shithub: opus

ref: 4dc0b3970568ff4cd484954333d3f800d8e4eeec
dir: /silk/silk_NLSF_encode.c/

View raw version
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, (subject to the limitations in the disclaimer below)
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Skype Limited, nor the names of specific
contributors, may be used to endorse or promote products derived from
this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "silk_main.h"

#define STORE_LSF_DATA_FOR_TRAINING          0

/***********************/
/* NLSF vector encoder */
/***********************/
opus_int32 silk_NLSF_encode(                                 /* O    Returns RD value in Q25                 */
          opus_int8                  *NLSFIndices,           /* I    Codebook path vector [ LPC_ORDER + 1 ]  */
          opus_int16                 *pNLSF_Q15,             /* I/O  Quantized NLSF vector [ LPC_ORDER ]     */
    const silk_NLSF_CB_struct       *psNLSF_CB,             /* I    Codebook object                         */
    const opus_int16                 *pW_QW,                 /* I    NLSF weight vector [ LPC_ORDER ]        */
    const opus_int                   NLSF_mu_Q20,            /* I    Rate weight for the RD optimization     */
    const opus_int                   nSurvivors,             /* I    Max survivors after first stage         */
    const opus_int                   signalType              /* I    Signal type: 0/1/2                      */
)
{
    opus_int         i, s, ind1, bestIndex, prob_Q8, bits_q7;
    opus_int32       W_tmp_Q9;
    opus_int32       err_Q26[      NLSF_VQ_MAX_VECTORS ];
    opus_int32       RD_Q25[       NLSF_VQ_MAX_SURVIVORS ];
    opus_int         tempIndices1[ NLSF_VQ_MAX_SURVIVORS ];
    opus_int8        tempIndices2[ NLSF_VQ_MAX_SURVIVORS * MAX_LPC_ORDER ];
    opus_int16       res_Q15[      MAX_LPC_ORDER ];
    opus_int16       res_Q10[      MAX_LPC_ORDER ];
    opus_int16       NLSF_tmp_Q15[ MAX_LPC_ORDER ];
    opus_int16       W_tmp_QW[     MAX_LPC_ORDER ];
    opus_int16       W_adj_Q5[     MAX_LPC_ORDER ];
    opus_uint8       pred_Q8[      MAX_LPC_ORDER ];
    opus_int16       ec_ix[        MAX_LPC_ORDER ];
    const opus_uint8 *pCB_element, *iCDF_ptr;

#if STORE_LSF_DATA_FOR_TRAINING
    opus_int16       pNLSF_Q15_orig[MAX_LPC_ORDER ];
    DEBUG_STORE_DATA( NLSF.dat,    pNLSF_Q15,    psNLSF_CB->order * sizeof( opus_int16 ) );
    DEBUG_STORE_DATA( WNLSF.dat,   pW_Q5,        psNLSF_CB->order * sizeof( opus_int16 ) );
    DEBUG_STORE_DATA( NLSF_mu.dat, &NLSF_mu_Q20,                    sizeof( opus_int   ) );
    DEBUG_STORE_DATA( sigType.dat, &signalType,                     sizeof( opus_int   ) );
    SKP_memcpy(pNLSF_Q15_orig, pNLSF_Q15, sizeof( pNLSF_Q15_orig ));
#endif

    SKP_assert( nSurvivors <= NLSF_VQ_MAX_SURVIVORS );
    SKP_assert( signalType >= 0 && signalType <= 2 );
    SKP_assert( NLSF_mu_Q20 <= 32767 && NLSF_mu_Q20 >= 0 );

    /* NLSF stabilization */
    silk_NLSF_stabilize( pNLSF_Q15, psNLSF_CB->deltaMin_Q15, psNLSF_CB->order );

    /* First stage: VQ */
    silk_NLSF_VQ( err_Q26, pNLSF_Q15, psNLSF_CB->CB1_NLSF_Q8, psNLSF_CB->nVectors, psNLSF_CB->order );

    /* Sort the quantization errors */
    silk_insertion_sort_increasing( err_Q26, tempIndices1, psNLSF_CB->nVectors, nSurvivors );

    /* Loop over survivors */
    for( s = 0; s < nSurvivors; s++ ) {
        ind1 = tempIndices1[ s ];

        /* Residual after first stage */
        pCB_element = &psNLSF_CB->CB1_NLSF_Q8[ ind1 * psNLSF_CB->order ];
        for( i = 0; i < psNLSF_CB->order; i++ ) {
            NLSF_tmp_Q15[ i ] = SKP_LSHIFT16( ( opus_int16 )pCB_element[ i ], 7 );
            res_Q15[ i ] = pNLSF_Q15[ i ] - NLSF_tmp_Q15[ i ];
        }

        /* Weights from codebook vector */
        silk_NLSF_VQ_weights_laroia( W_tmp_QW, NLSF_tmp_Q15, psNLSF_CB->order );

        /* Apply square-rooted weights */
        for( i = 0; i < psNLSF_CB->order; i++ ) {
            W_tmp_Q9 = silk_SQRT_APPROX( SKP_LSHIFT( ( opus_int32 )W_tmp_QW[ i ], 18 - NLSF_W_Q ) );
            res_Q10[ i ] = ( opus_int16 )SKP_RSHIFT( SKP_SMULBB( res_Q15[ i ], W_tmp_Q9 ), 14 );
        }

        /* Modify input weights accordingly */
        for( i = 0; i < psNLSF_CB->order; i++ ) {
            W_adj_Q5[ i ] = SKP_DIV32_16( SKP_LSHIFT( ( opus_int32 )pW_QW[ i ], 5 ), W_tmp_QW[ i ] );
        }

        /* Unpack entropy table indices and predictor for current CB1 index */
        silk_NLSF_unpack( ec_ix, pred_Q8, psNLSF_CB, ind1 );

        /* Trellis quantizer */
        RD_Q25[ s ] = silk_NLSF_del_dec_quant( &tempIndices2[ s * MAX_LPC_ORDER ], res_Q10, W_adj_Q5, pred_Q8, ec_ix,
            psNLSF_CB->ec_Rates_Q5, psNLSF_CB->quantStepSize_Q16, psNLSF_CB->invQuantStepSize_Q6, NLSF_mu_Q20, psNLSF_CB->order );

        /* Add rate for first stage */
        iCDF_ptr = &psNLSF_CB->CB1_iCDF[ ( signalType >> 1 ) * psNLSF_CB->nVectors ];
        if( ind1 == 0 ) {
            prob_Q8 = 256 - iCDF_ptr[ ind1 ];
        } else {
            prob_Q8 = iCDF_ptr[ ind1 - 1 ] - iCDF_ptr[ ind1 ];
        }
        bits_q7 = ( 8 << 7 ) - silk_lin2log( prob_Q8 );
        RD_Q25[ s ] = SKP_SMLABB( RD_Q25[ s ], bits_q7, SKP_RSHIFT( NLSF_mu_Q20, 2 ) );
    }

    /* Find the lowest rate-distortion error */
    silk_insertion_sort_increasing( RD_Q25, &bestIndex, nSurvivors, 1 );

    NLSFIndices[ 0 ] = ( opus_int8 )tempIndices1[ bestIndex ];
    SKP_memcpy( &NLSFIndices[ 1 ], &tempIndices2[ bestIndex * MAX_LPC_ORDER ], psNLSF_CB->order * sizeof( opus_int8 ) );

    /* Decode */
    silk_NLSF_decode( pNLSF_Q15, NLSFIndices, psNLSF_CB );

#if STORE_LSF_DATA_FOR_TRAINING
    {
        /* code for training the codebooks */
        opus_int32 RD_dec_Q22, Dist_Q22_dec, Rate_Q7, diff_Q15;
        ind1 = NLSFIndices[ 0 ];
        silk_NLSF_unpack( ec_ix, pred_Q8, psNLSF_CB, ind1 );

        pCB_element = &psNLSF_CB->CB1_NLSF_Q8[ ind1 * psNLSF_CB->order ];
        for( i = 0; i < psNLSF_CB->order; i++ ) {
            NLSF_tmp_Q15[ i ] = SKP_LSHIFT16( ( opus_int16 )pCB_element[ i ], 7 );
        }
        silk_NLSF_VQ_weights_laroia( W_tmp_QW, NLSF_tmp_Q15, psNLSF_CB->order );
        for( i = 0; i < psNLSF_CB->order; i++ ) {
            W_tmp_Q9 = silk_SQRT_APPROX( SKP_LSHIFT( ( opus_int32 )W_tmp_QW[ i ], 18 - NLSF_W_Q ) );
            res_Q15[ i ] = pNLSF_Q15_orig[ i ] - NLSF_tmp_Q15[ i ];
            res_Q10[ i ] = (opus_int16)SKP_RSHIFT( SKP_SMULBB( res_Q15[ i ], W_tmp_Q9 ), 14 );
            DEBUG_STORE_DATA( NLSF_res_q10.dat, &res_Q10[ i ], sizeof( opus_int16 ) );
            res_Q15[ i ] = pNLSF_Q15[ i ] - NLSF_tmp_Q15[ i ];
            res_Q10[ i ] = (opus_int16)SKP_RSHIFT( SKP_SMULBB( res_Q15[ i ], W_tmp_Q9 ), 14 );
            DEBUG_STORE_DATA( NLSF_resq_q10.dat, &res_Q10[ i ], sizeof( opus_int16 ) );
        }

        Dist_Q22_dec = 0;
        for( i = 0; i < psNLSF_CB->order; i++ ) {
            diff_Q15 = pNLSF_Q15_orig[ i ] - pNLSF_Q15[ i ];
            Dist_Q22_dec += ( ( (diff_Q15 >> 5) * (diff_Q15 >> 5) ) * pW_Q5[ i ] ) >> 3;
        }
        iCDF_ptr = &psNLSF_CB->CB1_iCDF[ ( signalType >> 1 ) * psNLSF_CB->nVectors ];
        if( ind1 == 0 ) {
            prob_Q8 = 256 - iCDF_ptr[ ind1 ];
        } else {
            prob_Q8 = iCDF_ptr[ ind1 - 1 ] - iCDF_ptr[ ind1 ];
        }
        Rate_Q7 = ( 8 << 7 ) - silk_lin2log( prob_Q8 );
        for( i = 0; i < psNLSF_CB->order; i++ ) {
            Rate_Q7 += ((int)psNLSF_CB->ec_Rates_Q5[ ec_ix[ i ] + SKP_LIMIT( NLSFIndices[ i + 1 ] + NLSF_QUANT_MAX_AMPLITUDE, 0, 2 * NLSF_QUANT_MAX_AMPLITUDE ) ] ) << 2;
            if( SKP_abs( NLSFIndices[ i + 1 ] ) >= NLSF_QUANT_MAX_AMPLITUDE ) {
                Rate_Q7 += 128 << ( SKP_abs( NLSFIndices[ i + 1 ] ) - NLSF_QUANT_MAX_AMPLITUDE );
            }
        }
        RD_dec_Q22 = Dist_Q22_dec + Rate_Q7 * NLSF_mu_Q20 >> 5;
        DEBUG_STORE_DATA( dec_dist_q22.dat, &Dist_Q22_dec, sizeof( opus_int32 ) );
        DEBUG_STORE_DATA( dec_rate_q7.dat, &Rate_Q7, sizeof( opus_int32 ) );
        DEBUG_STORE_DATA( dec_rd_q22.dat, &RD_dec_Q22, sizeof( opus_int32 ) );
    }
    DEBUG_STORE_DATA( NLSF_ind.dat, NLSFIndices, (psNLSF_CB->order+1) * sizeof( opus_int8 ) );
#endif

    return RD_Q25[ 0 ];
}