const CELTMode**);
+ if (value==0)
+ goto bad_arg;
+ *value=st->mode;
+ }
+ break;
+ case CELT_SET_SIGNALLING_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ st->signalling = value;
+ }
+ break;
+ case OPUS_GET_FINAL_RANGE_REQUEST:
+ {
+ opus_uint32 * value = va_arg(ap, opus_uint32 *);
+ if (value==0)
+ goto bad_arg;
+ *value=st->rng;
+ }
+ break;
+#endif
+ default:
+ goto bad_request;
+ }
+ va_end(ap);
+ return OPUS_OK;
+bad_arg:
+ va_end(ap);
+ return OPUS_BAD_ARG;
+bad_request:
+ va_end(ap);
+ return OPUS_UNIMPLEMENTED;
+}
--- /dev/null
+++ b/celt/celt_encoder.c
@@ -1,0 +1,2033 @@
+/* Copyright (c) 2007-2008 CSIRO
+ Copyright (c) 2007-2010 Xiph.Org Foundation
+ Copyright (c) 2008 Gregory Maxwell
+ Written by Jean-Marc Valin and Gregory Maxwell */
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#define CELT_C
+#define ENCODER
+
+#include "os_support.h"
+#include "mdct.h"
+#include <math.h>
+#include "celt.h"
+#include "pitch.h"
+#include "bands.h"
+#include "modes.h"
+#include "entcode.h"
+#include "quant_bands.h"
+#include "rate.h"
+#include "stack_alloc.h"
+#include "mathops.h"
+#include "float_cast.h"
+#include <stdarg.h>
+#include "celt_lpc.h"
+#include "vq.h"
+
+
+/** Encoder state
+ @brief Encoder state
+ */
+struct OpusCustomEncoder {
+ const OpusCustomMode *mode; /**< Mode used by the encoder */
+ int overlap;
+ int channels;
+ int stream_channels;
+
+ int force_intra;
+ int clip;
+ int disable_pf;
+ int complexity;
+ int upsample;
+ int start, end;
+
+ opus_int32 bitrate;
+ int vbr;
+ int signalling;
+ int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */
+ int loss_rate;
+ int lsb_depth;
+
+ /* Everything beyond this point gets cleared on a reset */
+#define ENCODER_RESET_START rng
+
+ opus_uint32 rng;
+ int spread_decision;
+ opus_val32 delayedIntra;
+ int tonal_average;
+ int lastCodedBands;
+ int hf_average;
+ int tapset_decision;
+
+ int prefilter_period;
+ opus_val16 prefilter_gain;
+ int prefilter_tapset;
+#ifdef RESYNTH
+ int prefilter_period_old;
+ opus_val16 prefilter_gain_old;
+ int prefilter_tapset_old;
+#endif
+ int consec_transient;
+ AnalysisInfo analysis;
+
+ opus_val32 preemph_memE[2];
+ opus_val32 preemph_memD[2];
+
+ /* VBR-related parameters */
+ opus_int32 vbr_reservoir;
+ opus_int32 vbr_drift;
+ opus_int32 vbr_offset;
+ opus_int32 vbr_count;
+ opus_val16 overlap_max;
+ opus_val16 stereo_saving;
+ int intensity;
+
+#ifdef RESYNTH
+ /* +MAX_PERIOD/2 to make space for overlap */
+ celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2];
+#endif
+
+ celt_sig in_mem[1]; /* Size = channels*mode->overlap */
+ /* celt_sig prefilter_mem[], Size = channels*COMBFILTER_MAXPERIOD */
+ /* opus_val16 oldBandE[], Size = channels*mode->nbEBands */
+ /* opus_val16 oldLogE[], Size = channels*mode->nbEBands */
+ /* opus_val16 oldLogE2[], Size = channels*mode->nbEBands */
+};
+
+int celt_encoder_get_size(int channels)
+{
+ CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
+ return opus_custom_encoder_get_size(mode, channels);
+}
+
+OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels)
+{
+ int size = sizeof(struct CELTEncoder)
+ + (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */
+ + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */
+ + 3*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */
+ /* opus_val16 oldLogE[channels*mode->nbEBands]; */
+ /* opus_val16 oldLogE2[channels*mode->nbEBands]; */
+ return size;
+}
+
+#ifdef CUSTOM_MODES
+CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error)
+{
+ int ret;
+ CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels));
+ /* init will handle the NULL case */
+ ret = opus_custom_encoder_init(st, mode, channels);
+ if (ret != OPUS_OK)
+ {
+ opus_custom_encoder_destroy(st);
+ st = NULL;
+ }
+ if (error)
+ *error = ret;
+ return st;
+}
+#endif /* CUSTOM_MODES */
+
+int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels)
+{
+ int ret;
+ ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
+ if (ret != OPUS_OK)
+ return ret;
+ st->upsample = resampling_factor(sampling_rate);
+ return OPUS_OK;
+}
+
+OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels)
+{
+ if (channels < 0 || channels > 2)
+ return OPUS_BAD_ARG;
+
+ if (st==NULL || mode==NULL)
+ return OPUS_ALLOC_FAIL;
+
+ OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels));
+
+ st->mode = mode;
+ st->overlap = mode->overlap;
+ st->stream_channels = st->channels = channels;
+
+ st->upsample = 1;
+ st->start = 0;
+ st->end = st->mode->effEBands;
+ st->signalling = 1;
+
+ st->constrained_vbr = 1;
+ st->clip = 1;
+
+ st->bitrate = OPUS_BITRATE_MAX;
+ st->vbr = 0;
+ st->force_intra = 0;
+ st->complexity = 5;
+ st->lsb_depth=24;
+
+ opus_custom_encoder_ctl(st, OPUS_RESET_STATE);
+
+ return OPUS_OK;
+}
+
+#ifdef CUSTOM_MODES
+void opus_custom_encoder_destroy(CELTEncoder *st)
+{
+ opus_free(st);
+}
+#endif /* CUSTOM_MODES */
+
+
+static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C,
+ opus_val16 *tf_estimate, int *tf_chan)
+{
+ int i;
+ VARDECL(opus_val16, tmp);
+ opus_val32 mem0,mem1;
+ int is_transient = 0;
+ opus_int32 mask_metric = 0;
+ int c;
+ int tf_max;
+ /* Table of 6*64/x, trained on real data to minimize the average error */
+ static const unsigned char inv_table[128] = {
+ 255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25,
+ 23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12,
+ 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8,
+ 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2,
+ };
+ SAVE_STACK;
+ ALLOC(tmp, len, opus_val16);
+
+ tf_max = 0;
+ for (c=0;c<C;c++)
+ {
+ opus_val32 mean;
+ opus_int32 unmask=0;
+ opus_val32 norm;
+ mem0=0;
+ mem1=0;
+ /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */
+ for (i=0;i<len;i++)
+ {
+ opus_val32 x,y;
+ x = SHR32(in[i+c*len],SIG_SHIFT);
+ y = ADD32(mem0, x);
+#ifdef FIXED_POINT
+ mem0 = mem1 + y - SHL32(x,1);
+ mem1 = x - SHR32(y,1);
+#else
+ mem0 = mem1 + y - 2*x;
+ mem1 = x - .5f*y;
+#endif
+ tmp[i] = EXTRACT16(SHR32(y,2));
+ /*printf("%f ", tmp[i]);*/
+ }
+ /*printf("\n");*/
+ /* First few samples are bad because we don't propagate the memory */
+ for (i=0;i<12;i++)
+ tmp[i] = 0;
+
+#ifdef FIXED_POINT
+ /* Normalize tmp to max range */
+ {
+ int shift=0;
+ shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len));
+ if (shift!=0)
+ {
+ for (i=0;i<len;i++)
+ tmp[i] = SHL16(tmp[i], shift);
+ }
+ }
+#endif
+
+ mean=0;
+ mem0=0;
+ /* Grouping by two to reduce complexity */
+ len/=2;
+ /* Forward pass to compute the post-echo threshold*/
+ for (i=0;i<len;i++)
+ {
+ opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16);
+ mean += x2;
+#ifdef FIXED_POINT
+ /* FIXME: Use PSHR16() instead */
+ tmp[i] = mem0 + PSHR32(x2-mem0,4);
+#else
+ tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0);
+#endif
+ mem0 = tmp[i];
+ }
+
+ mem0=0;
+ /* Backward pass to compute the pre-echo threshold */
+ for (i=len-1;i>=0;i--)
+ {
+#ifdef FIXED_POINT
+ /* FIXME: Use PSHR16() instead */
+ tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3);
+#else
+ tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0);
+#endif
+ mem0 = tmp[i];
+ }
+ /*for (i=0;i<len;i++)printf("%f ", tmp[i]/mean);printf("\n");*/
+
+ /* Compute the ratio of the mean energy over the harmonic mean of the energy.
+ This essentially corresponds to a bitrate-normalized temporal noise-to-mask
+ ratio */
+
+ /* Inverse of the mean energy in Q15+6 */
+ norm = SHL32(EXTEND32(len),6+14)/ADD32(EPSILON,SHR32(mean,1));
+ /* Compute harmonic mean discarding the unreliable boundaries
+ The data is smooth, so we only take 1/4th of the samples */
+ unmask=0;
+ for (i=12;i<len-5;i+=4)
+ {
+ int id;
+#ifdef FIXED_POINT
+ id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */
+#else
+ id = IMAX(0,IMIN(127,floor(64*norm*tmp[i]))); /* Do not round to nearest */
+#endif
+ unmask += inv_table[id];
+ }
+ /*printf("%d\n", unmask);*/
+ /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */
+ unmask = 64*unmask*4/(6*(len-17));
+ if (unmask>mask_metric)
+ {
+ *tf_chan = c;
+ mask_metric = unmask;
+ }
+ }
+ is_transient = mask_metric>141;
+
+ /* Arbitrary metric for VBR boost */
+ tf_max = MAX16(0,celt_sqrt(64*mask_metric)-64);
+ /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */
+ *tf_estimate = QCONST16(1.f, 14) + celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),IMIN(163,tf_max)),14)-QCONST32(0.139,28)));
+ /*printf("%d %f\n", tf_max, mask_metric);*/
+ RESTORE_STACK;
+#ifdef FUZZING
+ is_transient = rand()&0x1;
+#endif
+ /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/
+ return is_transient;
+}
+
+/** Apply window and compute the MDCT for all sub-frames and
+ all channels in a frame */
+static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, celt_sig * OPUS_RESTRICT out, int C, int LM)
+{
+ const int overlap = OVERLAP(mode);
+ int N;
+ int B;
+ int shift;
+ int b, c;
+ if (shortBlocks)
+ {
+ B = shortBlocks;
+ N = mode->shortMdctSize;
+ shift = mode->maxLM;
+ } else {
+ B = 1;
+ N = mode->shortMdctSize<<LM;
+ shift = mode->maxLM-LM;
+ }
+ c=0; do {
+ for (b=0;b<B;b++)
+ {
+ /* Interleaving the sub-frames while doing the MDCTs */
+ clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B);
+ }
+ } while (++c<C);
+}
+
+
+static void preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp,
+ int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip)
+{
+ int i;
+ opus_val16 coef0, coef1;
+ celt_sig m;
+ int Nu;
+
+ coef0 = coef[0];
+ coef1 = coef[1];
+
+
+ Nu = N/upsample;
+ if (upsample!=1)
+ {
+ for (i=0;i<N;i++)
+ inp[i] = 0;
+ }
+ for (i=0;i<Nu;i++)
+ {
+ celt_sig x;
+
+ x = SCALEIN(pcmp[CC*i]);
+#ifndef FIXED_POINT
+ /* Replace NaNs with zeros */
+ if (!(x==x))
+ x = 0;
+#endif
+ inp[i*upsample] = x;
+ }
+
+#ifndef FIXED_POINT
+ if (clip)
+ {
+ /* Clip input to avoid encoding non-portable files */
+ for (i=0;i<Nu;i++)
+ inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample]));
+ }
+#endif
+ m = *mem;
+ if (coef1 == 0)
+ {
+ for (i=0;i<N;i++)
+ {
+ celt_sig x;
+ x = SHL32(inp[i], SIG_SHIFT);
+ /* Apply pre-emphasis */
+ inp[i] = x + m;
+ m = - MULT16_32_Q15(coef0, x);
+ }
+ } else {
+ opus_val16 coef2 = coef[2];
+ for (i=0;i<N;i++)
+ {
+ opus_val16 x, tmp;
+ x = inp[i];
+ /* Apply pre-emphasis */
+ tmp = MULT16_16(coef2, x);
+ inp[i] = tmp + m;
+ m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp);
+ }
+ }
+ *mem = m;
+}
+
+
+
+static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias)
+{
+ int i;
+ opus_val32 L1;
+ L1 = 0;
+ for (i=0;i<N;i++)
+ L1 += EXTEND32(ABS16(tmp[i]));
+ /* When in doubt, prefer good freq resolution */
+ L1 = MAC16_32_Q15(L1, LM*bias, L1);
+ return L1;
+
+}
+
+static int tf_analysis(const CELTMode *m, int len, int C, int isTransient,
+ int *tf_res, int nbCompressedBytes, celt_norm *X, int N0, int LM,
+ int *tf_sum, opus_val16 tf_estimate, int tf_chan)
+{
+ int i;
+ VARDECL(int, metric);
+ int cost0;
+ int cost1;
+ VARDECL(int, path0);
+ VARDECL(int, path1);
+ VARDECL(celt_norm, tmp);
+ VARDECL(celt_norm, tmp_1);
+ int lambda;
+ int sel;
+ int selcost[2];
+ int tf_select=0;
+ opus_val16 bias;
+
+ SAVE_STACK;
+ bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(1.5f,14)-tf_estimate));
+ /*printf("%f ", bias);*/
+
+ if (nbCompressedBytes<15*C)
+ {
+ *tf_sum = 0;
+ for (i=0;i<len;i++)
+ tf_res[i] = isTransient;
+ return 0;
+ }
+ if (nbCompressedBytes<40)
+ lambda = 12;
+ else if (nbCompressedBytes<60)
+ lambda = 6;
+ else if (nbCompressedBytes<100)
+ lambda = 4;
+ else
+ lambda = 3;
+ lambda*=2;
+ ALLOC(metric, len, int);
+ ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
+ ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
+ ALLOC(path0, len, int);
+ ALLOC(path1, len, int);
+
+ *tf_sum = 0;
+ for (i=0;i<len;i++)
+ {
+ int j, k, N;
+ int narrow;
+ opus_val32 L1, best_L1;
+ int best_level=0;
+ N = (m->eBands[i+1]-m->eBands[i])<<LM;
+ /* band is too narrow to be split down to LM=-1 */
+ narrow = (m->eBands[i+1]-m->eBands[i])==1;
+ for (j=0;j<N;j++)
+ tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)];
+ /* Just add the right channel if we're in stereo */
+ /*if (C==2)
+ for (j=0;j<N;j++)
+ tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/
+ L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias);
+ best_L1 = L1;
+ /* Check the -1 case for transients */
+ if (isTransient && !narrow)
+ {
+ for (j=0;j<N;j++)
+ tmp_1[j] = tmp[j];
+ haar1(tmp_1, N>>LM, 1<<LM);
+ L1 = l1_metric(tmp_1, N, LM+1, bias);
+ if (L1<best_L1)
+ {
+ best_L1 = L1;
+ best_level = -1;
+ }
+ }
+ /*printf ("%f ", L1);*/
+ for (k=0;k<LM+!(isTransient||narrow);k++)
+ {
+ int B;
+
+ if (isTransient)
+ B = (LM-k-1);
+ else
+ B = k+1;
+
+ haar1(tmp, N>>k, 1<<k);
+
+ L1 = l1_metric(tmp, N, B, bias);
+
+ if (L1 < best_L1)
+ {
+ best_L1 = L1;
+ best_level = k+1;
+ }
+ }
+ /*printf ("%d ", isTransient ? LM-best_level : best_level);*/
+ /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */
+ if (isTransient)
+ metric[i] = 2*best_level;
+ else
+ metric[i] = -2*best_level;
+ *tf_sum += (isTransient ? LM : 0) - metric[i]/2;
+ /* For bands that can't be split to -1, set the metric to the half-way point to avoid
+ biasing the decision */
+ if (narrow && (metric[i]==0 || metric[i]==-2*LM))
+ metric[i]-=1;
+ /*printf("%d ", metric[i]);*/
+ }
+ /*printf("\n");*/
+ /* Search for the optimal tf resolution, including tf_select */
+ tf_select = 0;
+ for (sel=0;sel<2;sel++)
+ {
+ cost0 = 0;
+ cost1 = isTransient ? 0 : lambda;
+ for (i=1;i<len;i++)
+ {
+ int curr0, curr1;
+ curr0 = IMIN(cost0, cost1 + lambda);
+ curr1 = IMIN(cost0 + lambda, cost1);
+ cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]);
+ cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]);
+ }
+ cost0 = IMIN(cost0, cost1);
+ selcost[sel]=cost0;
+ }
+ /* For now, we're conservative and only allow tf_select=1 for transients.
+ * If tests confirm it's useful for non-transients, we could allow it. */
+ if (selcost[1]<selcost[0] && isTransient)
+ tf_select=1;
+ cost0 = 0;
+ cost1 = isTransient ? 0 : lambda;
+ /* Viterbi forward pass */
+ for (i=1;i<len;i++)
+ {
+ int curr0, curr1;
+ int from0, from1;
+
+ from0 = cost0;
+ from1 = cost1 + lambda;
+ if (from0 < from1)
+ {
+ curr0 = from0;
+ path0[i]= 0;
+ } else {
+ curr0 = from1;
+ path0[i]= 1;
+ }
+
+ from0 = cost0 + lambda;
+ from1 = cost1;
+ if (from0 < from1)
+ {
+ curr1 = from0;
+ path1[i]= 0;
+ } else {
+ curr1 = from1;
+ path1[i]= 1;
+ }
+ cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]);
+ cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]);
+ }
+ tf_res[len-1] = cost0 < cost1 ? 0 : 1;
+ /* Viterbi backward pass to check the decisions */
+ for (i=len-2;i>=0;i--)
+ {
+ if (tf_res[i+1] == 1)
+ tf_res[i] = path1[i+1];
+ else
+ tf_res[i] = path0[i+1];
+ }
+ /*printf("%d %f\n", *tf_sum, tf_estimate);*/
+ RESTORE_STACK;
+#ifdef FUZZING
+ tf_select = rand()&0x1;
+ tf_res[0] = rand()&0x1;
+ for (i=1;i<len;i++)
+ tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0);
+#endif
+ return tf_select;
+}
+
+static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc)
+{
+ int curr, i;
+ int tf_select_rsv;
+ int tf_changed;
+ int logp;
+ opus_uint32 budget;
+ opus_uint32 tell;
+ budget = enc->storage*8;
+ tell = ec_tell(enc);
+ logp = isTransient ? 2 : 4;
+ /* Reserve space to code the tf_select decision. */
+ tf_select_rsv = LM>0 && tell+logp+1 <= budget;
+ budget -= tf_select_rsv;
+ curr = tf_changed = 0;
+ for (i=start;i<end;i++)
+ {
+ if (tell+logp<=budget)
+ {
+ ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp);
+ tell = ec_tell(enc);
+ curr = tf_res[i];
+ tf_changed |= curr;
+ }
+ else
+ tf_res[i] = curr;
+ logp = isTransient ? 4 : 5;
+ }
+ /* Only code tf_select if it would actually make a difference. */
+ if (tf_select_rsv &&
+ tf_select_table[LM][4*isTransient+0+tf_changed]!=
+ tf_select_table[LM][4*isTransient+2+tf_changed])
+ ec_enc_bit_logp(enc, tf_select, 1);
+ else
+ tf_select = 0;
+ for (i=start;i<end;i++)
+ tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
+ /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/
+}
+
+
+static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X,
+ const opus_val16 *bandLogE, int end, int LM, int C, int N0,
+ AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate,
+ int intensity)
+{
+ int i;
+ opus_val32 diff=0;
+ int c;
+ int trim_index = 5;
+ opus_val16 trim = QCONST16(5.f, 8);
+ opus_val16 logXC, logXC2;
+ if (C==2)
+ {
+ opus_val16 sum = 0; /* Q10 */
+ opus_val16 minXC; /* Q10 */
+ /* Compute inter-channel correlation for low frequencies */
+ for (i=0;i<8;i++)
+ {
+ int j;
+ opus_val32 partial = 0;
+ for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
+ partial = MAC16_16(partial, X[j], X[N0+j]);
+ sum = ADD16(sum, EXTRACT16(SHR32(partial, 18)));
+ }
+ sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum);
+ sum = MIN16(QCONST16(1.f, 10), ABS16(sum));
+ minXC = sum;
+ for (i=8;i<intensity;i++)
+ {
+ int j;
+ opus_val32 partial = 0;
+ for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
+ partial = MAC16_16(partial, X[j], X[N0+j]);
+ minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18))));
+ }
+ minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC));
+ /*printf ("%f\n", sum);*/
+ if (sum > QCONST16(.995f,10))
+ trim_index-=4;
+ else if (sum > QCONST16(.92f,10))
+ trim_index-=3;
+ else if (sum > QCONST16(.85f,10))
+ trim_index-=2;
+ else if (sum > QCONST16(.8f,10))
+ trim_index-=1;
+ /* mid-side savings estimations based on the LF average*/
+ logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum));
+ /* mid-side savings estimations based on min correlation */
+ logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC)));
+#ifdef FIXED_POINT
+ /* Compensate for Q20 vs Q14 input and convert output to Q8 */
+ logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
+ logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
+#endif
+
+ trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC));
+ *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2));
+ }
+
+ /* Estimate spectral tilt */
+ c=0; do {
+ for (i=0;i<end-1;i++)
+ {
+ diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end);
+ }
+ } while (++c<C);
+ diff /= C*(end-1);
+ /*printf("%f\n", diff);*/
+ if (diff > QCONST16(2.f, DB_SHIFT))
+ trim_index--;
+ if (diff > QCONST16(8.f, DB_SHIFT))
+ trim_index--;
+ if (diff < -QCONST16(4.f, DB_SHIFT))
+ trim_index++;
+ if (diff < -QCONST16(10.f, DB_SHIFT))
+ trim_index++;
+ trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 ));
+ trim -= 2*SHR16(tf_estimate-QCONST16(1.f,14), 14-8);
+#ifndef FIXED_POINT
+ if (analysis->valid)
+ {
+ trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), 2*(analysis->tonality_slope+.05)));
+ }
+#endif
+
+#ifdef FIXED_POINT
+ trim_index = PSHR32(trim, 8);
+#else
+ trim_index = floor(.5+trim);
+#endif
+ if (trim_index<0)
+ trim_index = 0;
+ if (trim_index>10)
+ trim_index = 10;
+ /*printf("%d\n", trim_index);*/
+#ifdef FUZZING
+ trim_index = rand()%11;
+#endif
+ return trim_index;
+}
+
+static int stereo_analysis(const CELTMode *m, const celt_norm *X,
+ int LM, int N0)
+{
+ int i;
+ int thetas;
+ opus_val32 sumLR = EPSILON, sumMS = EPSILON;
+
+ /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */
+ for (i=0;i<13;i++)
+ {
+ int j;
+ for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
+ {
+ opus_val32 L, R, M, S;
+ /* We cast to 32-bit first because of the -32768 case */
+ L = EXTEND32(X[j]);
+ R = EXTEND32(X[N0+j]);
+ M = ADD32(L, R);
+ S = SUB32(L, R);
+ sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R)));
+ sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S)));
+ }
+ }
+ sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS);
+ thetas = 13;
+ /* We don't need thetas for lower bands with LM<=1 */
+ if (LM<=1)
+ thetas -= 8;
+ return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS)
+ > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR);
+}
+
+static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N,
+ int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes)
+{
+ int c;
+ VARDECL(celt_sig, _pre);
+ celt_sig *pre[2];
+ const CELTMode *mode;
+ int pitch_index;
+ opus_val16 gain1;
+ opus_val16 pf_threshold;
+ int pf_on;
+ int qg;
+ SAVE_STACK;
+
+ mode = st->mode;
+ ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig);
+
+ pre[0] = _pre;
+ pre[1] = _pre + (N+COMBFILTER_MAXPERIOD);
+
+
+ c=0; do {
+ OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD);
+ OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N);
+ } while (++c<CC);
+
+ if (enabled)
+ {
+ VARDECL(opus_val16, pitch_buf);
+ ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16);
+
+ pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC);
+ /* Don't search for the fir last 1.5 octave of the range because
+ there's too many false-positives due to short-term correlation */
+ pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N,
+ COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index);
+ pitch_index = COMBFILTER_MAXPERIOD-pitch_index;
+
+ gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD,
+ N, &pitch_index, st->prefilter_period, st->prefilter_gain);
+ if (pitch_index > COMBFILTER_MAXPERIOD-2)
+ pitch_index = COMBFILTER_MAXPERIOD-2;
+ gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1);
+ /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/
+ if (st->loss_rate>2)
+ gain1 = HALF32(gain1);
+ if (st->loss_rate>4)
+ gain1 = HALF32(gain1);
+ if (st->loss_rate>8)
+ gain1 = 0;
+ } else {
+ gain1 = 0;
+ pitch_index = COMBFILTER_MINPERIOD;
+ }
+
+ /* Gain threshold for enabling the prefilter/postfilter */
+ pf_threshold = QCONST16(.2f,15);
+
+ /* Adjusting the threshold based on rate and continuity */
+ if (abs(pitch_index-st->prefilter_period)*10>pitch_index)
+ pf_threshold += QCONST16(.2f,15);
+ if (nbAvailableBytes<25)
+ pf_threshold += QCONST16(.1f,15);
+ if (nbAvailableBytes<35)
+ pf_threshold += QCONST16(.1f,15);
+ if (st->prefilter_gain > QCONST16(.4f,15))
+ pf_threshold -= QCONST16(.1f,15);
+ if (st->prefilter_gain > QCONST16(.55f,15))
+ pf_threshold -= QCONST16(.1f,15);
+
+ /* Hard threshold at 0.2 */
+ pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15));
+ if (gain1<pf_threshold)
+ {
+ gain1 = 0;
+ pf_on = 0;
+ qg = 0;
+ } else {
+ /*This block is not gated by a total bits check only because
+ of the nbAvailableBytes check above.*/
+ if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15))
+ gain1=st->prefilter_gain;
+
+#ifdef FIXED_POINT
+ qg = ((gain1+1536)>>10)/3-1;
+#else
+ qg = (int)floor(.5f+gain1*32/3)-1;
+#endif
+ qg = IMAX(0, IMIN(7, qg));
+ gain1 = QCONST16(0.09375f,15)*(qg+1);
+ pf_on = 1;
+ }
+ /*printf("%d %f\n", pitch_index, gain1);*/
+
+ c=0; do {
+ int offset = mode->shortMdctSize-st->overlap;
+ st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
+ OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap);
+ if (offset)
+ comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD,
+ st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain,
+ st->prefilter_tapset, st->prefilter_tapset, NULL, 0);
+
+ comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset,
+ st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1,
+ st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap);
+ OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap);
+
+ if (N>COMBFILTER_MAXPERIOD)
+ {
+ OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD);
+ } else {
+ OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N);
+ OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N);
+ }
+ } while (++c<CC);
+
+ RESTORE_STACK;
+ *gain = gain1;
+ *pitch = pitch_index;
+ *qgain = qg;
+ return pf_on;
+}
+
+int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc)
+{
+ int i, c, N;
+ opus_int32 bits;
+ ec_enc _enc;
+ VARDECL(celt_sig, in);
+ VARDECL(celt_sig, freq);
+ VARDECL(celt_norm, X);
+ VARDECL(celt_ener, bandE);
+ VARDECL(opus_val16, bandLogE);
+ VARDECL(opus_val16, bandLogE2);
+ VARDECL(int, fine_quant);
+ VARDECL(opus_val16, error);
+ VARDECL(int, pulses);
+ VARDECL(int, cap);
+ VARDECL(int, offsets);
+ VARDECL(int, fine_priority);
+ VARDECL(int, tf_res);
+ VARDECL(unsigned char, collapse_masks);
+ celt_sig *prefilter_mem;
+ opus_val16 *oldBandE, *oldLogE, *oldLogE2;
+ int shortBlocks=0;
+ int isTransient=0;
+ const int CC = st->channels;
+ const int C = st->stream_channels;
+ int LM, M;
+ int tf_select;
+ int nbFilledBytes, nbAvailableBytes;
+ int effEnd;
+ int codedBands;
+ int tf_sum;
+ int alloc_trim;
+ int pitch_index=COMBFILTER_MINPERIOD;
+ opus_val16 gain1 = 0;
+ int dual_stereo=0;
+ int effectiveBytes;
+ int dynalloc_logp;
+ opus_int32 vbr_rate;
+ opus_int32 total_bits;
+ opus_int32 total_boost;
+ opus_int32 balance;
+ opus_int32 tell;
+ int prefilter_tapset=0;
+ int pf_on;
+ int anti_collapse_rsv;
+ int anti_collapse_on=0;
+ int silence=0;
+ int tf_chan = 0;
+ opus_val16 tf_estimate;
+ int pitch_change=0;
+ opus_int32 tot_boost=0;
+ opus_val16 sample_max;
+ opus_val16 maxDepth;
+ const OpusCustomMode *mode;
+ int nbEBands;
+ int overlap;
+ const opus_int16 *eBands;
+ int secondMdct;
+ ALLOC_STACK;
+
+ mode = st->mode;
+ nbEBands = mode->nbEBands;
+ overlap = mode->overlap;
+ eBands = mode->eBands;
+ tf_estimate = QCONST16(1.0f,14);
+ if (nbCompressedBytes<2 || pcm==NULL)
+ return OPUS_BAD_ARG;
+
+ frame_size *= st->upsample;
+ for (LM=0;LM<=mode->maxLM;LM++)
+ if (mode->shortMdctSize<<LM==frame_size)
+ break;
+ if (LM>mode->maxLM)
+ return OPUS_BAD_ARG;
+ M=1<<LM;
+ N = M*mode->shortMdctSize;
+
+ prefilter_mem = st->in_mem+CC*(st->overlap);
+ oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD));
+ oldLogE = oldBandE + CC*nbEBands;
+ oldLogE2 = oldLogE + CC*nbEBands;
+
+ if (enc==NULL)
+ {
+ tell=1;
+ nbFilledBytes=0;
+ } else {
+ tell=ec_tell(enc);
+ nbFilledBytes=(tell+4)>>3;
+ }
+
+#ifdef CUSTOM_MODES
+ if (st->signalling && enc==NULL)
+ {
+ int tmp = (mode->effEBands-st->end)>>1;
+ st->end = IMAX(1, mode->effEBands-tmp);
+ compressed[0] = tmp<<5;
+ compressed[0] |= LM<<3;
+ compressed[0] |= (C==2)<<2;
+ /* Convert "standard mode" to Opus header */
+ if (mode->Fs==48000 && mode->shortMdctSize==120)
+ {
+ int c0 = toOpus(compressed[0]);
+ if (c0<0)
+ return OPUS_BAD_ARG;
+ compressed[0] = c0;
+ }
+ compressed++;
+ nbCompressedBytes--;
+ }
+#else
+ celt_assert(st->signalling==0);
+#endif
+
+ /* Can't produce more than 1275 output bytes */
+ nbCompressedBytes = IMIN(nbCompressedBytes,1275);
+ nbAvailableBytes = nbCompressedBytes - nbFilledBytes;
+
+ if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX)
+ {
+ opus_int32 den=mode->Fs>>BITRES;
+ vbr_rate=(st->bitrate*frame_size+(den>>1))/den;
+#ifdef CUSTOM_MODES
+ if (st->signalling)
+ vbr_rate -= 8<<BITRES;
+#endif
+ effectiveBytes = vbr_rate>>(3+BITRES);
+ } else {
+ opus_int32 tmp;
+ vbr_rate = 0;
+ tmp = st->bitrate*frame_size;
+ if (tell>1)
+ tmp += tell;
+ if (st->bitrate!=OPUS_BITRATE_MAX)
+ nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes,
+ (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling));
+ effectiveBytes = nbCompressedBytes;
+ }
+
+ if (enc==NULL)
+ {
+ ec_enc_init(&_enc, compressed, nbCompressedBytes);
+ enc = &_enc;
+ }
+
+ if (vbr_rate>0)
+ {
+ /* Computes the max bit-rate allowed in VBR mode to avoid violating the
+ target rate and buffering.
+ We must do this up front so that bust-prevention logic triggers
+ correctly if we don't have enough bits. */
+ if (st->constrained_vbr)
+ {
+ opus_int32 vbr_bound;
+ opus_int32 max_allowed;
+ /* We could use any multiple of vbr_rate as bound (depending on the
+ delay).
+ This is clamped to ensure we use at least two bytes if the encoder
+ was entirely empty, but to allow 0 in hybrid mode. */
+ vbr_bound = vbr_rate;
+ max_allowed = IMIN(IMAX(tell==1?2:0,
+ (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)),
+ nbAvailableBytes);
+ if(max_allowed < nbAvailableBytes)
+ {
+ nbCompressedBytes = nbFilledBytes+max_allowed;
+ nbAvailableBytes = max_allowed;
+ ec_enc_shrink(enc, nbCompressedBytes);
+ }
+ }
+ }
+ total_bits = nbCompressedBytes*8;
+
+ effEnd = st->end;
+ if (effEnd > mode->effEBands)
+ effEnd = mode->effEBands;
+
+ ALLOC(in, CC*(N+st->overlap), celt_sig);
+
+ sample_max=MAX16(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample));
+ st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample);
+ sample_max=MAX16(sample_max, st->overlap_max);
+#ifdef FIXED_POINT
+ silence = (sample_max==0);
+#else
+ silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth));
+#endif
+#ifdef FUZZING
+ if ((rand()&0x3F)==0)
+ silence = 1;
+#endif
+ if (tell==1)
+ ec_enc_bit_logp(enc, silence, 15);
+ else
+ silence=0;
+ if (silence)
+ {
+ /*In VBR mode there is no need to send more than the minimum. */
+ if (vbr_rate>0)
+ {
+ effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2);
+ total_bits=nbCompressedBytes*8;
+ nbAvailableBytes=2;
+ ec_enc_shrink(enc, nbCompressedBytes);
+ }
+ /* Pretend we've filled all the remaining bits with zeros
+ (that's what the initialiser did anyway) */
+ tell = nbCompressedBytes*8;
+ enc->nbits_total+=tell-ec_tell(enc);
+ }
+ c=0; do {
+ preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample,
+ mode->preemph, st->preemph_memE+c, st->clip);
+ } while (++c<CC);
+
+
+
+ /* Find pitch period and gain */
+ {
+ int enabled;
+ int qg;
+ enabled = nbAvailableBytes>12*C && st->start==0 && !silence && !st->disable_pf && st->complexity >= 5;
+
+ prefilter_tapset = st->tapset_decision;
+ pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes);
+ if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && st->analysis.tonality > .3
+ && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period))
+ pitch_change = 1;
+ if (pf_on==0)
+ {
+ if(st->start==0 && tell+16<=total_bits)
+ ec_enc_bit_logp(enc, 0, 1);
+ } else {
+ /*This block is not gated by a total bits check only because
+ of the nbAvailableBytes check above.*/
+ int octave;
+ ec_enc_bit_logp(enc, 1, 1);
+ pitch_index += 1;
+ octave = EC_ILOG(pitch_index)-5;
+ ec_enc_uint(enc, octave, 6);
+ ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave);
+ pitch_index -= 1;
+ ec_enc_bits(enc, qg, 3);
+ ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2);
+ }
+ }
+
+ isTransient = 0;
+ shortBlocks = 0;
+ if (LM>0 && ec_tell(enc)+3<=total_bits)
+ {
+ if (st->complexity > 1)
+ {
+ isTransient = transient_analysis(in, N+st->overlap, CC,
+ &tf_estimate, &tf_chan);
+ if (isTransient)
+ shortBlocks = M;
+ }
+ ec_enc_bit_logp(enc, isTransient, 3);
+ }
+
+ ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */
+ ALLOC(bandE,nbEBands*CC, celt_ener);
+ ALLOC(bandLogE,nbEBands*CC, opus_val16);
+
+ secondMdct = shortBlocks && st->complexity>=8;
+ ALLOC(bandLogE2, C*nbEBands, opus_val16);
+ if (secondMdct)
+ {
+ compute_mdcts(mode, 0, in, freq, CC, LM);
+ if (CC==2&&C==1)
+ {
+ for (i=0;i<N;i++)
+ freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i]));
+ }
+ if (st->upsample != 1)
+ {
+ c=0; do
+ {
+ int bound = N/st->upsample;
+ for (i=0;i<bound;i++)
+ freq[c*N+i] *= st->upsample;
+ for (;i<N;i++)
+ freq[c*N+i] = 0;
+ } while (++c<C);
+ }
+ compute_band_energies(mode, freq, bandE, effEnd, C, M);
+ amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C);
+ for (i=0;i<C*nbEBands;i++)
+ bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT));
+ }
+
+ compute_mdcts(mode, shortBlocks, in, freq, CC, LM);
+
+ if (CC==2&&C==1)
+ {
+ for (i=0;i<N;i++)
+ freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i]));
+ tf_chan = 0;
+ }
+ if (st->upsample != 1)
+ {
+ c=0; do
+ {
+ int bound = N/st->upsample;
+ for (i=0;i<bound;i++)
+ freq[c*N+i] *= st->upsample;
+ for (;i<N;i++)
+ freq[c*N+i] = 0;
+ } while (++c<C);
+ }
+ compute_band_energies(mode, freq, bandE, effEnd, C, M);
+
+ amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C);
+ /*for (i=0;i<21;i++)
+ printf("%f ", bandLogE[i]);
+ printf("\n");*/
+
+ if (!secondMdct)
+ {
+ for (i=0;i<C*nbEBands;i++)
+ bandLogE2[i] = bandLogE[i];
+ }
+
+ ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
+
+ /* Band normalisation */
+ normalise_bands(mode, freq, X, bandE, effEnd, C, M);
+
+ ALLOC(tf_res, nbEBands, int);
+ tf_select = tf_analysis(mode, effEnd, C, isTransient, tf_res, effectiveBytes, X, N, LM, &tf_sum, tf_estimate, tf_chan);
+ for (i=effEnd;i<st->end;i++)
+ tf_res[i] = tf_res[effEnd-1];
+
+ ALLOC(error, C*nbEBands, opus_val16);
+ quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE,
+ oldBandE, total_bits, error, enc,
+ C, LM, nbAvailableBytes, st->force_intra,
+ &st->delayedIntra, st->complexity >= 4, st->loss_rate);
+
+ tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc);
+
+ if (ec_tell(enc)+4<=total_bits)
+ {
+ if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C)
+ {
+ if (st->complexity == 0)
+ st->spread_decision = SPREAD_NONE;
+ } else {
+ if (st->analysis.valid)
+ {
+ static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)};
+ static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)};
+ static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)};
+ static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)};
+ st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision);
+ st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision);
+ } else {
+ st->spread_decision = spreading_decision(mode, X,
+ &st->tonal_average, st->spread_decision, &st->hf_average,
+ &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M);
+ }
+ /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/
+ /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/
+ }
+ ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5);
+ }
+
+ ALLOC(cap, nbEBands, int);
+ ALLOC(offsets, nbEBands, int);
+
+ init_caps(mode,cap,LM,C);
+ for (i=0;i<nbEBands;i++)
+ offsets[i] = 0;
+ /* Dynamic allocation code */
+ maxDepth=-QCONST16(32.f, DB_SHIFT);
+ /* Make sure that dynamic allocation can't make us bust the budget */
+ if (effectiveBytes > 50 && LM>=1)
+ {
+ int last=0;
+ VARDECL(opus_val16, follower);
+ ALLOC(follower, C*nbEBands, opus_val16);
+ c=0;do
+ {
+ follower[c*nbEBands] = bandLogE2[c*nbEBands];
+ for (i=1;i<st->end;i++)
+ {
+ /* The last band to be at least 3 dB higher than the previous one
+ is the last we'll consider. Otherwise, we run into problems on
+ bandlimited signals. */
+ if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT))
+ last=i;
+ follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]);
+ }
+ for (i=last-1;i>=0;i--)
+ follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i]));
+ for (i=0;i<st->end;i++)
+ {
+ opus_val16 noise_floor;
+ /* Noise floor must take into account eMeans, the depth, the width of the bands
+ and the preemphasis filter (approx. square of bark band ID) */
+ noise_floor = MULT16_16(QCONST16(0.0625f, DB_SHIFT),mode->logN[i])
+ +QCONST16(.5f,DB_SHIFT)+SHL16(9-st->lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6)
+ +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5));
+ follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor);
+ maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor);
+ }
+ } while (++c<C);
+ if (C==2)
+ {
+ for (i=st->start;i<st->end;i++)
+ {
+ /* Consider 24 dB "cross-talk" */
+ follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[ i]-QCONST16(4.f,DB_SHIFT));
+ follower[ i] = MAX16(follower[ i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT));
+ follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i]));
+ }
+ } else {
+ for (i=st->start;i<st->end;i++)
+ {
+ follower[i] = MAX16(0, bandLogE[i]-follower[i]);
+ }
+ }
+ /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */
+ if ((!st->vbr || st->constrained_vbr)&&!isTransient)
+ {
+ for (i=st->start;i<st->end;i++)
+ follower[i] = HALF16(follower[i]);
+ }
+ for (i=st->start;i<st->end;i++)
+ {
+ int width;
+ int boost;
+ int boost_bits;
+
+ if (i<8)
+ follower[i] *= 2;
+ if (i>=12)
+ follower[i] = HALF16(follower[i]);
+ follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT));
+
+ width = C*(eBands[i+1]-eBands[i])<<LM;
+ if (width<6)
+ {
+ boost = SHR32(EXTEND32(follower[i]),DB_SHIFT);
+ boost_bits = boost*width<<BITRES;
+ } else if (width > 48) {
+ boost = SHR32(EXTEND32(follower[i])*8,DB_SHIFT);
+ boost_bits = (boost*width<<BITRES)/8;
+ } else {
+ boost = SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT);
+ boost_bits = boost*6<<BITRES;
+ }
+ /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */
+ if ((!st->vbr || (st->constrained_vbr&&!isTransient))
+ && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4)
+ {
+ offsets[i] = 0;
+ break;
+ } else {
+ offsets[i] = boost;
+ tot_boost += boost_bits;
+ }
+ }
+ }
+ dynalloc_logp = 6;
+ total_bits<<=BITRES;
+ total_boost = 0;
+ tell = ec_tell_frac(enc);
+ for (i=st->start;i<st->end;i++)
+ {
+ int width, quanta;
+ int dynalloc_loop_logp;
+ int boost;
+ int j;
+ width = C*(eBands[i+1]-eBands[i])<<LM;
+ /* quanta is 6 bits, but no more than 1 bit/sample
+ and no less than 1/8 bit/sample */
+ quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
+ dynalloc_loop_logp = dynalloc_logp;
+ boost = 0;
+ for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost
+ && boost < cap[i]; j++)
+ {
+ int flag;
+ flag = j<offsets[i];
+ ec_enc_bit_logp(enc, flag, dynalloc_loop_logp);
+ tell = ec_tell_frac(enc);
+ if (!flag)
+ break;
+ boost += quanta;
+ total_boost += quanta;
+ dynalloc_loop_logp = 1;
+ }
+ /* Making dynalloc more likely */
+ if (j)
+ dynalloc_logp = IMAX(2, dynalloc_logp-1);
+ offsets[i] = boost;
+ }
+
+ if (C==2)
+ {
+ int effectiveRate;
+
+ static const opus_val16 intensity_thresholds[21]=
+ /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 off*/
+ { 16,21,23,25,27,29,31,33,35,38,42,46,50,54,58,63,68,75,84,102,130};
+ static const opus_val16 intensity_histeresis[21]=
+ { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 8, 12};
+
+ /* Always use MS for 2.5 ms frames until we can do a better analysis */
+ if (LM!=0)
+ dual_stereo = stereo_analysis(mode, X, LM, N);
+
+ /* Account for coarse energy */
+ effectiveRate = (8*effectiveBytes - 80)>>LM;
+
+ /* effectiveRate in kb/s */
+ effectiveRate = 2*effectiveRate/5;
+
+ st->intensity = hysteresis_decision(effectiveRate, intensity_thresholds, intensity_histeresis, 21, st->intensity);
+ st->intensity = IMIN(st->end,IMAX(st->start, st->intensity));
+ }
+
+ alloc_trim = 5;
+ if (tell+(6<<BITRES) <= total_bits - total_boost)
+ {
+ alloc_trim = alloc_trim_analysis(mode, X, bandLogE,
+ st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity);
+ ec_enc_icdf(enc, alloc_trim, trim_icdf, 7);
+ tell = ec_tell_frac(enc);
+ }
+
+ /* Variable bitrate */
+ if (vbr_rate>0)
+ {
+ opus_val16 alpha;
+ opus_int32 delta;
+ /* The target rate in 8th bits per frame */
+ opus_int32 target, base_target;
+ opus_int32 min_allowed;
+ int coded_bins;
+ int coded_bands;
+ int lm_diff = mode->maxLM - LM;
+ coded_bands = st->lastCodedBands ? st->lastCodedBands : nbEBands;
+ coded_bins = eBands[coded_bands]<<LM;
+ if (C==2)
+ coded_bins += eBands[IMIN(st->intensity, coded_bands)]<<LM;
+
+ /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms.
+ The CELT allocator will just not be able to use more than that anyway. */
+ nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM));
+ target = vbr_rate - ((40*C+20)<<BITRES);
+ base_target = target;
+
+ if (st->constrained_vbr)
+ target += (st->vbr_offset>>lm_diff);
+
+ /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/
+#ifndef FIXED_POINT
+ if (st->analysis.valid && st->analysis.activity<.4)
+ target -= (coded_bins<<BITRES)*1*(.4-st->analysis.activity);
+#endif
+ /* Stereo savings */
+ if (C==2)
+ {
+ int coded_stereo_bands;
+ int coded_stereo_dof;
+ coded_stereo_bands = IMIN(st->intensity, coded_bands);
+ coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands;
+ /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/
+ target -= MIN32(target/3, SHR16(MULT16_16(st->stereo_saving,(coded_stereo_dof<<BITRES)),8));
+ target += MULT16_16_Q15(QCONST16(0.035,15),coded_stereo_dof<<BITRES);
+ }
+ /* Limits starving of other bands when using dynalloc */
+ target += tot_boost;
+ /* Compensates for the average transient boost */
+ target = MULT16_32_Q15(QCONST16(0.96f,15),target);
+ /* Apply transient boost */
+ target = SHL32(MULT16_32_Q15(tf_estimate, target),1);
+
+#ifndef FIXED_POINT
+ /* Apply tonality boost */
+ if (st->analysis.valid) {
+ int tonal_target;
+ float tonal;
+
+ /* Compensates for the average tonality boost */
+ target -= MULT16_16_Q15(QCONST16(0.13f,15),coded_bins<<BITRES);
+
+ tonal = MAX16(0,st->analysis.tonality-.2);
+ tonal_target = target + (coded_bins<<BITRES)*2.0f*tonal;
+ if (pitch_change)
+ tonal_target += (coded_bins<<BITRES)*.8;
+ /*printf("%f %f ", st->analysis.tonality, tonal);*/
+ target = IMAX(tonal_target,target);
+ }
+#endif
+
+ {
+ opus_int32 floor_depth;
+ int bins;
+ bins = eBands[nbEBands-2]<<LM;
+ /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/
+ floor_depth = SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT);
+ floor_depth = IMAX(floor_depth, target>>2);
+ target = IMIN(target, floor_depth);
+ /*printf("%f %d\n", maxDepth, floor_depth);*/
+ }
+
+ if (st->constrained_vbr || st->bitrate<64000)
+ {
+ opus_val16 rate_factor;
+#ifdef FIXED_POINT
+ rate_factor = MAX16(0,(st->bitrate-32000));
+#else
+ rate_factor = MAX16(0,(1.f/32768)*(st->bitrate-32000));
+#endif
+ if (st->constrained_vbr)
+ rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15));
+ target = base_target + MULT16_32_Q15(rate_factor, target-base_target);
+
+ }
+ /* Don't allow more than doubling the rate */
+ target = IMIN(2*base_target, target);
+
+ /* The current offset is removed from the target and the space used
+ so far is added*/
+ target=target+tell;
+ /* In VBR mode the frame size must not be reduced so much that it would
+ result in the encoder running out of bits.
+ The margin of 2 bytes ensures that none of the bust-prevention logic
+ in the decoder will have triggered so far. */
+ min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes;
+
+ nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3);
+ nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes);
+ nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes;
+
+ /* By how much did we "miss" the target on that frame */
+ delta = target - vbr_rate;
+
+ target=nbAvailableBytes<<(BITRES+3);
+
+ /*If the frame is silent we don't adjust our drift, otherwise
+ the encoder will shoot to very high rates after hitting a
+ span of silence, but we do allow the bitres to refill.
+ This means that we'll undershoot our target in CVBR/VBR modes
+ on files with lots of silence. */
+ if(silence)
+ {
+ nbAvailableBytes = 2;
+ target = 2*8<<BITRES;
+ delta = 0;
+ }
+
+ if (st->vbr_count < 970)
+ {
+ st->vbr_count++;
+ alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16));
+ } else
+ alpha = QCONST16(.001f,15);
+ /* How many bits have we used in excess of what we're allowed */
+ if (st->constrained_vbr)
+ st->vbr_reservoir += target - vbr_rate;
+ /*printf ("%d\n", st->vbr_reservoir);*/
+
+ /* Compute the offset we need to apply in order to reach the target */
+ if (st->constrained_vbr)
+ {
+ st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift);
+ st->vbr_offset = -st->vbr_drift;
+ }
+ /*printf ("%d\n", st->vbr_drift);*/
+
+ if (st->constrained_vbr && st->vbr_reservoir < 0)
+ {
+ /* We're under the min value -- increase rate */
+ int adjust = (-st->vbr_reservoir)/(8<<BITRES);
+ /* Unless we're just coding silence */
+ nbAvailableBytes += silence?0:adjust;
+ st->vbr_reservoir = 0;
+ /*printf ("+%d\n", adjust);*/
+ }
+ nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes);
+ /*printf("%d\n", nbCompressedBytes*50*8);*/
+ /* This moves the raw bits to take into account the new compressed size */
+ ec_enc_shrink(enc, nbCompressedBytes);
+ }
+
+ /* Bit allocation */
+ ALLOC(fine_quant, nbEBands, int);
+ ALLOC(pulses, nbEBands, int);
+ ALLOC(fine_priority, nbEBands, int);
+
+ /* bits = packet size - where we are - safety*/
+ bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1;
+ anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
+ bits -= anti_collapse_rsv;
+ codedBands = compute_allocation(mode, st->start, st->end, offsets, cap,
+ alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses,
+ fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands);
+ st->lastCodedBands = codedBands;
+
+ quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C);
+
+#ifdef MEASURE_NORM_MSE
+ float X0[3000];
+ float bandE0[60];
+ c=0; do
+ for (i=0;i<N;i++)
+ X0[i+c*N] = X[i+c*N];
+ while (++c<C);
+ for (i=0;i<C*nbEBands;i++)
+ bandE0[i] = bandE[i];
+#endif
+
+ /* Residual quantisation */
+ ALLOC(collapse_masks, C*nbEBands, unsigned char);
+ quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
+ bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res,
+ nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng);
+
+ if (anti_collapse_rsv > 0)
+ {
+ anti_collapse_on = st->consec_transient<2;
+#ifdef FUZZING
+ anti_collapse_on = rand()&0x1;
+#endif
+ ec_enc_bits(enc, anti_collapse_on, 1);
+ }
+ quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C);
+
+ if (silence)
+ {
+ for (i=0;i<C*nbEBands;i++)
+ oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
+ }
+
+#ifdef RESYNTH
+ /* Re-synthesis of the coded audio if required */
+ {
+ celt_sig *out_mem[2];
+
+ log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
+ if (silence)
+ {
+ for (i=0;i<C*nbEBands;i++)
+ bandE[i] = 0;
+ }
+
+#ifdef MEASURE_NORM_MSE
+ measure_norm_mse(mode, X, X0, bandE, bandE0, M, N, C);
+#endif
+ if (anti_collapse_on)
+ {
+ anti_collapse(mode, X, collapse_masks, LM, C, N,
+ st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
+ }
+
+ /* Synthesis */
+ denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M);
+
+ c=0; do {
+ OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap);
+ } while (++c<CC);
+
+ if (CC==2&&C==1)
+ {
+ for (i=0;i<N;i++)
+ freq[N+i] = freq[i];
+ }
+
+ c=0; do {
+ out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N;
+ } while (++c<CC);
+
+ compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM);
+
+ c=0; do {
+ st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
+ st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD);
+ comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize,
+ st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset,
+ mode->window, st->overlap);
+ if (LM!=0)
+ comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize,
+ st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset,
+ mode->window, overlap);
+ } while (++c<CC);
+
+ /* We reuse freq[] as scratch space for the de-emphasis */
+ deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq);
+ st->prefilter_period_old = st->prefilter_period;
+ st->prefilter_gain_old = st->prefilter_gain;
+ st->prefilter_tapset_old = st->prefilter_tapset;
+ }
+#endif
+
+ st->prefilter_period = pitch_index;
+ st->prefilter_gain = gain1;
+ st->prefilter_tapset = prefilter_tapset;
+#ifdef RESYNTH
+ if (LM!=0)
+ {
+ st->prefilter_period_old = st->prefilter_period;
+ st->prefilter_gain_old = st->prefilter_gain;
+ st->prefilter_tapset_old = st->prefilter_tapset;
+ }
+#endif
+
+ if (CC==2&&C==1) {
+ for (i=0;i<nbEBands;i++)
+ oldBandE[nbEBands+i]=oldBandE[i];
+ }
+
+ if (!isTransient)
+ {
+ for (i=0;i<CC*nbEBands;i++)
+ oldLogE2[i] = oldLogE[i];
+ for (i=0;i<CC*nbEBands;i++)
+ oldLogE[i] = oldBandE[i];
+ } else {
+ for (i=0;i<CC*nbEBands;i++)
+ oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
+ }
+ /* In case start or end were to change */
+ c=0; do
+ {
+ for (i=0;i<st->start;i++)
+ {
+ oldBandE[c*nbEBands+i]=0;
+ oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
+ }
+ for (i=st->end;i<nbEBands;i++)
+ {
+ oldBandE[c*nbEBands+i]=0;
+ oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
+ }
+ } while (++c<CC);
+
+ if (isTransient)
+ st->consec_transient++;
+ else
+ st->consec_transient=0;
+ st->rng = enc->rng;
+
+ /* If there's any room left (can only happen for very high rates),
+ it's already filled with zeros */
+ ec_enc_done(enc);
+
+#ifdef CUSTOM_MODES
+ if (st->signalling)
+ nbCompressedBytes++;
+#endif
+
+ RESTORE_STACK;
+ if (ec_get_error(enc))
+ return OPUS_INTERNAL_ERROR;
+ else
+ return nbCompressedBytes;
+}
+
+
+#ifdef CUSTOM_MODES
+
+#ifdef FIXED_POINT
+int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
+{
+ return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
+}
+
+#ifndef DISABLE_FLOAT_API
+int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
+{
+ int j, ret, C, N;
+ VARDECL(opus_int16, in);
+ ALLOC_STACK;
+
+ if (pcm==NULL)
+ return OPUS_BAD_ARG;
+
+ C = st->channels;
+ N = frame_size;
+ ALLOC(in, C*N, opus_int16);
+
+ for (j=0;j<C*N;j++)
+ in[j] = FLOAT2INT16(pcm[j]);
+
+ ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
+#ifdef RESYNTH
+ for (j=0;j<C*N;j++)
+ ((float*)pcm)[j]=in[j]*(1.f/32768.f);
+#endif
+ RESTORE_STACK;
+ return ret;
+}
+#endif /* DISABLE_FLOAT_API */
+#else
+
+int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
+{
+ int j, ret, C, N;
+ VARDECL(celt_sig, in);
+ ALLOC_STACK;
+
+ if (pcm==NULL)
+ return OPUS_BAD_ARG;
+
+ C=st->channels;
+ N=frame_size;
+ ALLOC(in, C*N, celt_sig);
+ for (j=0;j<C*N;j++) {
+ in[j] = SCALEOUT(pcm[j]);
+ }
+
+ ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
+#ifdef RESYNTH
+ for (j=0;j<C*N;j++)
+ ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]);
+#endif
+ RESTORE_STACK;
+ return ret;
+}
+
+int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
+{
+ return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
+}
+
+#endif
+
+#endif /* CUSTOM_MODES */
+
+int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...)
+{
+ va_list ap;
+
+ va_start(ap, request);
+ switch (request)
+ {
+ case OPUS_SET_COMPLEXITY_REQUEST:
+ {
+ int value = va_arg(ap, opus_int32);
+ if (value<0 || value>10)
+ goto bad_arg;
+ st->complexity = value;
+ }
+ break;
+ case CELT_SET_START_BAND_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ if (value<0 || value>=st->mode->nbEBands)
+ goto bad_arg;
+ st->start = value;
+ }
+ break;
+ case CELT_SET_END_BAND_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ if (value<1 || value>st->mode->nbEBands)
+ goto bad_arg;
+ st->end = value;
+ }
+ break;
+ case CELT_SET_PREDICTION_REQUEST:
+ {
+ int value = va_arg(ap, opus_int32);
+ if (value<0 || value>2)
+ goto bad_arg;
+ st->disable_pf = value<=1;
+ st->force_intra = value==0;
+ }
+ break;
+ case OPUS_SET_PACKET_LOSS_PERC_REQUEST:
+ {
+ int value = va_arg(ap, opus_int32);
+ if (value<0 || value>100)
+ goto bad_arg;
+ st->loss_rate = value;
+ }
+ break;
+ case OPUS_SET_VBR_CONSTRAINT_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ st->constrained_vbr = value;
+ }
+ break;
+ case OPUS_SET_VBR_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ st->vbr = value;
+ }
+ break;
+ case OPUS_SET_BITRATE_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ if (value<=500 && value!=OPUS_BITRATE_MAX)
+ goto bad_arg;
+ value = IMIN(value, 260000*st->channels);
+ st->bitrate = value;
+ }
+ break;
+ case CELT_SET_CHANNELS_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ if (value<1 || value>2)
+ goto bad_arg;
+ st->stream_channels = value;
+ }
+ break;
+ case OPUS_SET_LSB_DEPTH_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ if (value<8 || value>24)
+ goto bad_arg;
+ st->lsb_depth=value;
+ }
+ break;
+ case OPUS_GET_LSB_DEPTH_REQUEST:
+ {
+ opus_int32 *value = va_arg(ap, opus_int32*);
+ *value=st->lsb_depth;
+ }
+ break;
+ case OPUS_RESET_STATE:
+ {
+ int i;
+ opus_val16 *oldBandE, *oldLogE, *oldLogE2;
+ oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD));
+ oldLogE = oldBandE + st->channels*st->mode->nbEBands;
+ oldLogE2 = oldLogE + st->channels*st->mode->nbEBands;
+ OPUS_CLEAR((char*)&st->ENCODER_RESET_START,
+ opus_custom_encoder_get_size(st->mode, st->channels)-
+ ((char*)&st->ENCODER_RESET_START - (char*)st));
+ for (i=0;i<st->channels*st->mode->nbEBands;i++)
+ oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
+ st->vbr_offset = 0;
+ st->delayedIntra = 1;
+ st->spread_decision = SPREAD_NORMAL;
+ st->tonal_average = 256;
+ st->hf_average = 0;
+ st->tapset_decision = 0;
+ }
+ break;
+#ifdef CUSTOM_MODES
+ case CELT_SET_INPUT_CLIPPING_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ st->clip = value;
+ }
+ break;
+#endif
+ case CELT_SET_SIGNALLING_REQUEST:
+ {
+ opus_int32 value = va_arg(ap, opus_int32);
+ st->signalling = value;
+ }
+ break;
+ case CELT_SET_ANALYSIS_REQUEST:
+ {
+ AnalysisInfo *info = va_arg(ap, AnalysisInfo *);
+ if (info)
+ OPUS_COPY(&st->analysis, info, 1);
+ }
+ break;
+ case CELT_GET_MODE_REQUEST:
+ {
+ const CELTMode ** value = va_arg(ap, const CELTMode**);
+ if (value==0)
+ goto bad_arg;
+ *value=st->mode;
+ }
+ break;
+ case OPUS_GET_FINAL_RANGE_REQUEST:
+ {
+ opus_uint32 * value = va_arg(ap, opus_uint32 *);
+ if (value==0)
+ goto bad_arg;
+ *value=st->rng;
+ }
+ break;
+ default:
+ goto bad_request;
+ }
+ va_end(ap);
+ return OPUS_OK;
+bad_arg:
+ va_end(ap);
+ return OPUS_BAD_ARG;
+bad_request:
+ va_end(ap);
+ return OPUS_UNIMPLEMENTED;
+}
--- a/celt_sources.mk
+++ b/celt_sources.mk
@@ -1,5 +1,7 @@
CELT_SOURCES = celt/bands.c \
celt/celt.c \
+celt/celt_encoder.c \
+celt/celt_decoder.c \
celt/cwrs.c \
celt/entcode.c \
celt/entdec.c \
--- a/include/opus_custom.h
+++ b/include/opus_custom.h
@@ -42,16 +42,16 @@
#endif
#ifdef CUSTOM_MODES
-#define OPUS_CUSTOM_EXPORT OPUS_EXPORT
-#define OPUS_CUSTOM_EXPORT_STATIC OPUS_EXPORT
+# define OPUS_CUSTOM_EXPORT OPUS_EXPORT
+# define OPUS_CUSTOM_EXPORT_STATIC OPUS_EXPORT
#else
-#define OPUS_CUSTOM_EXPORT
-#ifdef CELT_C
-#define OPUS_CUSTOM_EXPORT_STATIC static inline
-#else
-#define OPUS_CUSTOM_EXPORT_STATIC
+# define OPUS_CUSTOM_EXPORT
+# ifdef CELT_C
+# define OPUS_CUSTOM_EXPORT_STATIC static inline
+# else
+# define OPUS_CUSTOM_EXPORT_STATIC
+# endif
#endif
-#endif
/** @defgroup opus_custom Opus Custom
* @{
@@ -126,6 +126,9 @@
*/
OPUS_CUSTOM_EXPORT void opus_custom_mode_destroy(OpusCustomMode *mode);
+
+#if defined(CELT_C) && defined(ENCODER)
+
/* Encoder */
/** Gets the size of an OpusCustomEncoder structure.
* @param [in] mode <tt>OpusCustomMode *</tt>: Mode configuration
@@ -137,21 +140,6 @@
int channels
) OPUS_ARG_NONNULL(1);
-/** Creates a new encoder state. Each stream needs its own encoder
- * state (can't be shared across simultaneous streams).
- * @param [in] mode <tt>OpusCustomMode*</tt>: Contains all the information about the characteristics of
- * the stream (must be the same characteristics as used for the
- * decoder)
- * @param [in] channels <tt>int</tt>: Number of channels
- * @param [out] error <tt>int*</tt>: Returns an error code
- * @return Newly created encoder state.
-*/
-OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomEncoder *opus_custom_encoder_create(
- const OpusCustomMode *mode,
- int channels,
- int *error
-) OPUS_ARG_NONNULL(1);
-
/** Initializes a previously allocated encoder state
* The memory pointed to by st must be the size returned by opus_custom_encoder_get_size.
* This is intended for applications which use their own allocator instead of malloc.
@@ -170,6 +158,25 @@
int channels
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2);
+#endif
+
+
+/** Creates a new encoder state. Each stream needs its own encoder
+ * state (can't be shared across simultaneous streams).
+ * @param [in] mode <tt>OpusCustomMode*</tt>: Contains all the information about the characteristics of
+ * the stream (must be the same characteristics as used for the
+ * decoder)
+ * @param [in] channels <tt>int</tt>: Number of channels
+ * @param [out] error <tt>int*</tt>: Returns an error code
+ * @return Newly created encoder state.
+*/
+OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomEncoder *opus_custom_encoder_create(
+ const OpusCustomMode *mode,
+ int channels,
+ int *error
+) OPUS_ARG_NONNULL(1);
+
+
/** Destroys a an encoder state.
* @param[in] st <tt>OpusCustomEncoder*</tt>: State to be freed.
*/
@@ -229,6 +236,8 @@
*/
OPUS_CUSTOM_EXPORT int opus_custom_encoder_ctl(OpusCustomEncoder * OPUS_RESTRICT st, int request, ...) OPUS_ARG_NONNULL(1);
+
+#if defined(CELT_C) && defined(DECODER)
/* Decoder */
/** Gets the size of an OpusCustomDecoder structure.
@@ -241,20 +250,6 @@
int channels
) OPUS_ARG_NONNULL(1);
-/** Creates a new decoder state. Each stream needs its own decoder state (can't
- * be shared across simultaneous streams).
- * @param [in] mode <tt>OpusCustomMode</tt>: Contains all the information about the characteristics of the
- * stream (must be the same characteristics as used for the encoder)
- * @param [in] channels <tt>int</tt>: Number of channels
- * @param [out] error <tt>int*</tt>: Returns an error code
- * @return Newly created decoder state.
- */
-OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomDecoder *opus_custom_decoder_create(
- const OpusCustomMode *mode,
- int channels,
- int *error
-) OPUS_ARG_NONNULL(1);
-
/** Initializes a previously allocated decoder state
* The memory pointed to by st must be the size returned by opus_custom_decoder_get_size.
* This is intended for applications which use their own allocator instead of malloc.
@@ -272,6 +267,23 @@
const OpusCustomMode *mode,
int channels
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2);
+
+#endif
+
+
+/** Creates a new decoder state. Each stream needs its own decoder state (can't
+ * be shared across simultaneous streams).
+ * @param [in] mode <tt>OpusCustomMode</tt>: Contains all the information about the characteristics of the
+ * stream (must be the same characteristics as used for the encoder)
+ * @param [in] channels <tt>int</tt>: Number of channels
+ * @param [out] error <tt>int*</tt>: Returns an error code
+ * @return Newly created decoder state.
+ */
+OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomDecoder *opus_custom_decoder_create(
+ const OpusCustomMode *mode,
+ int channels,
+ int *error
+) OPUS_ARG_NONNULL(1);
/** Destroys a an decoder state.
* @param[in] st <tt>OpusCustomDecoder*</tt>: State to be freed.