ref: 009978ee6c240a1b33a5cafd1d9cc9e7fbfc96f3
parent: ae319fe66bd70718336abcba8eb051e9d5a19d03
author: Jean-Marc Valin <[email protected]>
date: Mon Sep 13 07:05:08 EDT 2010
Moves the bit-side gain application to the quantizer
--- a/libcelt/bands.c
+++ b/libcelt/bands.c
@@ -177,7 +177,7 @@
for (c=0;c<C;c++)
{
i=0; do {
- renormalise_vector(X+M*eBands[i]+c*M*m->shortMdctSize, M*eBands[i+1]-M*eBands[i]);
+ renormalise_vector(X+M*eBands[i]+c*M*m->shortMdctSize, M*eBands[i+1]-M*eBands[i], Q15ONE);
} while (++i<end);
}
}
@@ -437,7 +437,8 @@
can be called recursively so bands can end up being split in 8 parts. */
static void quant_band(int encode, const CELTMode *m, int i, celt_norm *X, celt_norm *Y,
int N, int b, int spread, int B, int tf_change, celt_norm *lowband, int resynth, void *ec,
- celt_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE, int level, celt_int32 *seed)
+ celt_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE, int level,
+ celt_int32 *seed, celt_word16 gain)
{
int q;
int curr_bits;
@@ -628,7 +629,7 @@
}
qalloc = log2_frac(ft,BITRES) - log2_frac(fs,BITRES) + 1;
}
- itheta = itheta*16384/qn;
+ itheta = (celt_int32)itheta*16384/qn;
} else {
if (stereo && encode)
stereo_band_mix(m, X, Y, bandE, 1, i, 1, N);
@@ -683,7 +684,7 @@
}
}
sign = 2*sign - 1;
- quant_band(encode, m, i, x2, NULL, N, mbits, spread, B, tf_change, lowband, resynth, ec, remaining_bits, LM, lowband_out, NULL, level+1, seed);
+ quant_band(encode, m, i, x2, NULL, N, mbits, spread, B, tf_change, lowband, resynth, ec, remaining_bits, LM, lowband_out, NULL, level+1, seed, gain);
y2[0] = -sign*x2[1];
y2[1] = sign*x2[0];
} else {
@@ -692,6 +693,14 @@
celt_norm *next_lowband_out1=NULL;
int next_level=0;
+#ifdef FIXED_POINT
+ mid = imid;
+ side = iside;
+#else
+ mid = (1.f/32768)*imid;
+ side = (1.f/32768)*iside;
+#endif
+
/* Give more bits to low-energy MDCTs than they would otherwise deserve */
if (B>1 && !stereo)
delta >>= 1;
@@ -707,14 +716,19 @@
if (lowband && !stereo)
next_lowband2 = lowband+N; /* >32-bit split case */
- /* Only stereo needs to pass on lowband_out. Otherwise, it's handled at the end */
+ /* Only stereo needs to pass on lowband_out. Otherwise, it's
+ handled at the end */
if (stereo)
next_lowband_out1 = lowband_out;
else
next_level = level+1;
- quant_band(encode, m, i, X, NULL, N, mbits, spread, B, tf_change, lowband, resynth, ec, remaining_bits, LM, next_lowband_out1, NULL, next_level, seed);
- quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, tf_change, next_lowband2, resynth, ec, remaining_bits, LM, NULL, NULL, next_level, seed);
+ quant_band(encode, m, i, X, NULL, N, mbits, spread, B, tf_change,
+ lowband, resynth, ec, remaining_bits, LM, next_lowband_out1,
+ NULL, next_level, seed, MULT16_16_P15(gain,mid));
+ quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, tf_change,
+ next_lowband2, resynth, ec, remaining_bits, LM, NULL,
+ NULL, next_level, seed, MULT16_16_P15(gain,side));
}
} else {
@@ -734,9 +748,9 @@
/* Finally do the actual quantization */
if (encode)
- alg_quant(X, N, q, spread, B, lowband, resynth, (ec_enc*)ec, seed);
+ alg_quant(X, N, q, spread, B, lowband, resynth, (ec_enc*)ec, seed, gain);
else
- alg_unquant(X, N, q, spread, B, lowband, (ec_dec*)ec, seed);
+ alg_unquant(X, N, q, spread, B, lowband, (ec_dec*)ec, seed, gain);
}
/* This code is used by the decoder and by the resynthesis-enabled encoder */
@@ -744,23 +758,6 @@
{
int k;
- if (split)
- {
- int j;
- celt_word16 mid, side;
-#ifdef FIXED_POINT
- mid = imid;
- side = iside;
-#else
- mid = (1.f/32768)*imid;
- side = (1.f/32768)*iside;
-#endif
- for (j=0;j<N;j++)
- X[j] = MULT16_16_Q15(X[j], mid);
- for (j=0;j<N;j++)
- Y[j] = MULT16_16_Q15(Y[j], side);
- }
-
/* Undo the sample reorganization going from time order to frequency order */
if (!stereo && B0>1 && level==0)
{
@@ -805,8 +802,8 @@
stereo_band_mix(m, X, Y, bandE, 0, i, -1, N);
/* We only need to renormalize because quantization may not
have preserved orthogonality of mid and side */
- renormalise_vector(X, N);
- renormalise_vector(Y, N);
+ renormalise_vector(X, N, Q15ONE);
+ renormalise_vector(Y, N, Q15ONE);
}
}
}
@@ -888,7 +885,9 @@
effective_lowband = NULL;
else
effective_lowband = lowband;
- quant_band(encode, m, i, X, Y, N, b, fold, B, tf_change, effective_lowband, resynth, ec, &remaining_bits, LM, norm+M*eBands[i], bandE, 0, &seed);
+ quant_band(encode, m, i, X, Y, N, b, fold, B, tf_change,
+ effective_lowband, resynth, ec, &remaining_bits, LM,
+ norm+M*eBands[i], bandE, 0, &seed, Q15ONE);
balance += pulses[i] + tell;
--- a/libcelt/vq.c
+++ b/libcelt/vq.c
@@ -139,7 +139,8 @@
/** Takes the pitch vector and the decoded residual vector, computes the gain
that will give ||p+g*y||=1 and mixes the residual with the pitch. */
-static void normalise_residual(int * restrict iy, celt_norm * restrict X, int N, int K, celt_word32 Ryy)
+static void normalise_residual(int * restrict iy, celt_norm * restrict X,
+ int N, int K, celt_word32 Ryy, celt_word16 gain)
{
int i;
#ifdef FIXED_POINT
@@ -152,7 +153,7 @@
k = celt_ilog2(Ryy)>>1;
#endif
t = VSHR32(Ryy, (k-7)<<1);
- g = celt_rsqrt_norm(t);
+ g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
i=0;
do
@@ -160,7 +161,8 @@
while (++i < N);
}
-void alg_quant(celt_norm *X, int N, int K, int spread, int B, celt_norm *lowband, int resynth, ec_enc *enc, celt_int32 *seed)
+void alg_quant(celt_norm *X, int N, int K, int spread, int B, celt_norm *lowband,
+ int resynth, ec_enc *enc, celt_int32 *seed, celt_word16 gain)
{
VARDECL(celt_norm, y);
VARDECL(int, iy);
@@ -191,7 +193,7 @@
X[j] = (int)(*seed)>>20;
}
}
- renormalise_vector(X, N);
+ renormalise_vector(X, N, gain);
return;
}
K = get_pulses(K);
@@ -338,7 +340,7 @@
if (resynth)
{
- normalise_residual(iy, X, N, K, EXTRACT16(SHR32(yy,2*yshift)));
+ normalise_residual(iy, X, N, K, EXTRACT16(SHR32(yy,2*yshift)), gain);
exp_rotation(X, N, -1, B, K, spread);
}
RESTORE_STACK;
@@ -347,7 +349,8 @@
/** Decode pulse vector and combine the result with the pitch vector to produce
the final normalised signal in the current band. */
-void alg_unquant(celt_norm *X, int N, int K, int spread, int B, celt_norm *lowband, ec_dec *dec, celt_int32 *seed)
+void alg_unquant(celt_norm *X, int N, int K, int spread, int B,
+ celt_norm *lowband, ec_dec *dec, celt_int32 *seed, celt_word16 gain)
{
int i;
celt_word32 Ryy;
@@ -368,7 +371,7 @@
X[i] = (int)(*seed)>>20;
}
}
- renormalise_vector(X, N);
+ renormalise_vector(X, N, gain);
return;
}
K = get_pulses(K);
@@ -379,7 +382,7 @@
do {
Ryy = MAC16_16(Ryy, iy[i], iy[i]);
} while (++i < N);
- normalise_residual(iy, X, N, K, Ryy);
+ normalise_residual(iy, X, N, K, Ryy, gain);
exp_rotation(X, N, -1, B, K, spread);
RESTORE_STACK;
}
@@ -397,7 +400,7 @@
return celt_sqrt(E);
}
-void renormalise_vector(celt_norm *X, int N)
+void renormalise_vector(celt_norm *X, int N, celt_word16 gain)
{
int i;
#ifdef FIXED_POINT
@@ -416,7 +419,7 @@
k = celt_ilog2(E)>>1;
#endif
t = VSHR32(E, (k-7)<<1);
- g = celt_rsqrt_norm(t);
+ g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
xptr = X;
for (i=0;i<N;i++)
--- a/libcelt/vq.h
+++ b/libcelt/vq.h
@@ -51,7 +51,8 @@
* @param p Pitch vector (it is assumed that p+x is a unit vector)
* @param enc Entropy encoder state
*/
-void alg_quant(celt_norm *X, int N, int K, int spread, int B, celt_norm *lowband, int resynth, ec_enc *enc, celt_int32 *seed);
+void alg_quant(celt_norm *X, int N, int K, int spread, int B, celt_norm *lowband,
+ int resynth, ec_enc *enc, celt_int32 *seed, celt_word16 gain);
/** Algebraic pulse decoder
* @param x Decoded normalised spectrum (returned)
@@ -60,9 +61,10 @@
* @param p Pitch vector (automatically added to x)
* @param dec Entropy decoder state
*/
-void alg_unquant(celt_norm *X, int N, int K, int spread, int B, celt_norm *lowband, ec_dec *dec, celt_int32 *seed);
+void alg_unquant(celt_norm *X, int N, int K, int spread, int B,
+ celt_norm *lowband, ec_dec *dec, celt_int32 *seed, celt_word16 gain);
-void renormalise_vector(celt_norm *X, int N);
+void renormalise_vector(celt_norm *X, int N, celt_word16 gain);
celt_word16 vector_norm(const celt_norm *X, int N);