shithub: mc

Download patch

ref: 4a8bc7aa008f753c082a914a0f95ea3df09d2123
parent: 9bf446ab7795f7397bc4fb7ae9e46ce14c3f679c
parent: e09c6b53f3b1928d3752c53c813025dbcbb976e0
author: Ori Bernstein <[email protected]>
date: Sun Jun 9 14:02:59 EDT 2019

Merge commit 'e09c6b53f3b1928d3752c53c813025dbcbb976e0'

--- a/lib/math/ancillary/generate-minimax-by-Remez.gp
+++ b/lib/math/ancillary/generate-minimax-by-Remez.gp
@@ -1,8 +1,6 @@
 /*
   Attempts to find a minimax polynomial of degree n for f via Remez
-  algorithm. The Remez algorithm appears to be slightly shot, but
-  the initial step of approximating by Chebyshev nodes works, and
-  is usually good enough.
+  algorithm.
  */
 
 { chebyshev_node(a, b, k, n) = my(p, m, c);
@@ -62,7 +60,7 @@
                 xnext = a + k*(b - a)/gran;
                 ynext = err(f, n, v, xnext);
 
-                if(ycur > yprev && ycur > ynext, listput(l, [xcur, abs(ycur)]),);
+                if(ycur > yprev && ycur > ynext, listput(l, [xcur, ycur]),);
         );
 
         vecsort(l, 2);
@@ -69,12 +67,14 @@
         if(length(l) < n + 2 || l[1][2] < 2^(-2000), return("q"),);
         len = length(l);
 
-        lnext = listcreate();
+        X = vector(n + 2);
+
         for(j = 1, n + 2,
+                lnext = listcreate();
                 thisa = l[j][1] - (b-a)/gran;
                 thisb = l[j][1] + (b-a)/gran;
 
-                xprev = thisa - (thisb - a)/gran;
+                xprev = thisa - (thisb - thisa)/gran;
                 yprev = err(f, n, v, xprev);
 
                 xcur = thisa;
@@ -93,14 +93,15 @@
                         xnext = thisa + k*(thisb - thisa)/gran;
                         ynext = abs(f(xnext) - p_eval(n, v, xnext));
 
-                        if(ycur > yprev && ycur > ynext, listput(lnext, xcur),);
+                        if(ycur > yprev && ycur > ynext, listput(lnext, [xcur, ycur]),);
                 );
+
+                vecsort(lnext, 2);
+                if(length(lnext) < 1, return("q"),);
+                X[j] = lnext[1][1];
+                listkill(lnext);
         );
-        vecsort(lnext, cmp);
         listkill(l);
-        X = vector(n + 2);
-        for (k = 1, min(n + 2, length(lnext)), X[k] = lnext[k]);
-        listkill(lnext);
         vecsort(X);
         return(X);
 }
@@ -135,6 +136,14 @@
         return(1/tanoverx(x));
 }
 
+{ log2xoverx(x) =
+        return(if(x == 1,1,log(x)/(x-1))/log(2));
+}
+
+{ log1p(x) =
+        return(log(1 + x));
+}
+
 print("\n");
 print("Minimaxing sin(x) / x, degree 6, on [-Pi/(4 * 256), Pi/(4 * 256)]:");
 find_minimax(sinoverx, 6, -Pi/1024, Pi/1024)
@@ -158,7 +167,7 @@
 print("Minmimaxing x*cot(x), degree 8, on [-Pi/(4 * 256), Pi/(4 * 256)]:");
 find_minimax(cotx, 8, -Pi/1024, Pi/1024)
 print("\n");
-print("(Take the first v, and remember to divide by x)\n");
+print("(Remember to divide by x)\n");
 print("\n");
 print("---\n");
 print("\n");
@@ -174,5 +183,17 @@
 print("\n");
 print("(You'll need to add a 0x0 at the beginning to make a degree 13...\n");
 print("\n");
+print("---\n");
+print("Minmimaxing log_2(x) / (x - 1), degree 7, on [1, 2^(1/8)]:");
+find_minimax(log2xoverx, 7, 1, 2^(1/8))
+print("\n");
+/* print("(You'll need to add a 0x0 at the beginning to make a degree 13...\n"); */
+/* print("\n"); */
+print("---\n");
+print("Minmimaxing log(1 + x), degree 5, on [0, 2^-20) [it's just going to give the Taylor expansion]:");
+find_minimax(log1p, 5, 0, 2^-20)
+print("\n");
+/* print("(You'll need to add a 0x0 at the beginning to make a degree 13...\n"); */
+/* print("\n"); */
 print("---\n");
 print("Remember that there's that extra, ugly E term at the end of the vector that you want to lop off.\n");
--- a/lib/math/ancillary/log-overkill-constants.c
+++ b/lib/math/ancillary/log-overkill-constants.c
@@ -8,80 +8,60 @@
 #define FLT64_TO_UINT64(f) (*((uint64_t *) ((char *) &f)))
 #define UINT64_TO_FLT64(u) (*((double *) ((char *) &u)))
 
-#define FLT32_TO_UINT32(f) (*((uint32_t *) ((char *) &f)))
-#define UINT32_TO_FLT32(u) (*((double *) ((char *) &u)))
-
-int main(void)
+int
+main(void)
 {
-        mpfr_t one;
-        mpfr_t two_to_the_minus_k;
-        mpfr_t one_plus_two_to_the_minus_k;
-        mpfr_t ln_one_plus_two_to_the_minus_k;
-        mpfr_t one_minus_two_to_the_minus_k;
-        mpfr_t ln_one_minus_two_to_the_minus_k;
         mpfr_t t1;
         mpfr_t t2;
+        mpfr_t t3;
         double d = 0;
         uint64_t u = 0;
+        size_t j = 0;
+        long int k = 0;
 
-        mpfr_init2(one, 10000);
-        mpfr_init2(two_to_the_minus_k, 10000);
-        mpfr_init2(one_plus_two_to_the_minus_k, 10000);
-        mpfr_init2(ln_one_plus_two_to_the_minus_k, 10000);
-        mpfr_init2(one_minus_two_to_the_minus_k, 10000);
-        mpfr_init2(ln_one_minus_two_to_the_minus_k, 10000);
         mpfr_init2(t1, 10000);
         mpfr_init2(t2, 10000);
+        mpfr_init2(t3, 10000);
 
-        printf("/* C_plus */\n");
-        printf("(0x0000000000000000, 0x0000000000000000, 0x0000000000000000), /* dummy */\n");
+        /* C1 */
+        for (k = -5; k >= -20; k -= 5) {
+                printf(
+                        "const C%ld : (uint64, uint64, uint64, uint64)[32] = [\n",
+                        (k /
+                         (
+                                 -5)));
 
-        for (size_t k = 1; k <= 27; ++k) {
-                mpfr_set_si(one, 1, MPFR_RNDN);
-                mpfr_mul_2si(two_to_the_minus_k, one, -k, MPFR_RNDN);
-                mpfr_add(one_plus_two_to_the_minus_k, one, two_to_the_minus_k, MPFR_RNDN);
-                mpfr_log(ln_one_plus_two_to_the_minus_k, one_plus_two_to_the_minus_k, MPFR_RNDN);
+                for (j = 0; j < 32; ++j) {
+                        mpfr_set_si(t1, 1, MPFR_RNDN);
+                        mpfr_set_si(t2, k, MPFR_RNDN);
+                        mpfr_exp2(t2, t2, MPFR_RNDN);
+                        mpfr_mul_si(t2, t2, j, MPFR_RNDN);
+                        mpfr_add(t1, t1, t2, MPFR_RNDN);
 
-                mpfr_set(t1, ln_one_plus_two_to_the_minus_k, MPFR_RNDN);
-                d = mpfr_get_d(t1, MPFR_RNDN);
-                u = FLT64_TO_UINT64(d);
-                printf("(%#018lx, ", u);
-                mpfr_set_d(t2, d, MPFR_RNDN);
-                mpfr_sub(t1, t1, t2, MPFR_RNDN);
-                d = mpfr_get_d(t1, MPFR_RNDN);
-                u = FLT64_TO_UINT64(d);
-                printf("%#018lx, ", u);
-                mpfr_set_d(t2, d, MPFR_RNDN);
-                mpfr_sub(t1, t1, t2, MPFR_RNDN);
-                d = mpfr_get_d(t1, MPFR_RNDN);
-                u = FLT64_TO_UINT64(d);
-                printf("%#018lx), /* k = %zu */\n", u, k);
-        }
+                        /* first, log(1 + ...) */
+                        mpfr_log(t2, t1, MPFR_RNDN);
+                        d = mpfr_get_d(t2, MPFR_RNDN);
+                        u = FLT64_TO_UINT64(d);
+                        printf("	(%#018lx, ", u);
+                        mpfr_set_d(t3, d, MPFR_RNDN);
+                        mpfr_sub(t2, t2, t3, MPFR_RNDN);
+                        d = mpfr_get_d(t2, MPFR_RNDN);
+                        u = FLT64_TO_UINT64(d);
+                        printf("%#018lx, ", u);
 
-        printf("\n");
-        printf("/* C_minus */\n");
-        printf("(0x0000000000000000, 0x0000000000000000, 0x0000000000000000), /* dummy */\n");
+                        /* now, 1/(1 + ...) */
+                        mpfr_pow_si(t2, t1, -1, MPFR_RNDN);
+                        d = mpfr_get_d(t2, MPFR_RNDN);
+                        u = FLT64_TO_UINT64(d);
+                        printf("    %#018lx, ", u);
+                        mpfr_set_d(t3, d, MPFR_RNDN);
+                        mpfr_sub(t2, t2, t3, MPFR_RNDN);
+                        d = mpfr_get_d(t2, MPFR_RNDN);
+                        u = FLT64_TO_UINT64(d);
+                        printf("%#018lx), /* j = %zu */\n", u, j);
+                }
 
-        for (size_t k = 1; k <= 27; ++k) {
-                mpfr_set_si(one, 1, MPFR_RNDN);
-                mpfr_mul_2si(two_to_the_minus_k, one, -k, MPFR_RNDN);
-                mpfr_sub(one_minus_two_to_the_minus_k, one, two_to_the_minus_k, MPFR_RNDN);
-                mpfr_log(ln_one_minus_two_to_the_minus_k, one_minus_two_to_the_minus_k, MPFR_RNDN);
-
-                mpfr_set(t1, ln_one_minus_two_to_the_minus_k, MPFR_RNDN);
-                d = mpfr_get_d(t1, MPFR_RNDN);
-                u = FLT64_TO_UINT64(d);
-                printf("(%#018lx, ", u);
-                mpfr_set_d(t2, d, MPFR_RNDN);
-                mpfr_sub(t1, t1, t2, MPFR_RNDN);
-                d = mpfr_get_d(t1, MPFR_RNDN);
-                u = FLT64_TO_UINT64(d);
-                printf("%#018lx, ", u);
-                mpfr_set_d(t2, d, MPFR_RNDN);
-                mpfr_sub(t1, t1, t2, MPFR_RNDN);
-                d = mpfr_get_d(t1, MPFR_RNDN);
-                u = FLT64_TO_UINT64(d);
-                printf("%#018lx), /* k = %zu */\n", u, k);
+                printf("]\n\n");
         }
 
         return 0;
--- a/lib/math/ancillary/ulp.gp
+++ b/lib/math/ancillary/ulp.gp
@@ -31,7 +31,7 @@
         e = bitand(a, 0x7f800000) >> 23;
         s = bitand(a, 0x007fffff);
 
-        if(e != 0, s = bitor(s, 0x00800000),);
+        if(e != 0, s = bitor(s, 0x00800000), s = 2.0 * s);
         s = s * 2.0^(-23);
         e = e - 127;
         return((-1)^n * s * 2^(e));
@@ -42,7 +42,7 @@
         e = bitand(a, 0x7ff0000000000000) >> 52;
         s = bitand(a, 0x000fffffffffffff);
 
-        if(e != 0, s = bitor(s, 0x0010000000000000),);
+        if(e != 0, s = bitor(s, 0x0010000000000000), s = 2.0 * s);
         s = s * 2.0^(-52);
         e = e - 1023;
         return((-1)^n * 2^(e) * s);
--- a/lib/math/log-overkill.myr
+++ b/lib/math/log-overkill.myr
@@ -1,48 +1,39 @@
 use std
 
 use "fpmath"
-use "log-impl"
-use "exp-impl"
-use "sum-impl"
+use "impls"
 use "util"
 
 /*
-   This is an implementation of log following [Mul16] 8.3.2, returning
-   far too much precision. These are slower than the
-   table-and-low-degree-polynomial implementations of exp-impl.myr and
-   log-impl.myr, but are needed to handle the powr, pown, and rootn
-   functions.
+   This is an implementation of log(x) using the following idea, based on [Tan90]
 
-   This is only for flt64, because if you want this for flt32 you should
-   just cast to flt64, use the fast functions, and then split back.
+     First, reduce to 2^e · xs, with xs ∈ [1, 2).
 
-   Note that the notation of [Mul16] 8.3.2 is confusing, to say the
-   least. [NM96] is, perhaps, a clearer presentation.
+     xs = F1 + f1, with
+       F1 = 1 + j1/2^5
+       j1 ∈ {1, 2, …, 2^5 - 1}
+       f1 ∈ [0, 2^-5)
 
-   To recap, we use an iteration, starting with t_1 = 0, L_1 = x, and
-   iterate as
+     log(xs) = log(F1) + log(1 + f1/F1)
 
-       t_{n+1} = t_{n} - ln(1 + d_n 2^{-n})
-       L_{n+1} = L_n (1 + d_n 2^{-n})
+     1 + f1/F1 = F2 + f2, with
+       F2 = 1 + j1/2^10
+       j2 ∈ {1, 2, …, 2^5 - 1}
+       f2 ∈ [0, 2^-10)
 
-   where d_n is in {-1, 0, 1}, chosen so that as n -> oo, L_n approaches
-   1, then t_n approaches ln(x).
+     log(xs) = log(F1) + log(F2) + log(1 + f2/F2)
 
-   If we let l_n = L_n - 1, we initialize l_1 = x - 1 and iterate as
+     …
 
-       l_{n+1} = l_n (1 + d_n 2^{-n}) + d_n 2^{-n}
+     log(xs) = log(F1) + log(F2) + log(F3) + log(F4) + log(1 + f4/F4)
 
-   If we further consider l'_n = 2^n l_n, we initialize l'_1 = x - 1,
-   and iterate as
+     And f4/F4 < 2^-20, so we can get 100 bits of precision using a
+     degree 5 polynomial.
 
-       l'_{n + 1} = 2 l'_{n} (1 + d_n 2^{-n}) + 2 d_n
-
-   The nice thing about this is that we can pick d_n easily based on
-   comparing l'_n to some easy constants:
-
-             { +1  if [l'_n] <= -1/2
-       d_n = {  0  if [l'_n] = 0 or 1/2
-             { -1  if [l'_n] >= 1
+     The specific choice of using 4 tables, each with 2^5 entries, may
+     be improvable. It's a trade-off between storage for the tables and
+     the number of floating point operations to chain the results
+     together.
  */
 pkg math =
 	pkglocal const logoverkill32 : (x : flt32 -> (flt32, flt32))
@@ -50,83 +41,148 @@
 ;;
 
 /*
-   Tables of 1 +/- 2^-k, for k = 0 to 159, with k = 0 a dummy row. 159
-   is chosen as the first k such that the error between 2^(-53 * 2) and
-   2^(-53 * 2) + log(1 + 2^(-k)) is less than 1 ulp, therefore we'll
-   have a full 53 * 2 bits of precision available with these tables. The
-   layout for C_plus is
+   Ci is a table such that, for Ci[j] = (L1, L2, I1, I2),
+     L1, L2 are log(1 + j·2^-(5i))
+     I1, I2 are 1/(1 + j·2^-(5i))
+ */
+const C1 : (uint64, uint64, uint64, uint64)[32] = [
+	(000000000000000000, 000000000000000000,     0x3ff0000000000000, 000000000000000000), /* j = 0 */
+	(0x3f9f829b0e783300, 0x3c333e3f04f1ef23,     0x3fef07c1f07c1f08, 0xbc7f07c1f07c1f08), /* j = 1 */
+	(0x3faf0a30c01162a6, 0x3c485f325c5bbacd,     0x3fee1e1e1e1e1e1e, 0x3c6e1e1e1e1e1e1e), /* j = 2 */
+	(0x3fb6f0d28ae56b4c, 0xbc5906d99184b992,     0x3fed41d41d41d41d, 0x3c80750750750750), /* j = 3 */
+	(0x3fbe27076e2af2e6, 0xbc361578001e0162,     0x3fec71c71c71c71c, 0x3c8c71c71c71c71c), /* j = 4 */
+	(0x3fc29552f81ff523, 0x3c6301771c407dbf,     0x3febacf914c1bad0, 0xbc8bacf914c1bad0), /* j = 5 */
+	(0x3fc5ff3070a793d4, 0xbc5bc60efafc6f6e,     0x3feaf286bca1af28, 0x3c8af286bca1af28), /* j = 6 */
+	(0x3fc9525a9cf456b4, 0x3c6d904c1d4e2e26,     0x3fea41a41a41a41a, 0x3c80690690690690), /* j = 7 */
+	(0x3fcc8ff7c79a9a22, 0xbc64f689f8434012,     0x3fe999999999999a, 0xbc8999999999999a), /* j = 8 */
+	(0x3fcfb9186d5e3e2b, 0xbc6caaae64f21acb,     0x3fe8f9c18f9c18fa, 0xbc7f3831f3831f38), /* j = 9 */
+	(0x3fd1675cababa60e, 0x3c2ce63eab883717,     0x3fe8618618618618, 0x3c88618618618618), /* j = 10 */
+	(0x3fd2e8e2bae11d31, 0xbc78f4cdb95ebdf9,     0x3fe7d05f417d05f4, 0x3c67d05f417d05f4), /* j = 11 */
+	(0x3fd4618bc21c5ec2, 0x3c7f42decdeccf1d,     0x3fe745d1745d1746, 0xbc7745d1745d1746), /* j = 12 */
+	(0x3fd5d1bdbf5809ca, 0x3c74236383dc7fe1,     0x3fe6c16c16c16c17, 0xbc7f49f49f49f49f), /* j = 13 */
+	(0x3fd739d7f6bbd007, 0xbc78c76ceb014b04,     0x3fe642c8590b2164, 0x3c7642c8590b2164), /* j = 14 */
+	(0x3fd89a3386c1425b, 0xbc729639dfbbf0fb,     0x3fe5c9882b931057, 0x3c7310572620ae4c), /* j = 15 */
+	(0x3fd9f323ecbf984c, 0xbc4a92e513217f5c,     0x3fe5555555555555, 0x3c85555555555555), /* j = 16 */
+	(0x3fdb44f77bcc8f63, 0xbc7cd04495459c78,     0x3fe4e5e0a72f0539, 0x3c8e0a72f0539783), /* j = 17 */
+	(0x3fdc8ff7c79a9a22, 0xbc74f689f8434012,     0x3fe47ae147ae147b, 0xbc6eb851eb851eb8), /* j = 18 */
+	(0x3fddd46a04c1c4a1, 0xbc70467656d8b892,     0x3fe4141414141414, 0x3c64141414141414), /* j = 19 */
+	(0x3fdf128f5faf06ed, 0xbc7328df13bb38c3,     0x3fe3b13b13b13b14, 0xbc83b13b13b13b14), /* j = 20 */
+	(0x3fe02552a5a5d0ff, 0xbc7cb1cb51408c00,     0x3fe3521cfb2b78c1, 0x3c7a90e7d95bc60a), /* j = 21 */
+	(0x3fe0be72e4252a83, 0xbc8259da11330801,     0x3fe2f684bda12f68, 0x3c82f684bda12f68), /* j = 22 */
+	(0x3fe154c3d2f4d5ea, 0xbc859c33171a6876,     0x3fe29e4129e4129e, 0x3c804a7904a7904a), /* j = 23 */
+	(0x3fe1e85f5e7040d0, 0x3c7ef62cd2f9f1e3,     0x3fe2492492492492, 0x3c82492492492492), /* j = 24 */
+	(0x3fe2795e1289b11b, 0xbc6487c0c246978e,     0x3fe1f7047dc11f70, 0x3c81f7047dc11f70), /* j = 25 */
+	(0x3fe307d7334f10be, 0x3c6fb590a1f566da,     0x3fe1a7b9611a7b96, 0x3c61a7b9611a7b96), /* j = 26 */
+	(0x3fe393e0d3562a1a, 0xbc858eef67f2483a,     0x3fe15b1e5f75270d, 0x3c415b1e5f75270d), /* j = 27 */
+	(0x3fe41d8fe84672ae, 0x3c89192f30bd1806,     0x3fe1111111111111, 0x3c61111111111111), /* j = 28 */
+	(0x3fe4a4f85db03ebb, 0x3c313dfa3d3761b6,     0x3fe0c9714fbcda3b, 0xbc7f79b47582192e), /* j = 29 */
+	(0x3fe52a2d265bc5ab, 0xbc61883750ea4d0a,     0x3fe0842108421084, 0x3c70842108421084), /* j = 30 */
+	(0x3fe5ad404c359f2d, 0xbc435955683f7196,     0x3fe0410410410410, 0x3c80410410410410), /* j = 31 */
+]
 
-        ( ln(1 + 2^-k)[hi],  ln(1 + 2^-k)[lo],    ln(1 + 2^-k)[very lo]) ,
+const C2 : (uint64, uint64, uint64, uint64)[32] = [
+	(000000000000000000, 000000000000000000,     0x3ff0000000000000, 000000000000000000), /* j = 0 */
+	(0x3f4ffc00aa8ab110, 0xbbe0fecbeb9b6cdb,     0x3feff801ff801ff8, 0x3c2ff801ff801ff8), /* j = 1 */
+	(0x3f5ff802a9ab10e6, 0x3bfe29e3a153e3b2,     0x3feff007fc01ff00, 0x3c8ff007fc01ff00), /* j = 2 */
+	(0x3f67f7047d7983da, 0x3c0a275a19204e80,     0x3fefe811f28a186e, 0xbc849093915301bf), /* j = 3 */
+	(0x3f6ff00aa2b10bc0, 0x3c02821ad5a6d353,     0x3fefe01fe01fe020, 0xbc6fe01fe01fe020), /* j = 4 */
+	(0x3f73f38a60f06489, 0x3c1693c937494046,     0x3fefd831c1cdbed1, 0x3c8e89d3b75ace7e), /* j = 5 */
+	(0x3f77ee11ebd82e94, 0xbc161e96e2fc5d90,     0x3fefd04794a10e6a, 0x3c881bd63ea20ced), /* j = 6 */
+	(0x3f7be79c70058ec9, 0xbbd964fefef02b62,     0x3fefc86155aa1659, 0xbc6b8fc468497f61), /* j = 7 */
+	(0x3f7fe02a6b106789, 0xbbce44b7e3711ebf,     0x3fefc07f01fc07f0, 0x3c6fc07f01fc07f0), /* j = 8 */
+	(0x3f81ebde2d1997e6, 0xbbfffa46e1b2ec81,     0x3fefb8a096acfacc, 0xbc82962e18495af3), /* j = 9 */
+	(0x3f83e7295d25a7d9, 0xbbeff29a11443a06,     0x3fefb0c610d5e939, 0xbc5cb8337f41db5c), /* j = 10 */
+	(0x3f85e1f703ecbe50, 0x3c23eb0bb43693b9,     0x3fefa8ef6d92aca5, 0x3c7cd0c1eaba7f22), /* j = 11 */
+	(0x3f87dc475f810a77, 0xbc116d7687d3df21,     0x3fefa11caa01fa12, 0xbc7aaff02f71aaff), /* j = 12 */
+	(0x3f89d61aadc6bd8d, 0xbc239b097b525947,     0x3fef994dc3455e8d, 0xbc82546d9bc5bd59), /* j = 13 */
+	(0x3f8bcf712c74384c, 0xbc1f6842688f499a,     0x3fef9182b6813baf, 0x3c6b210c54d70f4a), /* j = 14 */
+	(0x3f8dc84b19123815, 0xbc25f0e2d267d821,     0x3fef89bb80dcc421, 0xbc8e7da8c7156f9d), /* j = 15 */
+	(0x3f8fc0a8b0fc03e4, 0xbc183092c59642a1,     0x3fef81f81f81f820, 0xbc8f81f81f81f820), /* j = 16 */
+	(0x3f90dc4518afcc88, 0xbc379c0189fdfe78,     0x3fef7a388f9da20f, 0x3c7f99b2c82d3fb1), /* j = 17 */
+	(0x3f91d7f7eb9eebe7, 0xbc2d41fe63d2dbf9,     0x3fef727cce5f530a, 0x3c84643cedd1cfd9), /* j = 18 */
+	(0x3f92d36cefb557c3, 0xbc132fa3e4f20cf7,     0x3fef6ac4d8f95f7a, 0x3c8e8ed9770a8dde), /* j = 19 */
+	(0x3f93cea44346a575, 0xbc10cb5a902b3a1c,     0x3fef6310aca0dbb5, 0x3c8d2e19807d8c43), /* j = 20 */
+	(0x3f94c99e04901ded, 0xbc2cd10505ada0d6,     0x3fef5b60468d989f, 0xbc805a26b4cad717), /* j = 21 */
+	(0x3f95c45a51b8d389, 0xbc3b10b6c3ec21b4,     0x3fef53b3a3fa204e, 0x3c8450467c5430f3), /* j = 22 */
+	(0x3f96bed948d1b7d1, 0xbc1058290fde6de1,     0x3fef4c0ac223b2bc, 0x3c815c2df7afcd24), /* j = 23 */
+	(0x3f97b91b07d5b11b, 0xbc35b602ace3a510,     0x3fef44659e4a4271, 0x3c85fc17734c36b8), /* j = 24 */
+	(0x3f98b31faca9b00e, 0x3c1d5a46da6f6772,     0x3fef3cc435b0713c, 0x3c81d0a7e69ea094), /* j = 25 */
+	(0x3f99ace7551cc514, 0x3c33409c1df8167f,     0x3fef3526859b8cec, 0x3c2f3526859b8cec), /* j = 26 */
+	(0x3f9aa6721ee835aa, 0xbc24a3a50b6c5621,     0x3fef2d8c8b538c0f, 0xbc88a987ac35964a), /* j = 27 */
+	(0x3f9b9fc027af9198, 0xbbf0ae69229dc868,     0x3fef25f644230ab5, 0x3c594ed8175c78b3), /* j = 28 */
+	(0x3f9c98d18d00c814, 0xbc250589df0f25bf,     0x3fef1e63ad57473c, 0xbc8bf54d8dbc6a00), /* j = 29 */
+	(0x3f9d91a66c543cc4, 0xbc1d34e608cbdaab,     0x3fef16d4c4401f17, 0xbc759ddff074959e), /* j = 30 */
+	(0x3f9e8a3ee30cdcac, 0x3c07086b1c00b395,     0x3fef0f4986300ba6, 0xbc811b6b7ee8766a), /* j = 31 */
+]
 
-   and for C_minus it is similar, but handling ln(1 - 2^-k).
-
-   They are generated by ancillary/log-overkill-constants.c. 
-
-   Conveniently, for k > 27, we can calculate the entry exactly using a
-   few terms of the Taylor expansion for ln(1 + x), with the x^{2+}
-   terms vanishing past k = 53. This is possible since we only care
-   about two flt64s worth of precision.
- */
-const C_plus : (uint64, uint64, uint64)[28] = [
-	(0x0000000000000000, 0x0000000000000000, 0x0000000000000000), /* dummy */
-	(0x3fd9f323ecbf984c, 0xbc4a92e513217f5c, 0x38e0c0cfa41ff669), /* k = 1 */
-	(0x3fcc8ff7c79a9a22, 0xbc64f689f8434012, 0x390a24ae3b2f53a1), /* k = 2 */
-	(0x3fbe27076e2af2e6, 0xbc361578001e0162, 0x38b55db94ebc4018), /* k = 3 */
-	(0x3faf0a30c01162a6, 0x3c485f325c5bbacd, 0xb8e0ece597165991), /* k = 4 */
-	(0x3f9f829b0e783300, 0x3c333e3f04f1ef23, 0xb8d814544147acc9), /* k = 5 */
-	(0x3f8fc0a8b0fc03e4, 0xbc183092c59642a1, 0xb8b52414fc416fc2), /* k = 6 */
-	(0x3f7fe02a6b106789, 0xbbce44b7e3711ebf, 0x386a567b6587df34), /* k = 7 */
-	(0x3f6ff00aa2b10bc0, 0x3c02821ad5a6d353, 0xb8912dcccb588a4a), /* k = 8 */
-	(0x3f5ff802a9ab10e6, 0x3bfe29e3a153e3b2, 0xb89538d49c4f745e), /* k = 9 */
-	(0x3f4ffc00aa8ab110, 0xbbe0fecbeb9b6cdb, 0xb877171cf29e89d1), /* k = 10 */
-	(0x3f3ffe002aa6ab11, 0x3b999e2b62cc632d, 0xb81eae851c58687c), /* k = 11 */
-	(0x3f2fff000aaa2ab1, 0x3ba0bbc04dc4e3dc, 0x38152723342e000b), /* k = 12 */
-	(0x3f1fff8002aa9aab, 0x3b910e6678af0afc, 0x382ed521af29bc8d), /* k = 13 */
-	(0x3f0fffc000aaa8ab, 0xbba3bbc110fec82c, 0xb84f79185e42fbaf), /* k = 14 */
-	(0x3effffe0002aaa6b, 0xbb953bbbe6661d42, 0xb835071791df7d3e), /* k = 15 */
-	(0x3eeffff0000aaaa3, 0xbb8553bbbd110fec, 0xb82ff1fae6cea01a), /* k = 16 */
-	(0x3edffff80002aaaa, 0xbb75553bbbc66662, 0x3805f05f166325ff), /* k = 17 */
-	(0x3ecffffc0000aaab, 0xbb6d5553bbbc1111, 0x37a380f8138f70f4), /* k = 18 */
-	(0x3ebffffe00002aab, 0xbb5655553bbbbe66, 0xb7f987507707503c), /* k = 19 */
-	(0x3eafffff00000aab, 0xbb45755553bbbbd1, 0xb7c10fec7ed7ec7e), /* k = 20 */
-	(0x3e9fffff800002ab, 0xbb355955553bbbbc, 0xb7d9999875075875), /* k = 21 */
-	(0x3e8fffffc00000ab, 0xbb2555d55553bbbc, 0x37bf7777809c09a1), /* k = 22 */
-	(0x3e7fffffe000002b, 0xbb15556555553bbc, 0x37b106666678af8b), /* k = 23 */
-	(0x3e6ffffff000000b, 0xbb055557555553bc, 0x37a110bbbbbc04e0), /* k = 24 */
-	(0x3e5ffffff8000003, 0xbaf555559555553c, 0x3791110e6666678b), /* k = 25 */
-	(0x3e4ffffffc000001, 0xbae555555d555554, 0x37811110fbbbbbc0), /* k = 26 */
-	(0x3e3ffffffe000000, 0x3ac5555553555556, 0xb76ddddddf333333), /* k = 27 */
+const C3 : (uint64, uint64, uint64, uint64)[32] = [
+	(000000000000000000, 000000000000000000,     0x3ff0000000000000, 000000000000000000), /* j = 0 */
+	(0x3effffe0002aaa6b, 0xbb953bbbe6661d42,     0x3fefffc0007fff00, 0x3c2fffc0007fff00), /* j = 1 */
+	(0x3f0fffc000aaa8ab, 0xbba3bbc110fec82c,     0x3fefff8001fff800, 0x3c6fff8001fff800), /* j = 2 */
+	(0x3f17ffb8011ffaf0, 0x3b984c534f3d9b6a,     0x3fefff40047fe501, 0xbc8780f2fa4e222b), /* j = 3 */
+	(0x3f1fff8002aa9aab, 0x3b910e6678af0afc,     0x3fefff0007ffc002, 0xbbdfff0007ffc002), /* j = 4 */
+	(0x3f23ff9c029a9723, 0x3bc1b965303b23b1,     0x3feffec00c7f8305, 0xbc6e30d217cb1211), /* j = 5 */
+	(0x3f27ff70047fd782, 0xbbced098a5c0aff0,     0x3feffe8011ff280a, 0x3c6f8685b1bbab34), /* j = 6 */
+	(0x3f2bff3c07250a51, 0xbbc89dd6d6bad8c1,     0x3feffe40187ea913, 0xbc7f8346d2208239), /* j = 7 */
+	(0x3f2fff000aaa2ab1, 0x3ba0bbc04dc4e3dc,     0x3feffe001ffe0020, 0xbc2ffe001ffe0020), /* j = 8 */
+	(0x3f31ff5e07979982, 0xbbce0e704817ebcd,     0x3feffdc0287d2733, 0x3c7f32ce6d7c4d43), /* j = 9 */
+	(0x3f33ff380a6a0e74, 0x3bdb81fcb95bc1fe,     0x3feffd8031fc184e, 0x3c69e5fa087756ad), /* j = 10 */
+	(0x3f35ff0e0ddc70a1, 0x3bacf6f3d97a3c05,     0x3feffd403c7acd72, 0x3c860b1b0bacff22), /* j = 11 */
+	(0x3f37fee011febc18, 0x3bd2b9bcf5d3f323,     0x3feffd0047f940a2, 0xbc5e5d274451985a), /* j = 12 */
+	(0x3f39feae16e0ec8b, 0xbbb6137aceeb34b1,     0x3feffcc054776bdf, 0x3c56b1b1f3ed39e8), /* j = 13 */
+	(0x3f3bfe781c92fd4a, 0xbbc4ed10713cc126,     0x3feffc8061f5492c, 0xbc19fd284f974b74), /* j = 14 */
+	(0x3f3dfe3e2324e946, 0x3bc0916462dd5deb,     0x3feffc407072d28b, 0x3c84eb0c748a57ca), /* j = 15 */
+	(0x3f3ffe002aa6ab11, 0x3b999e2b62cc632d,     0x3feffc007ff00200, 0xbc7ffc007ff00200), /* j = 16 */
+	(0x3f40fedf19941e6e, 0xbbb194c2e0aa6338,     0x3feffbc0906cd18c, 0x3c75b11e79f3cd9f), /* j = 17 */
+	(0x3f41febc1e5ccc3c, 0x3bdc657d895d3592,     0x3feffb80a1e93b34, 0xbc84d11299626e29), /* j = 18 */
+	(0x3f42fe9723b55bac, 0x3bd6cfb73e538464,     0x3feffb40b46538fa, 0xbc8d42a81b0bfc39), /* j = 19 */
+	(0x3f43fe7029a5c947, 0xbbd4d578bf46e36a,     0x3feffb00c7e0c4e1, 0x3c7e673fde054f2c), /* j = 20 */
+	(0x3f44fe4730361165, 0x3be400d77e93f2fd,     0x3feffac0dc5bd8ee, 0x3c8a38b2b2aeaf57), /* j = 21 */
+	(0x3f45fe1c376e3031, 0xbbd524eb8a5ae7f6,     0x3feffa80f1d66f25, 0xbc6a5778f73582ce), /* j = 22 */
+	(0x3f46fdef3f5621a3, 0xbbdf09d734886d52,     0x3feffa4108508189, 0xbc81a45478d24a37), /* j = 23 */
+	(0x3f47fdc047f5e185, 0xbbebfa5c57d202d3,     0x3feffa011fca0a1e, 0x3c6a5b0eed338657), /* j = 24 */
+	(0x3f48fd8f51556b70, 0xbbd0f4f2e08fd201,     0x3feff9c1384302e9, 0x3c8b9a1be68cf877), /* j = 25 */
+	(0x3f49fd5c5b7cbace, 0x3beb6ed49f17d42d,     0x3feff98151bb65ef, 0x3c82d92be315df8f), /* j = 26 */
+	(0x3f4afd276673cada, 0x3bd3222545da594f,     0x3feff9416c332d34, 0x3c8dbbba66ae573a), /* j = 27 */
+	(0x3f4bfcf07242969d, 0x3bc5db4d2b3efe1c,     0x3feff90187aa52be, 0xbc698a69b8df8f19), /* j = 28 */
+	(0x3f4cfcb77ef118f1, 0x3becc55406f300fb,     0x3feff8c1a420d091, 0xbc8032d47bdbf02c), /* j = 29 */
+	(0x3f4dfc7c8c874c82, 0xbbe863e9d57a176f,     0x3feff881c196a0b2, 0x3c858cf2f70e18b2), /* j = 30 */
+	(0x3f4efc3f9b0d2bc8, 0x3bd1e8e8a5f5b8b7,     0x3feff841e00bbd28, 0x3c782227ba60dc8b), /* j = 31 */
 ]
 
-const C_minus : (uint64, uint64, uint64)[28] = [
-	(0x0000000000000000, 0x0000000000000000, 0x0000000000000000), /* dummy */
-	(0xbfe62e42fefa39ef, 0xbc7abc9e3b39803f, 0xb907b57a079a1934), /* k = 1 */
-	(0xbfd269621134db92, 0xbc7e0efadd9db02b, 0x39163d5cf0b6f233), /* k = 2 */
-	(0xbfc1178e8227e47c, 0x3c50e63a5f01c691, 0xb8f03c776a3fb0f1), /* k = 3 */
-	(0xbfb08598b59e3a07, 0x3c5dd7009902bf32, 0x38ea7da07274e01d), /* k = 4 */
-	(0xbfa0415d89e74444, 0xbc4c05cf1d753622, 0xb8d3bc1c184cef0a), /* k = 5 */
-	(0xbf90205658935847, 0xbc327c8e8416e71f, 0x38b19642aac1310f), /* k = 6 */
-	(0xbf8010157588de71, 0xbc146662d417ced0, 0xb87e91702f8418af), /* k = 7 */
-	(0xbf70080559588b35, 0xbc1f96638cf63677, 0x38a90badb5e868b4), /* k = 8 */
-	(0xbf60040155d5889e, 0x3be8f98e1113f403, 0x38601ac2204fbf4b), /* k = 9 */
-	(0xbf50020055655889, 0xbbe9abe6bf0fa436, 0x3867c7d335b216f3), /* k = 10 */
-	(0xbf40010015575589, 0x3bec8863f23ef222, 0x38852c36a3d20146), /* k = 11 */
-	(0xbf30008005559559, 0x3bddd332a0e20e2f, 0x385c8b6b9ff05329), /* k = 12 */
-	(0xbf20004001555d56, 0x3bcddd88863f53f6, 0xb859332cbe6e6ac5), /* k = 13 */
-	(0xbf10002000555655, 0xbbb62224ccd5f17f, 0xb8366327cc029156), /* k = 14 */
-	(0xbf00001000155575, 0xbba5622237779c0a, 0xb7d38f7110a9391d), /* k = 15 */
-	(0xbef0000800055559, 0xbb95562222cccd5f, 0xb816715f87b8e1ee), /* k = 16 */
-	(0xbee0000400015556, 0x3b75553bbbb1110c, 0x381fb17b1f791778), /* k = 17 */
-	(0xbed0000200005555, 0xbb79555622224ccd, 0x3805074f75071791), /* k = 18 */
-	(0xbec0000100001555, 0xbb65d55562222377, 0xb80de7027127028d), /* k = 19 */
-	(0xbeb0000080000555, 0xbb5565555622222d, 0x37e9995075035075), /* k = 20 */
-	(0xbea0000040000155, 0xbb45575555622222, 0xb7edddde70270670), /* k = 21 */
-	(0xbe90000020000055, 0xbb35559555562222, 0xb7c266666af8af9b), /* k = 22 */
-	(0xbe80000010000015, 0xbb25555d55556222, 0xb7b11bbbbbce04e0), /* k = 23 */
-	(0xbe70000008000005, 0xbb15555655555622, 0xb7a111666666af8b), /* k = 24 */
-	(0xbe60000004000001, 0xbb05555575555562, 0xb7911113bbbbbce0), /* k = 25 */
-	(0xbe50000002000000, 0xbaf5555559555556, 0xb78111112666666b), /* k = 26 */
-	(0xbe40000001000000, 0xbac5555557555556, 0x376ddddddc888888), /* k = 27 */
+const C4 : (uint64, uint64, uint64, uint64)[32] = [
+	(000000000000000000, 000000000000000000,     0x3ff0000000000000, 000000000000000000), /* j = 0 */
+	(0x3eafffff00000aab, 0xbb45755553bbbbd1,     0x3feffffe00002000, 0xbc2ffffe00002000), /* j = 1 */
+	(0x3ebffffe00002aab, 0xbb5655553bbbbe66,     0x3feffffc00008000, 0xbc5ffffc00008000), /* j = 2 */
+	(0x3ec7fffdc0004800, 0xbb343ffcf666dfe6,     0x3feffffa00012000, 0xbc7afffaf000f300), /* j = 3 */
+	(0x3ecffffc0000aaab, 0xbb6d5553bbbc1111,     0x3feffff800020000, 0xbc8ffff800020000), /* j = 4 */
+	(0x3ed3fffce000a6ab, 0xbb7f1952e455f818,     0x3feffff600031fff, 0x3c4801387f9e581f), /* j = 5 */
+	(0x3ed7fffb80012000, 0xbb743ff9ecceb2cc,     0x3feffff400047ffe, 0x3c8400287ff0d006), /* j = 6 */
+	(0x3edbfff9e001c955, 0xbb702e9d89490dc5,     0x3feffff200061ffd, 0x3c84804b07df2c8e), /* j = 7 */
+	(0x3edffff80002aaaa, 0xbb75553bbbc66662,     0x3feffff00007fffc, 0x3baffff00007fffc), /* j = 8 */
+	(0x3ee1fffaf001e5ff, 0x3b797c2e21b72cff,     0x3fefffee000a1ffa, 0x3c8380cd078cabc1), /* j = 9 */
+	(0x3ee3fff9c0029aa9, 0x3b8c8ad1ba965260,     0x3fefffec000c7ff8, 0x3c780270fe7960f4), /* j = 10 */
+	(0x3ee5fff870037754, 0xbb8d0c6bc1b51bdd,     0x3fefffea000f1ff6, 0xbc897e36793a8ca8), /* j = 11 */
+	(0x3ee7fff700047ffd, 0x3b8e006132f6735a,     0x3fefffe80011fff3, 0xbc8ffd7801e5fe94), /* j = 12 */
+	(0x3ee9fff57005b8a7, 0x3b771277672a8835,     0x3fefffe600151fef, 0xbc74f906f5aa5866), /* j = 13 */
+	(0x3eebfff3c0072551, 0xbb86c9d894dd7427,     0x3fefffe400187feb, 0xbc8bfb4f841a6c69), /* j = 14 */
+	(0x3eedfff1f008c9fa, 0xbb7701aebecf7ae4,     0x3fefffe2001c1fe6, 0xbc8779d1fdcb2212), /* j = 15 */
+	(0x3eeffff0000aaaa3, 0xbb8553bbbd110fec,     0x3fefffe0001fffe0, 0x3befffe0001fffe0), /* j = 16 */
+	(0x3ef0fff6f80665a6, 0xbb9b95400571451d,     0x3fefffde00241fda, 0xbc8875ce02d51cfe), /* j = 17 */
+	(0x3ef1fff5e00797fa, 0xbb9a0e8ef2f395cc,     0x3fefffdc00287fd2, 0x3c8c0cd071958038), /* j = 18 */
+	(0x3ef2fff4b808ee4d, 0x3b984638f069f71f,     0x3fefffda002d1fca, 0x3c8a8fe8751bf4ef), /* j = 19 */
+	(0x3ef3fff3800a6aa1, 0xbb794b915f81751a,     0x3fefffd80031ffc2, 0xbc8fec781869e17c), /* j = 20 */
+	(0x3ef4fff2380c0ef4, 0x3b80a43b5348b6b9,     0x3fefffd600371fb8, 0xbc8668429728999b), /* j = 21 */
+	(0x3ef5fff0e00ddd47, 0x3b624a1f136cc09c,     0x3fefffd4003c7fad, 0xbc77c6cf4ea2f3e0), /* j = 22 */
+	(0x3ef6ffef780fd79a, 0xbb9a716c4210cdd0,     0x3fefffd200421fa1, 0xbc5aeeb948d5a74d), /* j = 23 */
+	(0x3ef7ffee0011ffec, 0xbb8ff3d9a8c98613,     0x3fefffd00047ff94, 0x3c143fe1a02d8fbc), /* j = 24 */
+	(0x3ef8ffec7814583d, 0x3b9f7bc8a4e1db73,     0x3fefffce004e1f86, 0xbc6141450a04205a), /* j = 25 */
+	(0x3ef9ffeae016e28f, 0xbb8cb889999dd735,     0x3fefffcc00547f77, 0xbc83c837daa53cb3), /* j = 26 */
+	(0x3efaffe93819a0e0, 0xbb9be60d8a0b5ba8,     0x3fefffca005b1f66, 0x3c7d81be350f0677), /* j = 27 */
+	(0x3efbffe7801c9530, 0xbb873b12aed4646c,     0x3fefffc80061ff55, 0xbc8fb4f8834d1a39), /* j = 28 */
+	(0x3efcffe5b81fc17f, 0x3b9fe950a87b2785,     0x3fefffc600691f41, 0x3c8dd655eb844520), /* j = 29 */
+	(0x3efdffe3e02327cf, 0xbb9bfd7604f796f2,     0x3fefffc400707f2d, 0x3c618b7f1a71ae6b), /* j = 30 */
+	(0x3efeffe1f826ca1d, 0xbb60ae99630e566e,     0x3fefffc200781f17, 0x3c80f0bb2d9557af), /* j = 31 */
 ]
 
 const logoverkill32 = {x : flt32
@@ -140,204 +196,209 @@
 const logoverkill64 = {x : flt64
 	var xn, xe, xs
 	(xn, xe, xs) = std.flt64explode(x)
+	var xsf = std.flt64assem(false, 0, xs)
+	var xb = std.flt64bits(x)
+	var tn, te, ts
+	var t1, t2
 
 	/* Special cases */
 	if std.isnan(x)
 		-> (std.flt64frombits(0x7ff8000000000000), std.flt64frombits(0x7ff8000000000000))
-	elif xe == -1024 && xs == 0
+	elif xe <= -1023 && xs == 0
 		/* log (+/- 0) is -infinity */
 		-> (std.flt64frombits(0xfff0000000000000), std.flt64frombits(0xfff0000000000000))
-	elif xe == 1023
-		-> (std.flt64frombits(0xfff8000000000000), std.flt64frombits(0xfff8000000000000))
 	elif xn
 		/* log(-anything) is NaN */
 		-> (std.flt64frombits(0x7ff8000000000000), std.flt64frombits(0x7ff8000000000000))
 	;;
 
-	/*
-	   Deal with 2^xe up front: multiply xe by a high-precision log(2). We'll
-	   add them back in to the giant mess of tis later.
-	 */
-	var xef : flt64 = (xe : flt64)
-	var log_2_hi, log_2_lo
-	(log_2_hi, log_2_lo) = accurate_logs64[128] /* See log-impl.myr */
-	var lxe_1, lxe_2, lxe_3, lxe_4
-	(lxe_1, lxe_2) = two_by_two64(xef, std.flt64frombits(log_2_hi))
-	(lxe_3, lxe_4) = two_by_two64(xef, std.flt64frombits(log_2_lo))
+	if xe <= -1023
+		/*
+		   We depend on being able to pick bits out of xs as if it were normal, so
+		   normalize any subnormals.
+		 */
+		xe++
+		var check = 1 << 52
+		while xs & check == 0
+			xs <<= 1
+			xe--
+		;;
+		xsf = std.flt64assem(false, 0, xs)
+	;;
 
-	/*
-	   We split t into three parts, so that we can gradually build up two
-	   flt64s worth of information
-	 */
-	var t1 = 0.0
-	var t2 = 0.0
-	var t3 = 0.0
+	var shift = 0
+	var non_trivial = 0
+	var then_invert = false
+	var j1, F1, f1, logF1_hi, logF1_lo, F1_inv_hi, F1_inv_lo, fF1_hi, fF1_lo
 
-	/*
-	   We also split lprime. 
-	 */
-	var lprime1 
-	var lprime2 
-	(lprime1, lprime2) = slow2sum(std.flt64assem(false, 1, xs), -2.0)
-	var lprime3 = 0.0
-
-	for var k = 1; k <= 107; ++k
-		/* Calculate d_k and some quanitites for iteration */
-		var d = 0.0
-		var ln_hi : flt64, ln_mi : flt64, ln_lo : flt64
-
+	/* F1 */
+	if xe == -1 && xs > 0x001d1ff05e41cfba
 		/*
-		   Note the truncation method for [Mul16] is for signed-digit systems,
-		   which we don't have. This comparison follows from the remark following
-		   (8.23), though.
+		   If we reduced to [1, 2) unconditionally, then values of x like 0.999… =
+		   2^-1 · 1.999… would cause subtractive cancellation; we'd compute
+		   log(1.999…), then subtract out log(2) at the end. They'd agree on the
+		   first n bits, and we'd lose n bits of precision.
+
+		   This is only a problem for exponent -1, and for xs large enough;
+		   outside that, the numbers are so different that we won't lose precision
+		   by cancelling. But here, we compute 1/x, proceed (with exponent 0), and
+		   flip all the signs at the end.
 		 */
-		if lprime1 <= -0.5
-			d = 1.0
-			(ln_hi, ln_mi, ln_lo) = get_C_plus(k)
-		elif lprime1 < 1.0
-			d = 0.0
+		xe = 0
+		var xinv_hi = 1.0 / x
+		var xinv_lo = fma64(-1.0 * xinv_hi, x, 1.0) / x
+		(tn, te, ts) = std.flt64explode(xinv_hi)
+		non_trivial = ((47 >= te) : uint64) * ((47 - te < 64) : uint64)
+		shift = non_trivial * ((47 - te) : uint64)
+		j1 = non_trivial * ((ts >> shift) & 0x1f)
+		var F1m1 = scale2((j1 : flt64), -5)
+		F1 = 1.0 + F1m1
+		var f1_hi, f1_lo
+		(f1_hi, f1_lo) = fast2sum(xinv_hi - F1, xinv_lo)
+		(logF1_hi, logF1_lo, F1_inv_hi, F1_inv_lo) = C1[j1]
 
-			/* In this case, t_n is unchanged, and we just scale lprime by 2 */
-			lprime1 = lprime1 * 2.0
-			lprime2 = lprime2 * 2.0
-			lprime3 = lprime3 * 2.0
+		/* Compute 1 + f1/F1 */
+		(fF1_hi, fF1_lo) = two_by_two64(f1_hi, std.flt64frombits(F1_inv_hi))
+		(fF1_lo, t1) = slow2sum(fF1_lo, f1_lo * std.flt64frombits(F1_inv_hi))
+		(fF1_lo, t2) = slow2sum(fF1_lo, f1_hi * std.flt64frombits(F1_inv_lo))
+		(fF1_hi, fF1_lo) = fast2sum(fF1_hi, fF1_lo + (t1 + t2))
+		then_invert = true
+	else
+		j1 = (xs & 0x000f800000000000) >> 47
+		F1 = std.flt64assem(false, 0, xs & 0xffff800000000000)
+		f1 = xsf - F1
+		(logF1_hi, logF1_lo, F1_inv_hi, F1_inv_lo) = C1[j1]
 
-			/*
-			   If you're looking for a way to speed this up, calculate how many k we
-			   can skip here, preferably by a lookup table.
-			 */
-			continue
-		else
-			d = -1.0
-			(ln_hi, ln_mi, ln_lo) = get_C_minus(k)
-		;;
+		/* Compute 1 + f1/F1 */
+		(fF1_hi, fF1_lo) = two_by_two64(f1, std.flt64frombits(F1_inv_hi))
+		(fF1_lo, t1) = slow2sum(fF1_lo, f1 * std.flt64frombits(F1_inv_lo))
+		(fF1_hi, fF1_lo) = fast2sum(fF1_hi, fF1_lo)
+		fF1_lo += t1
+	;;
 
-		/* t_{n + 1} */
-		(t1, t2, t3) = foursum(t1, t2, t3, -1.0 * ln_hi)
-		(t1, t2, t3) = foursum(t1, t2, t3, -1.0 * ln_mi)
-		(t1, t2, t3) = foursum(t1, t2, t3, -1.0 * ln_lo)
+	/* F2 */
+	(tn, te, ts) = std.flt64explode(fF1_hi)
+	non_trivial = ((42 >= te) : uint64) * ((42 - te < 64) : uint64)
+	shift = non_trivial * ((42 - te) : uint64)
+	var j2 = non_trivial * ((ts >> shift) & 0x1f)
+	var F2m1 = scale2((j2 : flt64), -10)
+	var F2 = 1.0 + F2m1
+	var f2_hi, f2_lo
+	(f2_hi, f2_lo) = fast2sum(fF1_hi - F2m1, fF1_lo)
+	var logF2_hi, logF2_lo, F2_inv_hi, F2_inv_lo
+	(logF2_hi, logF2_lo, F2_inv_hi, F2_inv_lo) = C2[j2]
 
-		/* lprime_{n + 1} */
-		lprime1 *= 2.0
-		lprime2 *= 2.0
-		lprime3 *= 2.0
+	/* Compute 1 + f2/F2 */
+	var fF2_hi, fF2_lo
+	(fF2_hi, fF2_lo) = two_by_two64(f2_hi, std.flt64frombits(F2_inv_hi))
+	(fF2_lo, t1) = slow2sum(fF2_lo, f2_lo * std.flt64frombits(F2_inv_hi))
+	(fF2_lo, t2) = slow2sum(fF2_lo, f2_hi * std.flt64frombits(F2_inv_lo))
+	(fF2_hi, fF2_lo) = fast2sum(fF2_hi, fF2_lo + (t1 + t2))
 
-		var lp1m = d * scale2(lprime1, -k)
-		var lp2m = d * scale2(lprime2, -k)
-		var lp3m = d * scale2(lprime3, -k)
-		(lprime1, lprime2, lprime3) = foursum(lprime1, lprime2, lprime3, lp1m)
-		(lprime1, lprime2, lprime3) = foursum(lprime1, lprime2, lprime3, lp2m)
-		(lprime1, lprime2, lprime3) = foursum(lprime1, lprime2, lprime3, lp3m)
-		(lprime1, lprime2, lprime3) = foursum(lprime1, lprime2, lprime3, 2.0 * d)
-	;;
+	/* F3 (just like F2) */
+	(tn, te, ts) = std.flt64explode(fF2_hi)
+	non_trivial = ((37 >= te) : uint64) * ((37 - te < 64) : uint64)
+	shift = non_trivial * ((37 - te) : uint64)
+	var j3 = non_trivial * ((ts >> shift) & 0x1f)
+	var F3m1 = scale2((j3 : flt64), -15)
+	var F3 = 1.0 + F3m1
+	var f3_hi, f3_lo
+	(f3_hi, f3_lo) = fast2sum(fF2_hi - F3m1, fF2_lo)
+	var logF3_hi, logF3_lo, F3_inv_hi, F3_inv_lo
+	(logF3_hi, logF3_lo, F3_inv_hi, F3_inv_lo) = C3[j3]
 
-	var l : flt64[:] = [t1, t2, t3, lxe_1, lxe_2, lxe_3, lxe_4][:]
-	std.sort(l, mag_cmp64)
-	-> double_compensated_sum(l)
-}
+	/* Compute 1 + f3/F3 */
+	var fF3_hi, fF3_lo
+	(fF3_hi, fF3_lo) = two_by_two64(f3_hi, std.flt64frombits(F3_inv_hi))
+	(fF3_lo, t1) = slow2sum(fF3_lo, f3_lo * std.flt64frombits(F3_inv_hi))
+	(fF3_lo, t2) = slow2sum(fF3_lo, f3_hi * std.flt64frombits(F3_inv_lo))
+	(fF3_hi, fF3_lo) = fast2sum(fF3_hi, fF3_lo + (t1 + t2))
 
-/* significand for 1/3 (if you reconstruct without compensating, you get 4/3) */
-const one_third_sig = 0x0015555555555555
+	/* F4 (just like F2) */
+	(tn, te, ts) = std.flt64explode(fF3_hi)
+	non_trivial = ((32 >= te) : uint64) * ((32 - te < 64) : uint64)
+	shift = non_trivial * ((32 - te) : uint64)
+	var j4 = non_trivial * ((ts >> shift) & 0x1f)
+	var F4m1 = scale2((j4 : flt64), -20)
+	var F4 = 1.0 + F4m1
+	var f4_hi, f4_lo
+	(f4_hi, f4_lo) = fast2sum(fF3_hi - F4m1, fF3_lo)
+	var logF4_hi, logF4_lo, F4_inv_hi, F4_inv_lo
+	(logF4_hi, logF4_lo, F4_inv_hi, F4_inv_lo) = C4[j4]
 
-/* and for 1/5 (if you reconstruct, you get 8/5) */
-const one_fifth_sig = 0x001999999999999a
+	/* Compute 1 + f4/F4 */
+	var fF4_hi, fF4_lo
+	(fF4_hi, fF4_lo) = two_by_two64(f4_hi, std.flt64frombits(F4_inv_hi))
+	(fF4_lo, t1) = slow2sum(fF4_lo, f4_lo * std.flt64frombits(F4_inv_hi))
+	(fF4_lo, t2) = slow2sum(fF4_lo, f4_hi * std.flt64frombits(F4_inv_lo))
+	(fF4_hi, fF4_lo) = fast2sum(fF4_hi, fF4_lo + (t1 + t2))
 
-/*
-   These calculations are incredibly slow. Somebody should speed them up.
- */
-const get_C_plus = {k : int64
-	if k < 0
-		-> (0.0, 0.0, 0.0)
-	elif k < 28
-		var t1, t2, t3
-		(t1, t2, t3) = C_plus[k]
-		-> (std.flt64frombits(t1), std.flt64frombits(t2), std.flt64frombits(t3))
-	elif k < 36
-		var t1 = std.flt64assem(false, -k, 1 << 53)             /* x [ = 2^-k ] */
-		var t2 = std.flt64assem(true, -2*k - 1, 1 << 53)        /* -x^2 / 2     */
-		var t3 = std.flt64assem(false, -3*k - 2, one_third_sig) /*  x^3 / 3     */
-		var t4 = std.flt64assem(true, -4*k - 2, 1 << 53)        /* -x^4 / 4     */
-		var t5 = std.flt64assem(false, -5*k - 3, one_fifth_sig) /*  x^5 / 5     */
-		-> fast_fivesum(t1, t2, t3, t4, t5)
-	elif k < 54
-		var t1 = std.flt64assem(false, -k, 1 << 53)             /* x [ = 2^-k ] */
-		var t2 = std.flt64assem(true, -2*k - 1, 1 << 53)        /* -x^2 / 2     */
-		var t3 = std.flt64assem(false, -3*k - 2, one_third_sig) /*  x^3 / 3     */
-		var t4 = std.flt64assem(true, -4*k - 2, 1 << 53)        /* -x^4 / 4     */
-		-> fast_foursum(t1, t2, t3, t4)
-	else
-		var t1 = std.flt64assem(false, -k, 1 << 53)             /* x [ = 2^-k ] */
-		var t2 = std.flt64assem(true, -2*k - 1, 1 << 53)        /* -x^2 / 2     */
-		var t3 = std.flt64assem(false, -3*k - 2, one_third_sig) /*  x^3 / 3     */
-		-> (t1, t2, t3)
-	;;
-}
+	/*
+	   L = log(1 + f4/F4); we'd like to use horner_polyu, but since we have
+	   _hi and _lo, it becomes more complicated.
+	 */
+	var L_hi, L_lo
+	/* r = (1/5) · x */
+	(L_hi, L_lo) = hl_mult(std.flt64frombits(0x3fc999999999999a), std.flt64frombits(0xbc6999999999999a), fF4_hi, fF4_lo)
 
-const get_C_minus = {k : int64
-	if k < 0
-		-> (0.0, 0.0, 0.0)
-	elif k < 28
-		var t1, t2, t3
-		(t1, t2, t3) = C_minus[k]
-		-> (std.flt64frombits(t1), std.flt64frombits(t2), std.flt64frombits(t3))
-	elif k < 36
-		var t1 = std.flt64assem(true, -k, 1 << 53)              /* x [ = 2^-k ] */
-		var t2 = std.flt64assem(true, -2*k - 1, 1 << 53)        /* -x^2 / 2     */
-		var t3 = std.flt64assem(true, -3*k - 2, one_third_sig)  /*  x^3 / 3     */
-		var t4 = std.flt64assem(true, -4*k - 2, 1 << 53)        /* -x^4 / 4     */
-		var t5 = std.flt64assem(true, -5*k - 3, one_fifth_sig)  /*  x^5 / 5     */
-		-> fast_fivesum(t1, t2, t3, t4, t5)
-	elif k < 54
-		var t1 = std.flt64assem(true, -k, 1 << 53)              /* x [ = 2^-k ] */
-		var t2 = std.flt64assem(true, -2*k - 1, 1 << 53)        /* -x^2 / 2     */
-		var t3 = std.flt64assem(true, -3*k - 2, one_third_sig)  /*  x^3 / 3     */
-		var t4 = std.flt64assem(true, -4*k - 2, 1 << 53)        /* -x^4 / 4     */
-		-> fast_foursum(t1, t2, t3, t4)
-	else
-		var t1 = std.flt64assem(true, -k, 1 << 53)              /* x [ = 2^-k ] */
-		var t2 = std.flt64assem(true, -2*k - 1, 1 << 53)        /* -x^2 / 2     */
-		var t3 = std.flt64assem(true, -3*k - 2, one_third_sig)  /*  x^3 / 3     */
-		-> (t1, t2, t3)
-	;;
-}
+	/* r = r - 1/4 */
+	(t1, t2) = fast2sum(std.flt64frombits(0xbfd0000000000000), L_lo)
+	(L_hi, L_lo) = fast2sum(t1, L_hi)
+	L_lo += t2
 
-const foursum = {a1 : flt64, a2 : flt64, a3 : flt64, x : flt64
-	var t1, t2, t3, t4, t5, t6, s1, s2, s3, s4
+	/* r = r · x */
+	(L_hi, L_lo) = hl_mult(L_hi, L_lo, fF4_hi, fF4_lo)
 
-	(t5, t6) = slow2sum(a3, x)
-	(t3, t4) = slow2sum(a2, t5)
-	(t1, t2) = slow2sum(a1, t3)
-	(s3, s4) = slow2sum(t4, t6)
-	(s1, s2) = slow2sum(t2, s3)
+	/* r = r + 1/3 */
+	(L_hi, L_lo) = hl_add(std.flt64frombits(0x3fd5555555555555), std.flt64frombits(0x3c75555555555555), L_hi, L_lo)
 
-	-> (t1, s1, s2 + s4)
-}
+	/* r = r · x */
+	(L_hi, L_lo) = hl_mult(L_hi, L_lo, fF4_hi, fF4_lo)
 
-/*
-   Specifically for use in get_C_{plus,minus}, in which we know the
-   magnitude orders of the ais.
- */
-const fast_foursum = {a1 : flt64, a2 : flt64, a3 : flt64, a4 : flt64
-	(a3, a4) = fast2sum(a3, a4)
-	(a2, a3) = fast2sum(a2, a3)
-	(a1, a2) = fast2sum(a1, a2)
+	/* r = r - 1/2 */
+	(t1, t2) = fast2sum(std.flt64frombits(0xbfe0000000000000), L_lo)
+	(L_hi, L_lo) = fast2sum(t1, L_hi)
+	L_lo += t2
+
+	/* r = r · x */
+	(L_hi, L_lo) = hl_mult(L_hi, L_lo, fF4_hi, fF4_lo)
+
+	/* r = r + 1 */
+	(t1, t2) = fast2sum(1.0, L_lo)
+	(L_hi, L_lo) = fast2sum(t1, L_hi)
+	L_lo += t2
+	/* r = r · x */
+	(L_hi, L_lo) = hl_mult(L_hi, L_lo, fF4_hi, fF4_lo)
+
+	/*
+	   Finally, compute log(F1) + log(F2) + log(F3) + log(F4) + L. We may
+	   assume F1 > F2 > F3 > F4 > F5, since the only way this is disrupted is
+	   if some Fi == 1.0, in which case the log is 0 and the fast2sum works
+	   out either way. We can also assume each F1,2,3 > L. 
+	 */
+	var lsig_hi, lsig_lo
+	
+	/* log(F4) + L, slow because they're the same order of magnitude */
+	(t1, t2) = slow2sum(std.flt64frombits(logF4_lo), L_lo)
+	(lsig_lo, t1) = slow2sum(L_hi, t1)
+	(lsig_hi, lsig_lo) = slow2sum(std.flt64frombits(logF4_hi), lsig_lo)
 
-	(a3, a4) = slow2sum(a3, a4)
-	(a2, a3) = slow2sum(a2, a3)
+	(lsig_hi, lsig_lo) = hl_add(std.flt64frombits(logF3_hi), std.flt64frombits(logF3_lo), lsig_hi, lsig_lo + (t1 + t2))
+	(lsig_hi, lsig_lo) = hl_add(std.flt64frombits(logF2_hi), std.flt64frombits(logF2_lo), lsig_hi, lsig_lo)
+	(lsig_hi, lsig_lo) = hl_add(std.flt64frombits(logF1_hi), std.flt64frombits(logF1_lo), lsig_hi, lsig_lo)
 
-	-> (a1, a2, a3 + a4)
-}
+	/* Oh yeah, and we need xe * log(2) */
+	var xel2_hi, xel2_lo, lx_hi, lx_lo
+	(xel2_hi, xel2_lo) = hl_mult((xe : flt64), 0.0, std.flt64frombits(0x3fe62e42fefa39ef), std.flt64frombits(0x3c7abc9e3b39803f))
 
-const fast_fivesum = {a1 : flt64, a2 : flt64, a3 : flt64, a4 : flt64, a5 : flt64
-	(a4, a5) = fast2sum(a4, a5)
-	(a3, a4) = fast2sum(a3, a4)
-	(a2, a3) = fast2sum(a2, a3)
-	(a1, a2) = fast2sum(a1, a2)
+	(t1, t2) = slow2sum(xel2_lo, lsig_lo)
+	(lx_lo, t1) = slow2sum(lsig_hi, t1)
+	(lx_hi, lx_lo) = slow2sum(xel2_hi, lx_lo)
+	(lx_hi, lx_lo) = slow2sum(lx_hi, lx_lo + (t1 + t2))
 
-	(a4, a5) = slow2sum(a4, a5)
-	(a3, a4) = slow2sum(a3, a4)
-	(a2, a3) = slow2sum(a2, a3)
+	if then_invert
+		-> (-1.0 * lx_hi, -1.0 * lx_lo)
+	;;
 
-	(a4, a5) = slow2sum(a4, a5)
-	-> (a1, a2, a3 + a4)
+	-> (lx_hi, lx_lo)
 }
--- a/lib/math/pown-impl.myr
+++ b/lib/math/pown-impl.myr
@@ -1,8 +1,9 @@
 use std
 
 use "fpmath"
-use "log-impl"
+use "impls"
 use "log-overkill"
+use "log-impl"
 use "sum-impl"
 use "util"
 
@@ -32,7 +33,13 @@
 	neginf : @u
 	magcmp : (f : @f, g : @f -> std.order)
 	two_by_two : (x : @f, y : @f -> (@f, @f))
+	split_add : (x_h : @f, x_l : @f, y_h : @f, y_l : @f -> (@f, @f))
+	split_mul : (x_h : @f, x_l : @f, y_h : @f, y_l : @f -> (@f, @f))
+	floor : (x : @f -> @f)
 	log_overkill : (x : @f -> (@f, @f))
+	precision : @i
+	nosgn_mask : @u
+	implicit_bit : @u
 	emin : @i
 	emax : @i
 	imax : @i
@@ -52,7 +59,13 @@
 	.neginf = 0xff800000,
 	.magcmp = mag_cmp32,
 	.two_by_two = two_by_two32,
+	.split_add = split_add32,
+	.split_mul = split_mul32,
+	.floor = floor32,
 	.log_overkill = logoverkill32,
+	.precision = 24,
+	.nosgn_mask = 0x7fffffff,
+	.implicit_bit = 23,
 	.emin = -126,
 	.emax = 127,
 	.imax = 2147483647, /* For detecting overflow in final exponent */
@@ -72,7 +85,13 @@
 	.neginf = 0xfff0000000000000,
 	.magcmp = mag_cmp64,
 	.two_by_two = two_by_two64,
+	.split_add = hl_add,
+	.split_mul = hl_mult,
+	.floor = floor64,
 	.log_overkill = logoverkill64,
+	.precision = 53,
+	.nosgn_mask = 0x7fffffffffffffff,
+	.implicit_bit = 52,
 	.emin = -1022,
 	.emax = 1023,
 	.imax = 9223372036854775807,
@@ -79,6 +98,24 @@
 	.imin = -9223372036854775808,
 ]
 
+const split_add32 = {x_h : flt32, x_l : flt32, y_h : flt32, y_l : flt32
+	var x : flt64 = (x_h : flt64) + (x_l : flt64)
+	var y : flt64 = (y_h : flt64) + (y_l : flt64)
+	var z = x + y
+	var z_h : flt32 = (z : flt32)
+	var z_l : flt32 = ((z - (z_h : flt64)) : flt32)
+	-> (z_h, z_l)
+}
+
+const split_mul32 = {x_h : flt32, x_l : flt32, y_h : flt32, y_l : flt32
+	var x : flt64 = (x_h : flt64) + (x_l : flt64)
+	var y : flt64 = (y_h : flt64) + (y_l : flt64)
+	var z = x * y
+	var z_h : flt32 = (z : flt32)
+	var z_l : flt32 = ((z - (z_h : flt64)) : flt32)
+	-> (z_h, z_l)
+}
+
 const pown32 = {x : flt32, n : int32
 	-> powngen(x, n, desc32)
 }
@@ -109,7 +146,7 @@
 		/* Propagate NaN (why doesn't this come first? Ask IEEE.) */
 		-> d.frombits(d.nan)
 	elif (x == 0.0 || x == -0.0)
-		if n < 0 && (n % 2 == 1) && xn
+		if n < 0 && (n % 2 == -1) && xn
 			/* (+/- 0)^n = +/- oo */
 			-> d.frombits(d.neginf)
 		elif n < 0
@@ -123,6 +160,9 @@
 	elif n == 1
 		/* Anything^1 is itself */
 		-> x
+	elif n == -1
+		/* The CPU is probably better at division than we are at pow(). */
+		-> 1.0/x
 	;;
 
 	/* (-f)^n = (-1)^n * (f)^n. Figure this out now, then pretend f >= 0.0 */
@@ -142,62 +182,58 @@
 	   Since n and e, and I are all integers, we can get the last part from
 	   scale2. The hard part is computing I and F, and then computing 2^F.
 	 */
+	if xe > 0
+		/*
+		   But first: do some rough calculations: if we can show n*log(xs) has the
+		   same sign as n*e, and n*e would cause overflow, then we might as well
+		   return right now.
+
+		   This also takes care of subnormals very nicely, so we don't have to do
+		   any special handling to reconstitute xs "right", as we do in rootn.
+		 */
+		var exp_rough_estimate = n * xe
+		if n > 0 && (exp_rough_estimate > d.emax + 1 || (exp_rough_estimate / n != xe))
+			-> ult_sgn * d.frombits(d.inf)
+		elif n < 0 && (exp_rough_estimate < d.emin - d.precision - 1 || (exp_rough_estimate / n != xe))
+			-> ult_sgn * 0.0
+		;;
+	elif xe < 0
+		/*
+		   Also, if consider xs/2 and xe + 1, we can analyze the case in which
+		   n*log(xs) has a different sign from n*e.
+	         */
+		var exp_rough_estimate = n * (xe + 1)
+		if n > 0 && (exp_rough_estimate < d.emin - d.precision - 1 || (exp_rough_estimate / n != (xe + 1)))
+			-> ult_sgn * 0.0
+		elif n < 0 && (exp_rough_estimate > d.emax + 1 || (exp_rough_estimate / n != (xe + 1)))
+			-> ult_sgn * d.frombits(d.inf)
+		;;
+	;;
+
 	var ln_xs_hi, ln_xs_lo
 	(ln_xs_hi, ln_xs_lo) = d.log_overkill(d.assem(false, 0, xs))
 
 	/* Now x^n = 2^(n * [ ln_xs / ln(2) ]) * 2^(n + e) */
+	var E1, E2
+	(E1, E2) = d.split_mul(ln_xs_hi, ln_xs_lo, d.frombits(d.one_over_ln2_hi), d.frombits(d.one_over_ln2_lo))
 
-	var ls1 : @f[8]
-	(ls1[0], ls1[1]) = d.two_by_two(ln_xs_hi, d.frombits(d.one_over_ln2_hi))
-	(ls1[2], ls1[3]) = d.two_by_two(ln_xs_hi, d.frombits(d.one_over_ln2_lo))
-	(ls1[4], ls1[5]) = d.two_by_two(ln_xs_lo, d.frombits(d.one_over_ln2_hi))
-	(ls1[6], ls1[7]) = d.two_by_two(ln_xs_lo, d.frombits(d.one_over_ln2_lo))
-
 	/*
-	   Now log2(xs) = Sum(ls1), so
+	   Now log2(xs) = E1 + E2, so
 
-	     x^n = 2^(n * Sum(ls1)) * 2^(n * e)
+	     x^n = 2^(n * E1 + E2) * 2^(n * e)
 	 */
-	var E1, E2
-	(E1, E2) = double_compensated_sum(ls1[0:8])
-	var ls2 : @f[5]
-	var ls2s : @f[5]
-	var I = 0
-	(ls2[0], ls2[1]) = d.two_by_two(E1, nf)
-	(ls2[2], ls2[3]) = d.two_by_two(E2, nf)
-	ls2[4] = 0.0
 
-	/* Now x^n = 2^(Sum(ls2)) * 2^(n + e) */
-
-	for var j = 0; j < 5; ++j
-		var i = rn(ls2[j])
-		I += i
-		ls2[j] -= (i : @f)
-	;;
-
 	var F1, F2
-	std.slcp(ls2s[0:5], ls2[0:5])
-	std.sort(ls2s[0:5], d.magcmp)
-	(F1, F2) = double_compensated_sum(ls2s[0:5])
+	(F1, F2) = d.split_mul(E1, E2, nf, 0.0)
 
-	if (F1 < 0.0 || F1 > 1.0)
-		var i = rn(F1)
-		I += i
-		ls2[4] -= (i : @f)
-		std.slcp(ls2s[0:5], ls2[0:5])
-		std.sort(ls2s[0:5], d.magcmp)
-		(F1, F2) = double_compensated_sum(ls2s[0:5])
-	;;
+	var I = rn(F1)
+	(F1, F2) = d.split_add(-1.0 * (I : @f), 0.0, F1, F2)
 
 	/* Now, x^n = 2^(F1 + F2) * 2^(I + n*e). */
-	var ls3 : @f[6]
 	var log2_hi, log2_lo
 	(log2_hi, log2_lo) = d.C[128]
-	(ls3[0], ls3[1]) = d.two_by_two(F1, d.frombits(log2_hi))
-	(ls3[2], ls3[3]) = d.two_by_two(F1, d.frombits(log2_lo))
-	(ls3[4], ls3[5]) = d.two_by_two(F2, d.frombits(log2_hi))
 	var G1, G2
-	(G1, G2) = double_compensated_sum(ls3[0:6])
+	(G1, G2) = d.split_mul(F1, F2, d.frombits(log2_hi), d.frombits(log2_lo))
 
 	var base = exp(G1) + G2
 	var pow_xen = xe * n
@@ -259,6 +295,19 @@
 	elif q == 1
 		/* Anything^1/1 is itself */
 		-> x
+	elif xe < d.emin
+		/*
+		   Subnormals are actually a problem. If we naively reconstitute xs, it
+		   will be wildly wrong and won't match up with the exponent. So let's
+		   pretend we have unbounded exponent range. We know the loop terminates
+		   because we covered the +/-0.0 case above.
+		 */
+		xe++
+		var check = 1 << d.implicit_bit
+		while xs & check == 0
+			xs <<= 1
+			xe--
+		;;
 	;;
 
 	/* As in pown */
@@ -267,6 +316,33 @@
 		ult_sgn = -1.0
 	;;
 
+	/*
+	   If we're looking at (1 + 2^-h)^1/q, and the answer will be 1 + e, with
+	   (1 + e)^q = 1 + 2^-h, then for q and h large enough, e might be below
+	   the representable range. Specifically,
+
+	     (1 + e)^q ≅ 1 + qe + (q choose 2)e^2 + ...
+
+	  So (using single-precision as the example)
+
+	    (1 + 2^-23)^q ≅ 1 + q 2^-23 + (absolutely tiny terms)
+
+	  And anything in [1, 1 + q 2^-24) will just truncate to 1.0 when
+	  calculated.
+	 */
+	if xe == 0
+		var cutoff = scale2(qf, -1 * d.precision - 1) + 1.0
+		if (xb & d.nosgn_mask) < d.tobits(cutoff)
+			-> 1.0
+		;;
+	elif xe == -1
+		/* Something similar for (1 - e)^q */
+		var cutoff = 1.0 - scale2(qf, -1 * d.precision - 1)
+		if (xb & d.nosgn_mask) > d.tobits(cutoff)
+			-> 1.0
+		;;
+	;;
+
 	/* Similar to pown. Let e/q = E + psi, with E an integer.
 
 	   x^(1/q) = e^(log(xs)/q) * 2^(e/q)
@@ -280,15 +356,14 @@
 	 */
 
 	/* Calculate 1/q in very high precision */
-	var r1 = 1.0 / qf
-	var r2 = -math.fma(r1, qf, -1.0) / qf
+	var qinv_hi = 1.0 / qf
+	var qinv_lo = -math.fma(qinv_hi, qf, -1.0) / qf
 	var ln_xs_hi, ln_xs_lo
 	(ln_xs_hi, ln_xs_lo) = d.log_overkill(d.assem(false, 0, xs))
-	var ls1 : @f[12]
-	(ls1[0], ls1[1]) = d.two_by_two(ln_xs_hi, r1)
-	(ls1[2], ls1[3]) = d.two_by_two(ln_xs_hi, r2)
-	(ls1[4], ls1[5]) = d.two_by_two(ln_xs_lo, r1)
 
+	var G1, G2
+	(G1, G2) = d.split_mul(ln_xs_hi, ln_xs_lo, qinv_hi, qinv_lo)
+
 	var E : @i
 	if q > std.abs(xe)
 		/* Don't cast q to @i unless we're sure it's in small range */
@@ -301,15 +376,20 @@
 	var psi_lo = -math.fma(psi_hi, qf, -(qpsi : @f)) / qf
 	var log2_hi, log2_lo
 	(log2_hi, log2_lo) = d.C[128]
-	(ls1[ 6], ls1[ 7]) = d.two_by_two(psi_hi, d.frombits(log2_hi))
-	(ls1[ 8], ls1[ 9]) = d.two_by_two(psi_hi, d.frombits(log2_lo))
-	(ls1[10], ls1[11]) = d.two_by_two(psi_lo, d.frombits(log2_hi))
+	var H1, H2
+	(H1, H2) = d.split_mul(psi_hi, psi_lo, d.frombits(log2_hi), d.frombits(log2_lo))
 
-	var G1, G2
-	(G1, G2) = double_compensated_sum(ls1[0:12])
-	/* G1 + G2 approximates log(xs)/q + log(2)*psi */
+	var J1, J2, t1, t2
+	/*
+	   We can't use split_add; we don't kow the relative magitudes of G and H
+	 */
+	(t1, t2) = slow2sum(G2, H2)
+	(J2, t1) = slow2sum(H1, t1)
+	(J1, J2) = slow2sum(G1, J2)
+	J2 = J2 + (t1 + t2)
 
-	var base = exp(G1) + G2
+	/* J1 + J2 approximates log(xs)/q + log(2)*psi */
+	var base = exp(J1) + J2
 
 	-> ult_sgn * scale2(base, E)
 }
--- a/lib/math/powr-impl.myr
+++ b/lib/math/powr-impl.myr
@@ -1,7 +1,9 @@
 use std
 
 use "fpmath"
+use "impls"
 use "log-impl"
+use "log-overkill"
 use "util"
 
 /*
@@ -14,12 +16,6 @@
    example, IEEE 754-2008 does not specify what powr(infty, y) must
    return when y is not 0.0 (an erratum was planned in 2010, but
    does not appear to have been released as of 2018).
-
-   As a note: unlike many other functions in this library, there
-   has been no serious analysis of the accuracy and speed of this
-   particular implementation. Interested observers wishing to improve
-   this library will probably find this file goldmine of mistakes,
-   both theoretical and practical.
  */
 pkg math =
 	pkglocal const powr32 : (x : flt32, y : flt32 -> flt32)
@@ -38,17 +34,10 @@
 	emax : @i
 	emin : @i
 	sgnmask : @u
-	sig8mask : @u
-	sig8last : @u
-	split_prec_mask : @u
-	split_prec_mask2 : @u
-	C : (@u, @u)[:]
-	eps_inf_border : @u
-	eps_zero_border : @u
-	exp_inf_border : @u
+	log_overkill : (x : @f -> (@f, @f))
+	fma : (x : @f, y : @f, z : @f -> @f)
+	split_mul : (x_h : @f, x_l : @f, y_h : @f, y_l : @f -> (@f, @f))
 	exp_zero_border : @u
-	exp_subnormal_border : @u
-	itercount : @u
 ;;
 
 const desc32 : fltdesc(flt32, uint32, int32) =  [
@@ -63,17 +52,10 @@
 	.emax = 127,
 	.emin = -126,
 	.sgnmask = 1 << 31,
-	.sig8mask = 0xffff0000, /* Mask to get 8 significant bits */
-	.sig8last = 16, /* Last bit kept when masking */
-	.split_prec_mask = 0xffff0000, /* 16 trailing zeros */
-	.split_prec_mask2 = 0xfffff000, /* 12 trailing zeros */
-	.C = accurate_logs32[0:130], /* See log-impl.myr */
-	.eps_inf_border = 0x4eb00f34, /* maximal y st. (1.00..1)^y < oo */
-	.eps_zero_border = 0x4ecff1b4, /* minimal y st. (0.99..9)^y > 0 */
-	.exp_inf_border = 0x42b17218, /* maximal y such that e^y < oo */
+	.log_overkill = logoverkill32,
+	.fma = fma32,
+	.split_mul = split_mul32,
 	.exp_zero_border = 0xc2cff1b4, /* minimal y such that e^y > 0 */
-	.exp_subnormal_border = 0xc2aeac50, /* minimal y such that e^y is normal */
-	.itercount = 4, /* How many iterations of Taylor series for (1 + f)^y' */
 ]
 
 const desc64 : fltdesc(flt64, uint64, int64) =  [
@@ -88,19 +70,21 @@
 	.emax = 1023,
 	.emin = -1022,
 	.sgnmask = 1 << 63,
-	.sig8mask = 0xffffe00000000000, /* Mask to get 8 significant bits */
-	.sig8last = 45, /* Last bit kept when masking */
-	.split_prec_mask = 0xffffff0000000000, /* 40 trailing zeroes */
-	.split_prec_mask2 = 0xfffffffffffc0000, /* 18 trailing zeroes */
-	.C = accurate_logs64[0:130], /* See log-impl.myr */
-	.eps_inf_border = 0x43d628b76e3a7b61, /* maximal y st. (1.00..1)^y < oo */
-	.eps_zero_border = 0x43d74e9c65eceee0, /*  minimal y st. (0.99..9)^y > 0 */
-	.exp_inf_border = 0x40862e42fefa39ef, /* maximal y such that e^y < oo */
+	.log_overkill = logoverkill64,
+	.fma = fma64,
+	.split_mul = hl_mult,
 	.exp_zero_border = 0xc0874910d52d3052, /* minimal y such that e^y > 0 */
-	.exp_subnormal_border = 0xc086232bdd7abcd2, /* minimal y such that e^y is normal */
-	.itercount = 8,
 ]
 
+const split_mul32 = {x_h : flt32, x_l : flt32, y_h : flt32, y_l : flt32
+	var x : flt64 = (x_h : flt64) + (x_l : flt64)
+	var y : flt64 = (y_h : flt64) + (y_l : flt64)
+	var z = x * y
+	var z_h : flt32 = (z : flt32)
+	var z_l : flt32 = ((z - (z_h : flt64)) : flt32)
+	-> (z_h, z_l)
+}
+
 const powr32 = {x : flt32, y : flt32
 	-> powrgen(x, y, desc32)
 }
@@ -182,225 +166,41 @@
 		;;
 	;;
 
-	/* Normalize x and y */
-	if xe < d.emin
-		var first_1 = find_first1_64((xs : uint64), (d.precision : int64))
-		var offset = (d.precision : @u) - 1 - (first_1 : @u)
-		xs = xs << offset
-		xe = d.emin - offset
-	;;
-
-	if ye < d.emin
-		var first_1 = find_first1_64((ys : uint64), (d.precision : int64))
-		var offset = (d.precision : @u) - 1 - (first_1 : @u)
-		ys = ys << offset
-		ye = d.emin - offset
-	;;
-
 	/*
-           Split x into 2^N * F * (1 + f), with F = 1 + j/128 (some
-           j) and f tiny. Compute F naively by truncation. Compute
-           f via f = (x' - 1 - F)/(1 + F), where 1/(1 + F) is
-           precomputed and x' is x/2^N. 128 is chosen so that we
-           can borrow some constants from log-impl.myr.
-
-           [Tan90] hints at a method of computing x^y which may be
-           comparable to this approach, but which is unfortunately
-           has not been elaborated on (as far as I can discover).
+	   Just do the dumb thing: compute exp( log(x) · y ). All the hard work
+	   goes into computing log(x) with high enough precision that our exp()
+	   implementation becomes the weakest link. The Table Maker's Dilemma
+	   says that quantifying "high enough" is a very difficult problem, but
+	   experimentally twice the precision of @f appears quite good enough.
 	 */
-	var N = xe
-	var j, F, Fn, Fe, Fs
-	var xprime = d.assem(false, 0, xs)
+	var ln_x_hi, ln_x_lo
+	(ln_x_hi, ln_x_lo) = d.log_overkill(x)
 
-	if need_round_away(0, (xs : uint64), (d.sig8last : int64))
-		F = d.frombits((d.tobits(xprime) & d.sig8mask) + (1 << d.sig8last))
-	else
-		F = d.frombits(d.tobits(xprime) & d.sig8mask)
-	;;
+	var final_exp_hi, final_exp_lo
+	(final_exp_hi, final_exp_lo) = d.split_mul(ln_x_hi, ln_x_lo, y, 0.0)
 
-	(Fn, Fe, Fs) = d.explode(F)
-
-	if Fe != 0
-		j = 128
-	else
-		j = 0x7f & ((d.sig8mask & Fs) >> d.sig8last)
-	;;
-
-	var f = (xprime - F)/F
-
-	/*
-	   y could actually be above integer infinity, in which
-	   case x^y is most certainly infinity of 0. More importantly,
-	   we can't safely compute M (below).
-	 */
-	if x > (1.0 : @f)
-		if y > d.frombits(d.eps_inf_border)
+	if d.tobits(final_exp_hi) & d.expmask == d.inf
+		/*
+		   split_mul doesn't actually preserve the sign of infinity, so we can't
+		   trust final_exp_hi to get it.
+		 */
+		if (d.tobits(ln_x_hi) & d.sgnmask) == (yb & d.sgnmask)
+			/* e^+Inf */
 			-> d.frombits(d.inf)
-		elif -y > d.frombits(d.eps_inf_border)
-			-> (0.0 : @f)
+		else
+			/* e^-Inf */
+			-> 0.0
 		;;
-	elif x < (1.0 : @f)
-		if y > d.frombits(d.eps_zero_border) && x < (1.0 : @f)
-			-> (0.0 : @f)
-		elif -y > d.frombits(d.eps_zero_border) && x < (1.0 : @f)
-			-> d.frombits(d.inf)
-		;;
 	;;
 
-	/* Split y into M + y', with |y'| <= 0.5 and M an integer */
-	var M = floor(y)
-	var yprime = y - M
-	if yprime > (0.5 : @f)
-		M += (1.0 : @f)
-		yprime = y - M
-	elif yprime < (-0.5 : @f)
-		M -= (1.0: @f)
-		yprime = y - M
+	if final_exp_hi < d.frombits(d.exp_zero_border)
+		-> 0.0
 	;;
 
-	/*
-	   We'll multiply y' by log(2) and try to keep extra
-	   precision, so we need to split y'. Since the high word
-	   of C has 24 - 10 = 14 significant bits (53 - 16 = 37 in
-	   flt64 case), we ensure 15 (39) trailing zeroes in
-	   yprime_hi.  (We also need this for y'*N, M, &c).
-	 */
-	var yprime_hi = d.frombits(d.tobits(yprime) & d.split_prec_mask)
-	var yprime_lo = yprime - yprime_hi
-	var yprimeN_hi = d.frombits(d.tobits((N : @f) * yprime) & d.split_prec_mask)
-	var yprimeN_lo = fma((N : @f),  yprime, -yprimeN_hi)
-	var M_hi = d.frombits(d.tobits(M) & d.split_prec_mask)
-	var M_lo = M - M_hi
-
-	/* 
-	   At this point, we've built out
-	   
-	       x^y = [ 2^N * F * (1 + f) ]^(M + y')
-	
-	   where N, M are integers, F is well-known, and f, y' are
-	   tiny. So we can get to computing
-
-	        /-1-\     /-------------------2--------------------------\     /-3--\
-	       2^(N*M) * exp(log(F)*y' + log2*N*y' + log(F)*M + M*log(1+f)) * (1+f)^y'
-
-	   where 1 can be handled by scale2, 2 we can mostly fake
-	   by sticking high-precision values for log(F) and log(2)
-	   through exp(), and 3 is composed of small numbers,
-	   therefore can be reasonably approximated by a Taylor
-	   expansion.
-	 */
-
-	/* t2 */
-	var log2_lo, log2_hi, Cu_hi, Cu_lo
-	(log2_hi, log2_lo) = d.C[128]
-	(Cu_hi, Cu_lo) = d.C[j]
-
-	var es : @f[20]
-	std.slfill(es[:], (0.0 : @f))
-
-	/* log(F) * y' */
-	es[0] = d.frombits(Cu_hi) * yprime_hi
-	es[1] = d.frombits(Cu_lo) * yprime_hi
-	es[2] = d.frombits(Cu_hi) * yprime_lo
-	es[3] = d.frombits(Cu_lo) * yprime_lo
-
-	/* log(2) * N * y' */
-	es[4] = d.frombits(log2_hi) * yprimeN_hi
-	es[5] = d.frombits(log2_lo) * yprimeN_hi
-	es[6] = d.frombits(log2_hi) * yprimeN_lo
-	es[7] = d.frombits(log2_lo) * yprimeN_lo
-
-	/* log(F) * M */
-	es[8] = d.frombits(Cu_hi) * M_hi
-	es[9] = d.frombits(Cu_lo) * M_hi
-	es[10] = d.frombits(Cu_hi) * M_lo
-	es[11] = d.frombits(Cu_lo) * M_lo
-
-	/* log(1 + f) * M */
-	var lf = log1p(f)
-	var lf_hi = d.frombits(d.tobits(lf) & d.split_prec_mask)
-	var lf_lo = lf - lf_hi
-	es[12] = lf_hi * M_hi
-	es[13] = lf_lo * M_hi
-	es[14] = lf_hi * M_lo
-	es[15] = lf_lo * M_lo
-
-	/*
-	   The correct way to handle this would be to compare
-	   magnitudes of eis and parenthesize the additions correctly.
-	   We take the cheap way out.
-	 */
-	var exp_hi = priest_sum(es[0:16])
-
-	/*
-	   We would like to just compute exp(exp_hi) * exp(exp_lo).
-	   However, if that takes us into subnormal territory, yet
-	   N * M is large, that will throw away a few bits of
-	   information. We can correct for this by adding in a few
-	   copies of P*log(2), then subtract off P when we compute
-	   scale2() at the end.
-
-	   We also have to be careful that P doesn't have too many
-	   significant bits, otherwise we throw away some information
-	   of log2_hi.
-	 */
-	var P = -rn(exp_hi / d.frombits(log2_hi))
-	var P_f = (P : @f)
-	P_f = d.frombits(d.tobits(P_f) & d.split_prec_mask2)
-	P = rn(P_f)
-
-	es[16] = P_f * d.frombits(log2_hi)
-	es[17] = P_f * d.frombits(log2_lo)
-	exp_hi = priest_sum(es[0:18])
-	es[18] = -exp_hi
-	var exp_lo = priest_sum(es[0:19])
-
-
-	var t2 = exp(exp_hi) * exp(exp_lo)
-
-	/*
-	   t3: Abbreviated Taylor expansion for (1 + f)^y' - 1.
-	   Since f is on the order of 2^-7 (and y' is on the order
-	   of 2^-1), we need to go up to f^3 for single-precision,
-	   and f^7 for double. We can then compute (1 + t3) * t2
-
-	   The expansion is \Sum_{k=1}^{\infty} {y' \choose k} x^k
-	 */
-	var terms : @f[10] = [
-		(0.0 : @f),  (0.0 : @f),  (0.0 : @f),  (0.0 : @f),  (0.0 : @f),
-		(0.0 : @f),  (0.0 : @f),  (0.0 : @f),  (0.0 : @f),  (0.0 : @f),
-	]
-	var current = (1.0 : @f)
-	for var j = 0; j <= d.itercount; ++j
-		current = current * f * (yprime - (j : @f)) / ((j : @f) + (1.0 : @f))
-		terms[j] = current
+	var z_hi = exp(final_exp_hi)
+	if d.tobits(z_hi) & d.expmask == d.inf
+		-> z_hi
 	;;
-	var t3 = priest_sum(terms[0:d.itercount + 1])
 
-	var total_exp_f = (N : @f) * M - (P : @f)
-	if total_exp_f > ((d.emax - d.emin + d.precision + 1) : @f)
-		-> d.frombits(d.inf)
-	elif total_exp_f < -((d.emax - d.emin + d.precision + 1) : @f)
-		-> (0.0 : @f)
-	;;
-
-	/*
-	   Pull t2's exponent out so that we don't hit subnormal
-	   calculation with the t3 multiplication
-	 */
-	var t2n, t2e, t2s
-	(t2n, t2e, t2s) = d.explode(t2)
-
-	if t2e < d.emin
-		var t2_first_1 = find_first1_64((t2s : uint64), (d.precision : int64))
-		var t2_offset = (d.precision : @u) - 1 - (t2_first_1 : @u)
-		t2s = t2s << t2_offset
-		t2e = d.emin - (t2_offset : @i)
-	;;
-
-	t2 = d.assem(t2n, 0, t2s)
-	P -= t2e
-
-	var base = fma(t2, t3, t2)
-	-> scale2(base, N * rn(M) - P)
+	-> d.fma(z_hi, final_exp_lo, z_hi)
 }
--- a/lib/math/test/log-overkill.myr
+++ b/lib/math/test/log-overkill.myr
@@ -142,7 +142,10 @@
 		(0x3f974b5311aeae57, 0xc00e4420e231d7f0, 0xbc9d614ed9b94484),
 		(0x3fe28aed659dab73, 0xbfe1760d162fed7e, 0xbc64a0ff30250148),
 		(0x403273d9892e62d3, 0x40075255633e0533, 0xbc91eb9834046d7b),
+
+		/* This one catches naive catastrophic cancellation */
 		(0x3fee1d239d2061d7, 0xbfaf1ad3961ab8ba, 0xbbc9bff82ae3fde7),
+
 		(0x3fbc0666ebc60265, 0xc001b257198142d0, 0xbca1cf93360a27f6),
 		(0x3f53267a24ceab6a, 0xc01b01c8ad09c3c1, 0xbca0d85af74df975),
 		(0x3fd2005446cb268e, 0xbff44b879f2ec561, 0x3c66e8eff64f40a1),
@@ -224,6 +227,9 @@
 		(0x4014a5ce06d7df05, 0x3ffa42cc8df38d10, 0xbc5e54e0ca2ed44c),
 		(0x3f68d1447d5a29e8, 0xc017328d1195bac4, 0x3cb4fd5db024d1da),
 		(0x404963f9a80919eb, 0x400f6b9160b05ec4, 0x3c4526374db12c53),
+		(0x3fe78000b3cf1a39, 0xbfd3c2508d81ebf9, 0x3c7d6df43454d213),
+		(0x7fe6c53d8cef3d27, 0x40862b8a1ec909c8, 0x3cf9a8752da53a7e),
+		(0x000342cdeeb18fc9, 0xc0862fe5598ee7e6, 0xbd2bf7df7d1e9517),
 	][:]
 
 	for (x, y1, y2) : inputs
--- a/lib/math/test/pown-impl.myr
+++ b/lib/math/test/pown-impl.myr
@@ -21,7 +21,20 @@
 const pown01 = {c
 	var inputs : (uint32, uint32, uint32)[:] = [
 		(0x000000f6, 0x00000000, 0x3f800000),
+		(0x7fc00000, 0x00000001, 0x7fc00000),
+		(0x7fc00000, 0x00000021, 0x7fc00000),
+		(0x7fc00000, 0x00030021, 0x7fc00000),
+		(0x7fc00000, 0xfacecafe, 0x7fc00000),
 		(0x00000000, 0x3d800000, 0x00000000),
+		(0x80000000, 0x00000124, 0x00000000),
+		(0x80000000, 0x00000123, 0x80000000),
+		(0x00000000, 0x00000124, 0x00000000),
+		(0x00000000, 0x00000123, 0x00000000),
+		(0x00000000, 0xad800001, 0x7f800000),
+		(0x80000000, 0x80000123, 0xff800000),
+		(0x80000000, 0x80000122, 0x7f800000),
+		(0x00000000, 0x80000127, 0x7f800000),
+		(0x00000000, 0x80000128, 0x7f800000),
 		(0x946fc13b, 0x3b21efc7, 0x80000000),
 		(0xb76e98b6, 0xdbeb6637, 0xff800000),
 		(0xc04825b7, 0x53cdd772, 0x7f800000),
@@ -52,11 +65,11 @@
 	for (x, y, z) : inputs
 		var xf : flt32 = std.flt32frombits(x)
 		var yi : int32 = int32fromuint32(y)
-		var zf : flt32 = std.flt32frombits(z)
 		var rf = math.pown(xf, yi)
-		testr.check(c, rf == zf,
+		var ru : uint32 = std.flt32bits(rf)
+		testr.check(c, ru == z,
 			"pown(0x{b=16,w=8,p=0}, {}) should be 0x{b=16,w=8,p=0}, was 0x{b=16,w=8,p=0}",
-			x, yi, z, std.flt32bits(rf))
+			x, yi, z, ru)
 	;;
 }
 
@@ -87,16 +100,24 @@
 		(0xc017043172d0152b, 0x00000000000000e9, 0xe4b2c1666379afdc),
 		(0xc0325800cfeffb8e, 0x00000000000000d8, 0x78983c24a5e29e19),
 		(0xbfee2ae3cd3208ec, 0x00000000000006b7, 0xb6cb06585f39893d),
+		(0x3f7dd2994731f21f, 0x0000000000000097, 0x0000000000000003),
+		(0x61696e53830d02af, 0xfffffffffffffffe, 0x0000000000000006),
+		(0xc0e60abfce171c2e, 0xffffffffffffffbb, 0x800000000000008a),
+		(0x32dbf16a23293407, 0x0000000000000005, 0x00000000103f2cd6),
+		(0xb95741e695eb8ab2, 0x000000000000000a, 0x00000000000a873c),
+		(0x000aa88b5c2dd078, 0xffffffffffffffff, 0x7fd804c764025003),
+		(0x800cd2d56c4a4074, 0xffffffffffffffff, 0xffd3f696f65f6596),
+		(0x8000d6838a5a8463, 0xffffffffffffffff, 0xfff0000000000000),
 	][:]
 
 	for (x, y, z) : inputs
 		var xf : flt64 = std.flt64frombits(x)
 		var yi : int64 = int64fromuint64(y)
-		var zf : flt64 = std.flt64frombits(z)
-		var rf = math.pown(xf, yi)
-		testr.check(c, rf == zf,
+		var rf : flt64 = math.pown(xf, yi)
+		var ru : uint64 = std.flt64bits(rf)
+		testr.check(c, ru == z,
 			"pown(0x{b=16,w=16,p=0}, {}) should be 0x{b=16,w=16,p=0}, was 0x{b=16,w=16,p=0}",
-			x, yi, z, std.flt64bits(rf))
+			x, yi, z, ru)
 	;;
 }
 
@@ -112,12 +133,11 @@
 	for (x, y, z_perfect, z_accepted) : inputs
 		var xf : flt32 = std.flt32frombits(x)
 		var yi : int32 = int32fromuint32(y)
-		var zf_perfect : flt32 = std.flt32frombits(z_perfect)
-		var zf_accepted : flt32 = std.flt32frombits(z_accepted)
-		var rf = math.pown(xf, yi)
-		testr.check(c, rf == zf_perfect || rf == zf_accepted,
+		var rf : flt32 = math.pown(xf, yi)
+		var ru : uint32 = std.flt32bits(rf)
+		testr.check(c, ru == z_perfect || ru == z_accepted,
 			"pown(0x{b=16,w=8,p=0}, {}) should be 0x{b=16,w=8,p=0}, will also accept 0x{b=16,w=8,p=0}, was 0x{b=16,w=8,p=0}",
-			x, yi, z_perfect, z_accepted, std.flt32bits(rf))
+			x, yi, z_perfect, z_accepted, ru)
 	;;
 }
 
@@ -279,10 +299,11 @@
 	for (x, y, z) : inputs
 		var xf : flt32 = std.flt32frombits(x)
 		var zf : flt32 = std.flt32frombits(z)
-		var rf = math.rootn(xf, y)
-		testr.check(c, rf == zf,
+		var rf : flt32 = math.rootn(xf, y)
+		var ru : uint32 = std.flt32bits(rf)
+		testr.check(c, ru == z,
 			"rootn(0x{b=16,w=8,p=0}, {}) should be 0x{b=16,w=8,p=0}, was 0x{b=16,w=8,p=0}",
-			x, y, z, std.flt32bits(rf))
+			x, y, z, ru)
 	;;
 }
 
@@ -436,15 +457,22 @@
 		(0xe0bc4cbf6bd74d8f, 0x000000000000bd8b, 0xbff01ed2c4e821fc),
 		(0x31d4f2baa91a9e8e, 0x000000000000244d, 0x3fef774c954b40bf),
 		(0x01283d1c679f5652, 0x0000000000008647, 0x3fef5bc18f5e292f),
+		(0x80003d8a341ee060, 0x0000000000009c71, 0xbfef6f873f76b7cd),
+		(0xbfecf0fc4dc97b93, 0x0000000000005f4b, 0xbfeffff75d0a25fe),
+		(0xbfe2fb84944a35ee, 0x000000000000e947, 0xbfefffeda94c6d07),
+		(0xbfe0ef0c05bd84ab, 0x0000000000007165, 0xbfefffd205e2a1c8),
+		(0xbfe7354e962bdcb3, 0x000000000000076b, 0xbfeffe9d4844aad6),
+		(0xbfea556dd1eb1e58, 0x00000000000095cb, 0xbfeffff557890356),
 	][:]
 
 	for (x, y, z) : inputs
 		var xf : flt64 = std.flt64frombits(x)
 		var zf : flt64 = std.flt64frombits(z)
-		var rf = math.rootn(xf, y)
-		testr.check(c, rf == zf,
+		var rf : flt64 = math.rootn(xf, y)
+		var ru : uint64 = std.flt64bits(rf)
+		testr.check(c, ru == z,
 			"rootn(0x{b=16,w=16,p=0}, {}) should be 0x{b=16,w=16,p=0}, was 0x{b=16,w=16,p=0}",
-			x, y, z, std.flt64bits(rf))
+			x, y, z, ru)
 	;;
 }
 
--- a/lib/math/test/powr-impl.myr
+++ b/lib/math/test/powr-impl.myr
@@ -8,6 +8,7 @@
 		[.name="powr-01", .fn = powr01],
 		[.name="powr-02", .fn = powr02],
 		[.name="powr-03", .fn = powr03],
+		[.name="powr-04", .fn = powr04],
 	][:])
 }
 
@@ -22,8 +23,6 @@
 		(0x653f944a, 0xbf7c2388, 0x1a3c784b),
 		(0x545ba67c, 0xc0c7e947, 0x00000000),
 		(0x3fca6b0d, 0x44ff18e0, 0x7f800000),
-		// (0x3f74c7a7, 0x44feae20, 0x000265c6),
-		// (0x3f7ebd6c, 0xc5587884, 0x4bc9ab07),
 	][:]
 
 	for (x, y, z) : inputs
@@ -32,7 +31,7 @@
 		var zf : flt32 = std.flt32frombits(z)
 		var rf = math.powr(xf, yf)
 		testr.check(c, rf == zf,
-			"powr(0x{b=16,w=8,p=0}, 0x{b=16,w=8,p=0}) should be 0x{b=16,w=8,p=0}, was 0x{b=16,w=8,p=0}",
+			"powr(0x{w=8,p=0,x}, 0x{w=8,p=0,x}) should be 0x{w=8,p=0,x}, was 0x{w=8,p=0,x}",
 			x, y, z, std.flt32bits(rf))
 	;;
 }
@@ -40,6 +39,131 @@
 const powr02 = {c
 	var inputs : (uint64, uint64, uint64)[:] = [
 		(0x0000000000000000, 0x0000000000000000, 0x0000000000000000),
+		(0x0d30ad40d8223045, 0xffb56d6e33cd6ad2, 0x7ff0000000000000),
+		(0x1f192b55704d3500, 0xff8a52f877359f3c, 0x7ff0000000000000),
+		(0x7fe6c53d8cef3d27, 0x4bcca2e651c57788, 0x7ff0000000000000),
+		(0x7fe78a3740493383, 0xe84e801c38a71fc9, 0x0000000000000000),
+		(0x7fea162ffbabd3bc, 0x02414c7fa33dd7db, 0x3ff0000000000000),
+		(0x7fe087a9112a21d8, 0x0f2b7a9584736b41, 0x3ff0000000000000),
+		(0x7fe5d78f049c0918, 0xd3a145ba5b0fdb9b, 0x0000000000000000),
+		(0x7febb342860b3386, 0xe758bd2af063aec2, 0x0000000000000000),
+		(0x000342cdeeb18fc9, 0xbe645d513ed4670d, 0x3ff0001c3d5eaa62),
+		(0x3e086c8c9160ccfe, 0xc027b2f7021e0508, 0x567134b75886e1ce),
+		(0x3d799a9014c5c710, 0xc0294dc8ea46772e, 0x5f068df47efc8583),
+		(0x3fca93f7f9ca25b6, 0x3ff5847df0338da2, 0x3fbee98550a085a0),
+		(0x3fabb5869cd3c59e, 0x3ff36f822e577f69, 0x3f9da0409e2f391c),
+		(0x3f77f7f7131769cb, 0x3feaf3f718dd7ebe, 0x3f8af6517cbfdc36),
+		(0x3fcac3d4060de9e2, 0x4005f5e897c9aeb8, 0x3f8be74e7fa8bdd6),
+		(0x406f0b978c302c5e, 0x4035705781be3d35, 0x4a97d0db24be1855),
+		(0x40644d87e8676e6c, 0x404b0add51b6a1db, 0x58c21ad2028c4bcc),
+		(0x4196f9c67efe9a1f, 0x3fbb8bebec6ccd29, 0x401ceae1ef1736e2),
+
+		/* x in (-0.1, 0.1), y in (-50, 50) */
+		(0x85c8e7c348119f30, 0x895b661cd3f6bf12, 0xfff8000000000000),
+		(0x3ddec142f9c6c4ab, 0xb5eb602a73c886a4, 0x3ff0000000000000),
+		(0x808f2728666a17cc, 0x2034c24921d546bc, 0xfff8000000000000),
+		(0x19d8ae8ebf85e0e8, 0x3f07eb136357cb57, 0x3fef63a7defaa877),
+		(0x26e70f36e0237155, 0xaa4492e648bc196b, 0x3ff0000000000000),
+
+		/* x in (0, 0.001), y in (-50, 50) */
+		(0x3a8c503f997b1d9e, 0x9130be1b1bddafac, 0x3ff0000000000000),
+		(0x26bbb433c53c87cc, 0x3cea3bfe4404e194, 0x3fefffffffffe35c),
+		(0x1bfde85e7bef5604, 0x3cb5719f71329990, 0x3feffffffffffbd3),
+		(0x277cfd17030c8328, 0x2a74030781333076, 0x3ff0000000000000),
+		(0x19d8ae8ebf85e0e8, 0x3f07eb136357cb57, 0x3fef63a7defaa877),
+		(0x1ef50bc4cddd2717, 0xbee4389ff84a8f05, 0x3ff00e780c600a2f),
+		(0x01f66f97fb1a8dbb, 0x3d44ec5cc95c9f87, 0x3feffffffff1f50b),
+
+		/* x in (1e5, 1e9), y in (0.001, 0.2) */
+		(0x414d7781220eed89, 0x3f8e612e27ccef27, 0x3ff4096a3251e2a2),
+		(0x4151aeaf0db9e5e1, 0x3f75fc2b0f18576c, 0x3ff15fbe532b3ad6),
+		(0x41524b52b1ee2ea5, 0x7ff33dad40d7b286, 0xfff8000000000000),
+		(0xfffe3ddc1a7f09a7, 0x3f845a6294f3a890, 0xfff8000000000000),
+		(0x41477fe19e4e0642, 0xfff07c620f9b4061, 0xfff8000000000000),
+		(0x4130cad83460ac8d, 0x3f88f49d9474e1b7, 0x3ff2f4a5838051aa),
+		(0x4190c048c037d848, 0x3fc5f01bff5f120e, 0x40361f86b9ec8c03),
+		(0x4122532606cab2c2, 0x3f8c598493e15271, 0x3ff33c5ae51249f2),
+		(0x40ff7a13e85cc78c, 0x3f6e18c00e65b64d, 0x3ff0b4f518ad7a02),
+		(0x412aee1389285ddb, 0x3f56e92836547637, 0x3ff04f2b8a876442),
+		(0xfff7ceefbe9fcc65, 0x3faa28ac719649eb, 0xfff8000000000000),
+		(0x417113d63f0c2c95, 0x3f9c349235da5418, 0x3ff9586d156467dc),
+		(0x416e11f180357015, 0x3fa36745e43f0a12, 0x3ffdfbf8fdbce7b0),
+		(0x41cb75c7b1047ff0, 0x3f8e735375e7a550, 0x3ff5bf54bad30bd9),
+		(0x41bf0008e5b87821, 0x3fbb4108f504a250, 0x4020f10b4cd6005e),
+		(0x41cbe5fe5c674130, 0x3fa3e99fb287ea63, 0x4001dd6b2714c7b8),
+		(0x4174c2a767af0aff, 0x3f9d5bfb33b9c6f9, 0x3ff9f8d15a26d76f),
+		(0x41a51631969c7dc9, 0x3f92d1ce6076d806, 0x3ff6aed7a9d9b770),
+		(0x41101c4bb112bd60, 0x3fa24751eb557f8b, 0x3ff8fc0821e9cc12),
+		(0x41537e074bb931da, 0x7ff77c70e127f089, 0xfff8000000000000),
+		(0x412de8565421cfeb, 0x3fb3561b7eeae244, 0x4006add19c50cb4a),
+		(0x41aa670479d6802f, 0x3f9b9492b7c63280, 0x3ffad8c8dd5f6602),
+		(0x4166c5a1e9dd6276, 0x3fc0b0d8d4896f0a, 0x4020be53d9626333),
+		(0x41aee3dafeb3da8f, 0x3f88813f6c025f4b, 0x3ff42c84ca07e6dd),
+
+		/* x in (1e5, 1e9), y in (-100, -0.1) */
+		(0x417460e6ed428d99, 0xc04da3a1370b5e66, 000000000000000000),
+		(0x4186804e4380d00b, 0xbff51daac36e8cbd, 0x3dd47ebddadb4770),
+		(0x415c4dbac0e0621b, 0xbfff189d3f3bd269, 0x3d28fe34109afe0b),
+		(0x41477fe19e4e0642, 0xfff07c620f9b4061, 0xfff8000000000000),
+		(0x419ecd479467fb54, 0xbff4cd29a369ac90, 0x3dbf52e03dcc6f2f),
+		(0x41ac20c06ee35e4f, 0xbfdbcc358bb0fb18, 0x3f2e427c8b80ed9c),
+		(0xfff4326b9f6b3410, 0xc03d77ad8d9dd6b1, 0xfff8000000000000),
+		(0x4197910978aa8b96, 0xc03b9cd283f1294a, 0x12190b7d6c88576b),
+		(0x41094a4327327bff, 0xc011131c033fdfd5, 0x3b3879e23ee63805),
+		(0x40f8a138d93dfa6f, 0xc001413283b35d5f, 0x3db1bbb215bf42ae),
+		(0x414539311cf511ff, 0xbfbca848c2d205ed, 0x3fc84fc70f28d73e),
+		(0xfff3bc381986a30c, 0xbfdca95e011cebe9, 0xfff8000000000000),
+		(0x412e44a5346a1be6, 0xbffdcb72cdad7356, 0x3d9dfbadec90e3fa),
+		(0x418e5e64d3edf4c6, 0xc01674baa108856c, 0x36d602089075174d),
+		(0x416b58e89ad71a84, 0xbfca78a8fcb854b3, 0x3fa0f412b7918686),
+
+		/* x and y both in (0, 10) */
+		(0x7ff693c2af30864a, 0x3fa16af316e2d88c, 0xfff8000000000000),
+		(0x3fdde3d0f357d227, 0x3fd4e93bd57a2981, 0x3fe8f3d387c3cfe2),
+		(0x3fea1f57254b2d12, 0x3ff33aaf58690aa3, 0x3fe912f746775394),
+		(0x3fd19a840c634304, 0x3fba064281d93290, 0x3fec1099957576a6),
+		(0x3fce944eca01df35, 0x3f746940bfb8cacf, 0x3fefc5c3319cd7dd),
+		(0x3fa0030cd217ac73, 0x3fff10ee29f4ba92, 0x3f539d8ddb010192),
+		(0x3f748b091924c15d, 0x3fbb4ab930d8139f, 0x3fe2323de643196b),
+		(0x3f74b789b403b8f1, 0x3f5a0719b998a149, 0x3fefbb7c7865b589),
+		(0x4008bdfdc4bdf83c, 0x3fa84fdf9bbc5ad1, 0x3ff0e197a48356a8),
+		(0x3f707ab79cd549eb, 0x3fc776bf069fbf9f, 0x3fd748e843888881),
+		(0x40215d0d73f3daaf, 0x3f6909363b8c583a, 0x3ff01b24ca035345),
+		(0x400a5fe7abf90e94, 0x400552a0bcbf22fb, 0x403809d5d2eaca93),
+		(0x3fd48e701b8afa9a, 0xfffdf7de16212166, 0xfff8000000000000),
+		(0x3fdbed39bc744363, 0x401da621f6a5f1cc, 0x3f6187c614da505b),
+		(0x3ffd74273040c698, 0x3f9a6c6d49dd529c, 0x3ff0410227112c44),
+		(0x3faaeac0f7d4763a, 0xfff0a23bbb29b144, 0xfff8000000000000),
+		(0x7ff4035e90ccdb5d, 0x3fe19bd7bfc5fc57, 0xfff8000000000000),
+		(0x3fdf5a05d19f39f8, 0x3f5d97918fcfa553, 0x3feff572b799a75e),
+		(0x40139fa494d5c102, 0x3fff9e51a66d6c9c, 0x40372c0ec85cdb67),
+		(0x3fb64cb543db5008, 0x3fb6e061cb1f1a13, 0x3fe9bac3bc838dff),
+		(0x4002619e676678da, 0x3ff78e803ae2b8ec, 0x400b3a4285ab2635),
+		(0x3fe318b748070dba, 0x3fb7f9f73d9ab7fd, 0x3fee7d592f800221),
+		(0x3feb56ee622481b8, 0x3f7c19c1249a1d42, 0x3feff7289e9534f9),
+		(0x3f6d1ed0f9c04a9f, 0x3f62ffb9e40680c7, 0x3fef958dbae35a0f),
+		(0xfffe3ddc1a7f09a7, 0x3f845a6294f3a890, 0xfff8000000000000),
+		(0x3ff041e289ac5b8c, 0x3f57490a9fd58f95, 0x3ff00017c7d7ad4b),
+		(0x4020bc3c2d25bb94, 0xfff903dc5ef7b5da, 0xfff8000000000000),
+		(0x4003d467c525071c, 0x3f98c1fe89a5ecc4, 0x3ff05ae362b9a84a),
+		(0x3fc238b70f4e7216, 0x3f8a75e2fd6e64f4, 0x3fef343ee42df045),
+		(0x3fe001d1da500969, 0x400ff32df1b36945, 0x3fb0191d9c03801f),
+		(0x3ffb954dbc226673, 0x400408855a1fc270, 0x400f49e30f335764),
+		(0x400bb9f936dad207, 0xfffb58709426aaec, 0xfff8000000000000),
+		(0x3f7bbe6db78c8014, 0xfff26b1c8b0746a0, 0xfff8000000000000),
+		(0x3f6a3223e6ed8897, 0x3f5fdcdd7023700e, 0x3fefa4fa8d17ce4d),
+		(0x3fa7156dd9119631, 0x3fbe50c7d9ea5796, 0x3fe62b747aab2686),
+
+		/* x and y both in (10, 1000) */
+		(0x4041c47b9cc539bc, 0x406e00257d16c8da, 0x7ff0000000000000),
+		(0x40633d5af37862b4, 0x402b00f8698b8065, 0x46113505e72b8731),
+		(0xfff31fb18f68c667, 0x7ffd331caa2b7f2c, 0xfff8000000000000),
+		(0x405104222d3cd0f1, 0x4060abf88a1f4bfd, 0x72b10f2bdd0d952d),
+		(0x406868520ca4881f, 0x408785f3d85e41e2, 0x7ff0000000000000),
+		(0x4087586e5fc62ee6, 0xfff0f261e9e9c83d, 0xfff8000000000000),
+		(0x4024634aeecdfa76, 0x7ff10c2e3cf5cee6, 0xfff8000000000000),
+		(0x40410a0b21390465, 0x7ffef5998f6203e6, 0xfff8000000000000),
+		(0xfff6ddae433e1801, 0x403064702d5f4ed8, 0xfff8000000000000),
 	][:]
 
 	for (x, y, z) : inputs
@@ -48,7 +172,7 @@
 		var zf : flt64 = std.flt64frombits(z)
 		var rf = math.powr(xf, yf)
 		testr.check(c, rf == zf,
-			"powr(0x{b=16,w=16,p=0}, 0x{b=16,w=16,p=0}) should be 0x{b=16,w=16,p=0}, was 0x{b=16,w=16,p=0}",
+			"powr(0x{w=16,p=0,x}, 0x{w=16,p=0,x}) should be 0x{w=16,p=0,x}, was 0x{w=16,p=0,x}",
 			x, y, z, std.flt64bits(rf))
 	;;
 }
@@ -57,7 +181,7 @@
 	var inputs : (uint32, uint32, uint32, uint32)[:] = [
 		(0x1bd2244e, 0x3a647973, 0x3f7535a1, 0x3f7535a0),
 		(0x3f264a46, 0x423c927a, 0x30c9b8d3, 0x30c9b8d4),
-		(0x61fb73d0, 0xbfd2666c, 0x06c539f6, 0x06c539f7),
+		(0x61fb73d0, 0xbfd2666c, 0x06c539f6, 0x06c539f5),
 		(0x3bbd11f6, 0x3cc159b1, 0x3f62ac1b, 0x3f62ac1a),
 		(0x3f7ca5b7, 0xc309857a, 0x40c41bbf, 0x40c41bc0),
 		(0x3f6a1a65, 0x43e16065, 0x226731e2, 0x226731e3),
@@ -70,7 +194,36 @@
 		var zf_accepted : flt32 = std.flt32frombits(z_accepted)
 		var rf = math.powr(xf, yf)
 		testr.check(c, rf == zf_perfect || rf == zf_accepted,
-			"powr(0x{b=16,w=8,p=0}, 0x{b=16,w=8,p=0}) should be 0x{b=16,w=8,p=0}, will also accept 0x{b=16,w=8,p=0}, was 0x{b=16,w=8,p=0}",
+			"powr(0x{w=8,p=0,x}, 0x{w=8,p=0,x}) should be 0x{w=8,p=0,x}, will also accept 0x{w=8,p=0,x}, was 0x{w=8,p=0,x}",
 			x, y, z_perfect, z_accepted, std.flt32bits(rf))
+	;;
+}
+
+const powr04 = {c
+	var inputs : (uint64, uint64, uint64, uint64)[:] = [
+		(0x3f8627bbf0b2534e, 0x3fab532501422efb, 0x3fe921e86671e519, 0x3fe921e86671e518),
+		(0x41c84ac138a030ef, 0x3f91da7f2b3e4605, 0x3ff6e1b47e9ed782, 0x3ff6e1b47e9ed781),
+		(0x41ca9d0efec9e036, 0x3fa8f2f672d68769, 0x4005d70b6fe1084b, 0x4005d70b6fe1084a),
+		(0x40f949e1394ba90c, 0x3fb52c7ac7e9fb25, 0x4004cad8a0151dff, 0x4004cad8a0151e00),
+		(0x41341d6a23c92414, 0xc00943b1e82bb55e, 0x3bebc88b57f77f8f, 0x3bebc88b57f77f8e),
+		(0x41242aa370d444b6, 0xbff214c0dfc7a867, 0x3e91c53dfd314590, 0x3e91c53dfd31458f),
+		(0x418f00a1df7a23d0, 0xc033fc3dd88f7505, 0x1f83a0afed046038, 0x1f83a0afed046039),
+		(0x4169769b9e71e521, 0xc00ddf0ecaa33de6, 0x3a6889acb36be574, 0x3a6889acb36be573),
+		(0x417c6bc9e89d9c1d, 0xc01992c87dc70f2c, 0x36032a3faeb94526, 0x36032a3faeb94525),
+		(0x41c7ac7f3f65ea65, 0xc01e7dbcfb5c724c, 0x31d8c5031b0424e3, 0x31d8c5031b0424e2),
+		(0x3fa351c48c3746ce, 0x3fe729ab4b99e801, 0x3fb7e116428f44c0, 0x3fb7e116428f44c1),
+		(0x3fc9ffe250089ea1, 0x3ff88bf79a9dc33c, 0x3fb63170e54074b8, 0x3fb63170e54074b9),
+		(0x3f55ee3142fec6bf, 0x401cdc101b6b2276, 0x3ba18abf782d7bc4, 0x3ba18abf782d7bc5),
+][:]
+
+	for (x, y, z_perfect, z_accepted) : inputs
+		var xf : flt64 = std.flt64frombits(x)
+		var yf : flt64 = std.flt64frombits(y)
+		var zf_perfect : flt64 = std.flt64frombits(z_perfect)
+		var zf_accepted : flt64 = std.flt64frombits(z_accepted)
+		var rf = math.powr(xf, yf)
+		testr.check(c, rf == zf_perfect || rf == zf_accepted,
+			"powr(0x{w=16,p=0,x}, 0x{w=16,p=0,x}) should be 0x{w=16,p=0,x}, will also accept 0x{w=16,p=0,x}, was 0x{w=16,p=0,x}",
+			x, y, z_perfect, z_accepted, std.flt64bits(rf))
 	;;
 }
--- a/lib/math/util.myr
+++ b/lib/math/util.myr
@@ -19,6 +19,12 @@
 	const two_by_two64 : (x : flt64, y : flt64 -> (flt64, flt64))
 	const two_by_two32 : (x : flt32, y : flt32 -> (flt32, flt32))
 
+	/* Multiply (a_hi + a_lo) * (b_hi + b_lo) to (z_hi + z_lo) */
+	const hl_mult : (a_h : flt64, a_l : flt64, b_h : flt64, b_l : flt64 -> (flt64, flt64))
+
+	/* Add (a_hi + a_lo) * (b_hi + b_lo) to (z_hi + z_lo). Must have |a| > |b|. */
+	const hl_add : (a_h : flt64, a_l : flt64, b_h : flt64, b_l : flt64 -> (flt64, flt64))
+
 	/* Compare by magnitude */
 	const mag_cmp32 : (f : flt32, g : flt32 -> std.order)
 	const mag_cmp64 : (f : flt64, g : flt64 -> std.order)
@@ -249,6 +255,50 @@
 	var c  : flt32 = (cL : flt32)
 
 	-> (s, c)
+}
+
+const hl_mult = {a_h : flt64, a_l : flt64, b_h : flt64, b_l : flt64
+	/*
+	       [     a_h    ][     a_l    ] * [     b_h    ][     b_l    ]
+	         =
+	   (A) [          a_h*b_h         ]
+	   (B)   +           [          a_h*b_l         ]
+	   (C)   +           [          a_l*b_h         ]
+	   (D)   +                         [          a_l*b_l         ]
+
+	   We therefore want to keep all of A, and the top halves of the two
+	   smaller products B and C.
+
+	   To be pedantic, *_l could be much smaller than pictured above; *_h and
+	   *_l need not butt up right against each other. But that won't cause
+	   any problems; there's no way we'll ignore important information.
+	 */
+	var Ah, Al
+	(Ah, Al) = two_by_two64(a_h, b_h)
+	var Bh = a_h * b_l
+	var Ch = a_l * b_h
+	var resh, resl, t1, t2
+	(resh, resl) = slow2sum(Bh, Ch)
+	(resl, t1) = fast2sum(Al, resl)
+	(resh, t2) = slow2sum(resh, resl)
+	(resh, resl) = slow2sum(Ah, resh)
+	-> (resh, resl + (t1 + t2))
+}
+
+const hl_add = {a_h : flt64, a_l : flt64, b_h : flt64, b_l : flt64
+	/*
+	  Not terribly clever, we just chain a couple of 2sums together. We are
+	  free to impose the requirement that |a_h| > |b_h|, because we'll only
+	  be using this for a = 1/5, 1/3, and the log(Fi)s from the C tables.
+	  However, we can't guarantee that a_l > b_l. For example, compare C1[10]
+	  to C2[18].
+	 */
+
+	var resh, resl, t1, t2
+	(t1, t2) = slow2sum(a_l, b_l)
+	(resl, t1) = slow2sum(b_h, t1)
+	(resh, resl) = fast2sum(a_h, resl)
+	-> (resh, resl + (t1 + t2))
 }
 
 const mag_cmp32 = {f : flt32, g : flt32