shithub: opus

Download patch

ref: 48923ae9966c4c065c7cea776944155ca0617f34
parent: 802f6eab9b75db906869262a6387cf5209b28bb4
author: Jean-Marc Valin <[email protected]>
date: Fri Jul 23 13:28:50 EDT 2010

Cleanup, de-inlining some math functions

--- a/libcelt/Makefile.am
+++ b/libcelt/Makefile.am
@@ -15,7 +15,7 @@
 
 # Sources for compilation in the library
 libcelt@LIBCELT_SUFFIX@_la_SOURCES = bands.c celt.c cwrs.c ecintrin.h entcode.c \
-	entdec.c entenc.c header.c kiss_fft.c laplace.c mdct.c \
+	entdec.c entenc.c header.c kiss_fft.c laplace.c mathops.c mdct.c \
 	modes.c pitch.c plc.c quant_bands.c rangedec.c rangeenc.c rate.c \
 	vq.c
 
--- a/libcelt/bands.c
+++ b/libcelt/bands.c
@@ -45,6 +45,22 @@
 #include "mathops.h"
 #include "rate.h"
 
+/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
+   with this approximation is important because it has an impact on the bit allocation */
+static celt_int16 bitexact_cos(celt_int16 x)
+{
+   celt_int32 tmp;
+   celt_int16 x2;
+   tmp = (4096+((celt_int32)(x)*(x)))>>13;
+   if (tmp > 32767)
+      tmp = 32767;
+   x2 = tmp;
+   x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
+   if (x2 > 32766)
+      x2 = 32766;
+   return 1+x2;
+}
+
 
 #ifdef FIXED_POINT
 /* Compute the amplitude (sqrt energy) in each of the bands */
--- /dev/null
+++ b/libcelt/mathops.c
@@ -1,0 +1,179 @@
+/* Copyright (c) 2002-2008 Jean-Marc Valin
+   Copyright (c) 2007-2008 CSIRO
+   Copyright (c) 2007-2009 Xiph.Org Foundation
+   Written by Jean-Marc Valin */
+/**
+   @file mathops.h
+   @brief Various math functions
+*/
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   - Neither the name of the Xiph.org Foundation nor the names of its
+   contributors may be used to endorse or promote products derived from
+   this software without specific prior written permission.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
+   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "mathops.h"
+
+#ifdef FIXED_POINT
+
+celt_word32 frac_div32(celt_word32 a, celt_word32 b)
+{
+   celt_word16 rcp;
+   celt_word32 result, rem;
+   int shift = 30-celt_ilog2(b);
+   a = SHL32(a,shift);
+   b = SHL32(b,shift);
+
+   /* 16-bit reciprocal */
+   rcp = ROUND16(celt_rcp(ROUND16(b,16)),2);
+   result = SHL32(MULT16_32_Q15(rcp, a),1);
+   rem = a-MULT32_32_Q31(result, b);
+   result += SHL32(MULT16_32_Q15(rcp, rem),1);
+   return result;
+}
+
+/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
+celt_word16 celt_rsqrt_norm(celt_word32 x)
+{
+   celt_word16 n;
+   celt_word16 r;
+   celt_word16 r2;
+   celt_word16 y;
+   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
+   n = x-32768;
+   /* Get a rough initial guess for the root.
+      The optimal minimax quadratic approximation (using relative error) is
+       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
+      Coefficients here, and the final result r, are Q14.*/
+   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
+   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
+      We can compute the result from n and r using Q15 multiplies with some
+       adjustment, carefully done to avoid overflow.
+      Range of y is [-1564,1594]. */
+   r2 = MULT16_16_Q15(r, r);
+   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
+   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
+      This yields the Q14 reciprocal square root of the Q16 x, with a maximum
+       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
+       peak absolute error of 2.26591/16384. */
+   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
+              SUB16(MULT16_16_Q15(y, 12288), 16384))));
+}
+
+/** Sqrt approximation (QX input, QX/2 output) */
+celt_word32 celt_sqrt(celt_word32 x)
+{
+   int k;
+   celt_word16 n;
+   celt_word32 rt;
+   static const celt_word16 C[5] = {23175, 11561, -3011, 1699, -664};
+   if (x==0)
+      return 0;
+   k = (celt_ilog2(x)>>1)-7;
+   x = VSHR32(x, (k<<1));
+   n = x-32768;
+   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
+              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
+   rt = VSHR32(rt,7-k);
+   return rt;
+}
+
+#define L1 32767
+#define L2 -7651
+#define L3 8277
+#define L4 -626
+
+static inline celt_word16 _celt_cos_pi_2(celt_word16 x)
+{
+   celt_word16 x2;
+
+   x2 = MULT16_16_P15(x,x);
+   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
+                                                                                ))))))));
+}
+
+#undef L1
+#undef L2
+#undef L3
+#undef L4
+
+celt_word16 celt_cos_norm(celt_word32 x)
+{
+   x = x&0x0001ffff;
+   if (x>SHL32(EXTEND32(1), 16))
+      x = SUB32(SHL32(EXTEND32(1), 17),x);
+   if (x&0x00007fff)
+   {
+      if (x<SHL32(EXTEND32(1), 15))
+      {
+         return _celt_cos_pi_2(EXTRACT16(x));
+      } else {
+         return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
+      }
+   } else {
+      if (x&0x0000ffff)
+         return 0;
+      else if (x&0x0001ffff)
+         return -32767;
+      else
+         return 32767;
+   }
+}
+
+/** Reciprocal approximation (Q15 input, Q16 output) */
+celt_word32 celt_rcp(celt_word32 x)
+{
+   int i;
+   celt_word16 n;
+   celt_word16 r;
+   celt_assert2(x>0, "celt_rcp() only defined for positive values");
+   i = celt_ilog2(x);
+   /* n is Q15 with range [0,1). */
+   n = VSHR32(x,i-15)-32768;
+   /* Start with a linear approximation:
+      r = 1.8823529411764706-0.9411764705882353*n.
+      The coefficients and the result are Q14 in the range [15420,30840].*/
+   r = ADD16(30840, MULT16_16_Q15(-15420, n));
+   /* Perform two Newton iterations:
+      r -= r*((r*n)-1.Q15)
+         = r*((r*n)+(r-1.Q15)). */
+   r = SUB16(r, MULT16_16_Q15(r,
+             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
+   /* We subtract an extra 1 in the second iteration to avoid overflow; it also
+       neatly compensates for truncation error in the rest of the process. */
+   r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
+             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
+   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
+       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
+       error of 1.24665/32768. */
+   return VSHR32(EXTEND32(r),i-16);
+}
+
+#endif
--- a/libcelt/mathops.h
+++ b/libcelt/mathops.h
@@ -42,66 +42,13 @@
 #include "entcode.h"
 #include "os_support.h"
 
-
-
-#ifndef OVERRIDE_FIND_MAX16
-static inline int find_max16(celt_word16 *x, int len)
-{
-   celt_word16 max_corr=-VERY_LARGE16;
-   int i, id = 0;
-   for (i=0;i<len;i++)
-   {
-      if (x[i] > max_corr)
-      {
-         id = i;
-         max_corr = x[i];
-      }
-   }
-   return id;
-}
-#endif
-
-#ifndef OVERRIDE_FIND_MAX32
-static inline int find_max32(celt_word32 *x, int len)
-{
-   celt_word32 max_corr=-VERY_LARGE32;
-   int i, id = 0;
-   for (i=0;i<len;i++)
-   {
-      if (x[i] > max_corr)
-      {
-         id = i;
-         max_corr = x[i];
-      }
-   }
-   return id;
-}
-#endif
-
 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
 #define FRAC_MUL16(a,b) ((16384+((celt_int32)(celt_int16)(a)*(celt_int16)(b)))>>15)
 
-/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
-   with this approximation is important because it has an impact on the bit allocation */
-static inline celt_int16 bitexact_cos(celt_int16 x)
-{
-   celt_int32 tmp;
-   celt_int16 x2;
-   tmp = (4096+((celt_int32)(x)*(x)))>>13;
-   if (tmp > 32767)
-      tmp = 32767;
-   x2 = tmp;
-   x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
-   if (x2 > 32766)
-      x2 = 32766;
-   return 1+x2;
-}
 
-
 #ifndef FIXED_POINT
 
 #define celt_sqrt(x) ((float)sqrt(x))
-#define celt_psqrt(x) ((float)sqrt(x))
 #define celt_rsqrt(x) (1.f/celt_sqrt(x))
 #define celt_rsqrt_norm(x) (celt_rsqrt(x))
 #define celt_acos acos
@@ -195,120 +142,13 @@
    return x <= 0 ? 0 : celt_ilog2(x);
 }
 
-/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
-static inline celt_word16 celt_rsqrt_norm(celt_word32 x)
-{
-   celt_word16 n;
-   celt_word16 r;
-   celt_word16 r2;
-   celt_word16 y;
-   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
-   n = x-32768;
-   /* Get a rough initial guess for the root.
-      The optimal minimax quadratic approximation (using relative error) is
-       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
-      Coefficients here, and the final result r, are Q14.*/
-   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
-   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
-      We can compute the result from n and r using Q15 multiplies with some
-       adjustment, carefully done to avoid overflow.
-      Range of y is [-1564,1594]. */
-   r2 = MULT16_16_Q15(r, r);
-   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
-   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
-      This yields the Q14 reciprocal square root of the Q16 x, with a maximum
-       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
-       peak absolute error of 2.26591/16384. */
-   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
-              SUB16(MULT16_16_Q15(y, 12288), 16384))));
-}
+celt_word16 celt_rsqrt_norm(celt_word32 x);
 
-/** Reciprocal sqrt approximation (Q30 input, Q0 output or equivalent) */
-static inline celt_word32 celt_rsqrt(celt_word32 x)
-{
-   int k;
-   k = celt_ilog2(x)>>1;
-   x = VSHR32(x, (k-7)<<1);
-   return PSHR32(celt_rsqrt_norm(x), k);
-}
+celt_word32 celt_sqrt(celt_word32 x);
 
-/** Sqrt approximation (QX input, QX/2 output) */
-static inline celt_word32 celt_sqrt(celt_word32 x)
-{
-   int k;
-   celt_word16 n;
-   celt_word32 rt;
-   static const celt_word16 C[5] = {23175, 11561, -3011, 1699, -664};
-   if (x==0)
-      return 0;
-   k = (celt_ilog2(x)>>1)-7;
-   x = VSHR32(x, (k<<1));
-   n = x-32768;
-   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], 
-              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
-   rt = VSHR32(rt,7-k);
-   return rt;
-}
+celt_word16 celt_cos_norm(celt_word32 x);
 
-/** Sqrt approximation (QX input, QX/2 output) that assumes that the input is
-    strictly positive */
-static inline celt_word32 celt_psqrt(celt_word32 x)
-{
-   int k;
-   celt_word16 n;
-   celt_word32 rt;
-   static const celt_word16 C[5] = {23175, 11561, -3011, 1699, -664};
-   k = (celt_ilog2(x)>>1)-7;
-   x = VSHR32(x, (k<<1));
-   n = x-32768;
-   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], 
-              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
-   rt = VSHR32(rt,7-k);
-   return rt;
-}
 
-#define L1 32767
-#define L2 -7651
-#define L3 8277
-#define L4 -626
-
-static inline celt_word16 _celt_cos_pi_2(celt_word16 x)
-{
-   celt_word16 x2;
-   
-   x2 = MULT16_16_P15(x,x);
-   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
-                                                                                ))))))));
-}
-
-#undef L1
-#undef L2
-#undef L3
-#undef L4
-
-static inline celt_word16 celt_cos_norm(celt_word32 x)
-{
-   x = x&0x0001ffff;
-   if (x>SHL32(EXTEND32(1), 16))
-      x = SUB32(SHL32(EXTEND32(1), 17),x);
-   if (x&0x00007fff)
-   {
-      if (x<SHL32(EXTEND32(1), 15))
-      {
-         return _celt_cos_pi_2(EXTRACT16(x));
-      } else {
-         return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
-      }
-   } else {
-      if (x&0x0000ffff)
-         return 0;
-      else if (x&0x0001ffff)
-         return -32767;
-      else
-         return 32767;
-   }
-}
-
 static inline celt_word16 celt_log2(celt_word32 x)
 {
    int i;
@@ -349,52 +189,11 @@
    return VSHR32(EXTEND32(frac), -integer-2);
 }
 
-/** Reciprocal approximation (Q15 input, Q16 output) */
-static inline celt_word32 celt_rcp(celt_word32 x)
-{
-   int i;
-   celt_word16 n;
-   celt_word16 r;
-   celt_assert2(x>0, "celt_rcp() only defined for positive values");
-   i = celt_ilog2(x);
-   /* n is Q15 with range [0,1). */
-   n = VSHR32(x,i-15)-32768;
-   /* Start with a linear approximation:
-      r = 1.8823529411764706-0.9411764705882353*n.
-      The coefficients and the result are Q14 in the range [15420,30840].*/
-   r = ADD16(30840, MULT16_16_Q15(-15420, n));
-   /* Perform two Newton iterations:
-      r -= r*((r*n)-1.Q15)
-         = r*((r*n)+(r-1.Q15)). */
-   r = SUB16(r, MULT16_16_Q15(r,
-             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
-   /* We subtract an extra 1 in the second iteration to avoid overflow; it also
-       neatly compensates for truncation error in the rest of the process. */
-   r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
-             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
-   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
-       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
-       error of 1.24665/32768. */
-   return VSHR32(EXTEND32(r),i-16);
-}
+celt_word32 celt_rcp(celt_word32 x);
 
 #define celt_div(a,b) MULT32_32_Q31((celt_word32)(a),celt_rcp(b))
 
-static inline celt_word32 frac_div32(celt_word32 a, celt_word32 b)
-{
-   celt_word16 rcp;
-   celt_word32 result, rem;
-   int shift = 30-celt_ilog2(b);
-   a = SHL32(a,shift);
-   b = SHL32(b,shift);
-
-   /* 16-bit reciprocal */
-   rcp = ROUND16(celt_rcp(ROUND16(b,16)),2);
-   result = SHL32(MULT16_32_Q15(rcp, a),1);
-   rem = a-MULT32_32_Q31(result, b);
-   result += SHL32(MULT16_32_Q15(rcp, rem),1);
-   return result;
-}
+celt_word32 frac_div32(celt_word32 a, celt_word32 b);
 
 #define M1 32767
 #define M2 -21
--- a/tests/dft-test.c
+++ b/tests/dft-test.c
@@ -8,6 +8,7 @@
 #define CELT_C 
 #include "../libcelt/stack_alloc.h"
 #include "../libcelt/kiss_fft.c"
+#include "../libcelt/mathops.c"
 #include "../libcelt/entcode.c"
 
 
--- a/tests/mathops-test.c
+++ b/tests/mathops-test.c
@@ -2,7 +2,7 @@
 #include "config.h"
 #endif
 
-#include "mathops.h"
+#include "mathops.c"
 #include <stdio.h>
 #include <math.h>
 
@@ -56,24 +56,6 @@
    }
 }
 
-void testrsqrt(void)
-{
-   celt_int32 i;
-   for (i=1;i<=2000000;i++)
-   {
-      double ratio;
-      celt_word16 val;
-      val = celt_rsqrt(i);
-      ratio = val*sqrt(i)/Q15ONE;
-      if (fabs(ratio - 1) > .05)
-      {
-         fprintf (stderr, "rsqrt failed: rsqrt(%d)="WORD" (ratio = %f)\n", i, val, ratio);
-         ret = 1;
-      }
-      i+= i>>10;
-   }
-}
-
 #ifndef FIXED_POINT
 void testlog2(void)
 {
@@ -179,7 +161,6 @@
 {
    testdiv();
    testsqrt();
-   testrsqrt();
    testlog2();
    testexp2();
    testexp2log2();
--- a/tests/mdct-test.c
+++ b/tests/mdct-test.c
@@ -9,6 +9,7 @@
 
 #include "../libcelt/kiss_fft.c"
 #include "../libcelt/mdct.c"
+#include "../libcelt/mathops.c"
 
 #ifndef M_PI
 #define M_PI 3.141592653